async_utils/stream/future_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use futures::stream::{FusedStream, Stream};
use futures::Future;
use std::collections::HashMap;
use std::hash::Hash;
use std::pin::Pin;
use std::task::{Context, Poll};
/// A collection of Future indexed by key, allowing removal by Key. When polled, a FutureMap yields
/// from whichever member future is ready first.
/// The Future type `Fut` can be `?Unpin`, as all futures are stored as pins inside the map. The Key
/// type `K` must be `Unpin`; it is unlikely that an `!Unpin` type would ever be needed as a Key.
/// FutureMap yields items of type Fut::Output.
pub struct FutureMap<K, Fut> {
inner: HashMap<K, Pin<Box<Fut>>>,
is_terminated: bool,
}
impl<K, Fut> Default for FutureMap<K, Fut> {
fn default() -> Self {
Self { inner: Default::default(), is_terminated: false }
}
}
impl<K: Unpin, Fut> Unpin for FutureMap<K, Fut> {}
impl<K: Eq + Hash + Unpin, Fut: Future> FutureMap<K, Fut> {
/// Returns an empty `FutureMap`.
pub fn new() -> Self {
Self::default()
}
/// Insert a future identified by `key` to the map.
///
/// This method will not call `poll` on the submitted stream. The caller must ensure
/// that `poll_next` is called in order to receive wake-up notifications for the given
/// stream.
pub fn insert(&mut self, key: K, future: Fut) -> Option<Pin<Box<Fut>>> {
let Self { inner, is_terminated } = self;
*is_terminated = false;
inner.insert(key, Box::new(future).into())
}
/// Returns `true` if the `FutureMap` contains `key`.
pub fn contains_key(&self, key: &K) -> bool {
self.inner.contains_key(key)
}
/// Remove the future identified by `key`, returning it if it exists.
pub fn remove(&mut self, key: &K) -> Option<Pin<Box<Fut>>> {
self.inner.remove(key)
}
/// Provide mutable access to the inner hashmap.
/// This is safe as if the future were being polled, we would not be able to access a mutable
/// reference to self to pass to this method.
pub fn inner(&mut self) -> &mut HashMap<K, Pin<Box<Fut>>> {
&mut self.inner
}
}
impl<K: Clone + Eq + Hash + Unpin, Fut: Future> Stream for FutureMap<K, Fut> {
type Item = Fut::Output;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
// We can pull the inner value out as FutureMap is `Unpin`
let Self { inner, is_terminated } = Pin::into_inner(self);
if inner.is_empty() {
*is_terminated = true;
Poll::Ready(None)
} else {
match inner.iter_mut().find_map(|(key, future)| match Pin::new(future).poll(cx) {
Poll::Ready(req) => Some((key.clone(), req)),
Poll::Pending => None,
}) {
Some((key, req)) => {
assert!(inner.remove(&key).is_some());
Poll::Ready(Some(req))
}
None => Poll::Pending,
}
}
}
}
impl<K: Clone + Eq + Hash + Unpin, Fut: Future> FusedStream for FutureMap<K, Fut> {
fn is_terminated(&self) -> bool {
let Self { inner: _, is_terminated } = self;
*is_terminated
}
}
#[cfg(test)]
mod test {
//! We validate the behavior of the FutureMap stream by enumerating all possible external
//! events, and then generating permutations of valid sequences of those events. These model
//! the possible executions sequences the stream could go through in program execution. We
//! then assert that:
//! a) At all points during execution, all invariants are held
//! b) The final result is as expected
//!
//! In this case, the invariants are:
//! * If the map is empty, it is pending
//! * If all futures are pending, the map is pending
//! * otherwise the map is ready
//!
//! The result is:
//! * All test messages have been injected
//! * All test messages have been yielded
//! * All test futures have terminated
//! * No event is yielded with a given key after the future for that key has terminated
//!
//! Together these show:
//! * Progress is always eventually made - the Stream cannot be stalled
//! * All inserted elements will eventually be yielded
//! * Elements are never duplicated
use super::*;
use crate::stream::WithTag;
use futures::channel::oneshot;
use futures::StreamExt;
use proptest::prelude::*;
use std::collections::HashSet;
use std::fmt::Debug;
/// Possible actions to take in evaluating the stream
enum Event<K> {
/// Insert a new future
InsertFuture(K, oneshot::Receiver<Result<u64, ()>>),
/// Send a value, completing a future.
CompleteFuture(K, oneshot::Sender<Result<u64, ()>>),
/// Schedule the executor. The executor will only run the task if awoken, otherwise it will
/// do nothing
Execute,
}
impl<K: Debug> Debug for Event<K> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Event::InsertFuture(k, _) => write!(f, "InsertFuture({:?})", k),
Event::CompleteFuture(k, _) => write!(f, "SendRequest({:?})", k),
Event::Execute => write!(f, "Execute"),
}
}
}
fn stream_events<K: Clone + Eq + Hash>(key: K) -> Vec<Event<K>> {
let (sender, receiver) = oneshot::channel::<Result<u64, ()>>();
vec![Event::InsertFuture(key.clone(), receiver), Event::CompleteFuture(key, sender)]
}
/// Determine how many events are sent on open channels (a channel is open if it has not been
/// closed, even if it has not yet been inserted into the FutureMap)
fn expected_yield<K: Eq + Hash>(events: &Vec<Event<K>>) -> usize {
events
.iter()
.fold((HashSet::new(), 0), |(mut terminated, closed), event| match event {
Event::CompleteFuture(k, _) => {
assert!(
!terminated.contains(k),
"There should be no more than one future per key"
);
let _: bool = terminated.insert(k);
(terminated, closed + 1)
}
_ => (terminated, closed),
})
.1
}
/// Strategy that produces random permutations of a set of events, corresponding to inserting,
/// sending and completing up to n different streams in random order, also interspersed with
/// running the executor
fn execution_sequences(n: u64) -> impl Strategy<Value = Vec<Event<u64>>> {
fn generate_events(n: u64) -> Vec<Event<u64>> {
let mut events = (0..n).flat_map(|n| stream_events(n)).collect::<Vec<_>>();
events.extend(std::iter::repeat_with(|| Event::Execute).take((n * 3) as usize));
events
}
// We want to produce random permutations of these events
(0..n).prop_map(generate_events).prop_shuffle()
}
proptest! {
#[test]
fn test_invariants(mut execution in execution_sequences(4)) {
let expected = expected_yield(&execution);
// Add enough execution events to ensure we will complete, no matter the order
execution.extend(std::iter::repeat_with(|| Event::Execute).take((expected * 3) as usize));
let (waker, count) = futures_test::task::new_count_waker();
let mut futures = FutureMap::new();
let expected = expected as u64;
let mut next_wake = 0;
let mut yielded = 0;
let mut inserted = 0;
let mut events = vec![];
for event in execution {
match event {
Event::InsertFuture(key, future) => {
assert_matches::assert_matches!(futures.insert(key, future.tagged(key)), None);
// FutureMap does *not* wake on inserting new futures, matching the
// behavior of streams::SelectAll. The client *must* arrange for it to be
// polled again after a future is inserted; we model that here by forcing a
// wake up
next_wake = count.get();
}
Event::CompleteFuture(_, sender) => {
prop_assert_eq!(sender.send(Ok(1)), Ok(()));
inserted = inserted + 1;
}
Event::Execute if count.get() >= next_wake => {
match Pin::new(&mut futures.next()).poll(&mut Context::from_waker(&waker)) {
Poll::Ready(Some((k, v))) => {
events.push((k, v));
yielded = yielded + 1;
// Ensure that we wake up next time;
next_wake = count.get();
// Invariant: future(k) must be in the map
prop_assert!(!futures.contains_key(&k))
}
Poll::Ready(None) => {
// // the Stream impl for FutureMap never completes
// unreachable!()
prop_assert!(futures.inner.is_empty());
}
Poll::Pending => {
next_wake = count.get() + 1;
}
};
}
Event::Execute => (),
}
}
prop_assert_eq!(inserted, expected, "All expected requests inserted");
prop_assert_eq!((next_wake, count.get(), yielded), (next_wake, count.get(), expected), "All expected requests yielded");
let all_keys = 0..expected;
for k in all_keys {
prop_assert!(!futures.contains_key(&k), "All futures should now have been removed");
}
}
}
}