1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use {
    futures::{
        stream::{FusedStream, Stream},
        Future,
    },
    std::{
        collections::HashMap,
        hash::Hash,
        pin::Pin,
        task::{Context, Poll},
    },
};

/// A collection of Future indexed by key, allowing removal by Key. When polled, a FutureMap yields
/// from whichever member future is ready first.
/// The Future type `Fut` can be `?Unpin`, as all futures are stored as pins inside the map. The Key
/// type `K` must be `Unpin`; it is unlikely that an `!Unpin` type would ever be needed as a Key.
/// FutureMap yields items of type Fut::Output.
pub struct FutureMap<K, Fut> {
    inner: HashMap<K, Pin<Box<Fut>>>,
    is_terminated: bool,
}

impl<K, Fut> Default for FutureMap<K, Fut> {
    fn default() -> Self {
        Self { inner: Default::default(), is_terminated: false }
    }
}

impl<K: Unpin, Fut> Unpin for FutureMap<K, Fut> {}

impl<K: Eq + Hash + Unpin, Fut: Future> FutureMap<K, Fut> {
    /// Returns an empty `FutureMap`.
    pub fn new() -> Self {
        Self::default()
    }

    /// Insert a future identified by `key` to the map.
    ///
    /// This method will not call `poll` on the submitted stream. The caller must ensure
    /// that `poll_next` is called in order to receive wake-up notifications for the given
    /// stream.
    pub fn insert(&mut self, key: K, future: Fut) -> Option<Pin<Box<Fut>>> {
        let Self { inner, is_terminated } = self;
        *is_terminated = false;
        inner.insert(key, Box::new(future).into())
    }

    /// Returns `true` if the `FutureMap` contains `key`.
    pub fn contains_key(&self, key: &K) -> bool {
        self.inner.contains_key(key)
    }

    /// Remove the future identified by `key`, returning it if it exists.
    pub fn remove(&mut self, key: &K) -> Option<Pin<Box<Fut>>> {
        self.inner.remove(key)
    }

    /// Provide mutable access to the inner hashmap.
    /// This is safe as if the future were being polled, we would not be able to access a mutable
    /// reference to self to pass to this method.
    pub fn inner(&mut self) -> &mut HashMap<K, Pin<Box<Fut>>> {
        &mut self.inner
    }
}

impl<K: Clone + Eq + Hash + Unpin, Fut: Future> Stream for FutureMap<K, Fut> {
    type Item = Fut::Output;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        // We can pull the inner value out as FutureMap is `Unpin`
        let Self { inner, is_terminated } = Pin::into_inner(self);

        if inner.is_empty() {
            *is_terminated = true;
            Poll::Ready(None)
        } else {
            match inner.iter_mut().find_map(|(key, future)| match Pin::new(future).poll(cx) {
                Poll::Ready(req) => Some((key.clone(), req)),
                Poll::Pending => None,
            }) {
                Some((key, req)) => {
                    assert!(inner.remove(&key).is_some());
                    Poll::Ready(Some(req))
                }
                None => Poll::Pending,
            }
        }
    }
}

impl<K: Clone + Eq + Hash + Unpin, Fut: Future> FusedStream for FutureMap<K, Fut> {
    fn is_terminated(&self) -> bool {
        let Self { inner: _, is_terminated } = self;
        *is_terminated
    }
}

#[cfg(test)]
mod test {
    //! We validate the behavior of the FutureMap stream by enumerating all possible external
    //! events, and then generating permutations of valid sequences of those events. These model
    //! the possible executions sequences the stream could go through in program execution. We
    //! then assert that:
    //!   a) At all points during execution, all invariants are held
    //!   b) The final result is as expected
    //!
    //! In this case, the invariants are:
    //!   * If the map is empty, it is pending
    //!   * If all futures are pending, the map is pending
    //!   * otherwise the map is ready
    //!
    //! The result is:
    //!   * All test messages have been injected
    //!   * All test messages have been yielded
    //!   * All test futures have terminated
    //!   * No event is yielded with a given key after the future for that key has terminated
    //!
    //! Together these show:
    //!   * Progress is always eventually made - the Stream cannot be stalled
    //!   * All inserted elements will eventually be yielded
    //!   * Elements are never duplicated
    use {
        super::*,
        crate::stream::WithTag,
        futures::{channel::oneshot, StreamExt},
        proptest::prelude::*,
        std::{collections::HashSet, fmt::Debug},
    };

    /// Possible actions to take in evaluating the stream
    enum Event<K> {
        /// Insert a new future
        InsertFuture(K, oneshot::Receiver<Result<u64, ()>>),
        /// Send a value, completing a future.
        CompleteFuture(K, oneshot::Sender<Result<u64, ()>>),
        /// Schedule the executor. The executor will only run the task if awoken, otherwise it will
        /// do nothing
        Execute,
    }

    impl<K: Debug> Debug for Event<K> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            match self {
                Event::InsertFuture(k, _) => write!(f, "InsertFuture({:?})", k),
                Event::CompleteFuture(k, _) => write!(f, "SendRequest({:?})", k),
                Event::Execute => write!(f, "Execute"),
            }
        }
    }

    fn stream_events<K: Clone + Eq + Hash>(key: K) -> Vec<Event<K>> {
        let (sender, receiver) = oneshot::channel::<Result<u64, ()>>();
        vec![Event::InsertFuture(key.clone(), receiver), Event::CompleteFuture(key, sender)]
    }

    /// Determine how many events are sent on open channels (a channel is open if it has not been
    /// closed, even if it has not yet been inserted into the FutureMap)
    fn expected_yield<K: Eq + Hash>(events: &Vec<Event<K>>) -> usize {
        events
            .iter()
            .fold((HashSet::new(), 0), |(mut terminated, closed), event| match event {
                Event::CompleteFuture(k, _) => {
                    assert!(
                        !terminated.contains(k),
                        "There should be no more than one future per key"
                    );
                    let _: bool = terminated.insert(k);
                    (terminated, closed + 1)
                }
                _ => (terminated, closed),
            })
            .1
    }

    /// Strategy that produces random permutations of a set of events, corresponding to inserting,
    /// sending and completing up to n different streams in random order, also interspersed with
    /// running the executor
    fn execution_sequences(n: u64) -> impl Strategy<Value = Vec<Event<u64>>> {
        fn generate_events(n: u64) -> Vec<Event<u64>> {
            let mut events = (0..n).flat_map(|n| stream_events(n)).collect::<Vec<_>>();
            events.extend(std::iter::repeat_with(|| Event::Execute).take((n * 3) as usize));
            events
        }

        // We want to produce random permutations of these events
        (0..n).prop_map(generate_events).prop_shuffle()
    }

    proptest! {
        #[test]
        fn test_invariants(mut execution in execution_sequences(4)) {
            let expected = expected_yield(&execution);

            // Add enough execution events to ensure we will complete, no matter the order
            execution.extend(std::iter::repeat_with(|| Event::Execute).take((expected * 3) as usize));

            let (waker, count) = futures_test::task::new_count_waker();
            let mut futures = FutureMap::new();
            let expected = expected as u64;
            let mut next_wake = 0;
            let mut yielded = 0;
            let mut inserted = 0;
            let mut events = vec![];
            for event in execution {
                match event {
                    Event::InsertFuture(key, future) => {
                        assert_matches::assert_matches!(futures.insert(key, future.tagged(key)), None);
                        // FutureMap does *not* wake on inserting new futures, matching the
                        // behavior of streams::SelectAll. The client *must* arrange for it to be
                        // polled again after a future is inserted; we model that here by forcing a
                        // wake up
                        next_wake = count.get();
                    }
                    Event::CompleteFuture(_, sender) => {
                        prop_assert_eq!(sender.send(Ok(1)), Ok(()));
                        inserted = inserted + 1;
                    }
                    Event::Execute if count.get() >= next_wake => {
                        match Pin::new(&mut futures.next()).poll(&mut Context::from_waker(&waker)) {
                            Poll::Ready(Some((k, v))) => {
                                events.push((k, v));
                                yielded = yielded + 1;
                                // Ensure that we wake up next time;
                                next_wake = count.get();
                                // Invariant: future(k) must be in the map
                                prop_assert!(!futures.contains_key(&k))
                            }
                            Poll::Ready(None) => {
                                // // the Stream impl for FutureMap never completes
                                // unreachable!()
                                prop_assert!(futures.inner.is_empty());
                            }
                            Poll::Pending => {
                                next_wake = count.get() + 1;
                            }
                        };
                    }
                    Event::Execute => (),
                }
            }
            prop_assert_eq!(inserted, expected, "All expected requests inserted");
            prop_assert_eq!((next_wake, count.get(), yielded), (next_wake, count.get(), expected), "All expected requests yielded");
            let all_keys = 0..expected;
            for k in all_keys {
                prop_assert!(!futures.contains_key(&k), "All futures should now have been removed");
            }
        }
    }
}