base64/read/decoder.rs
1use crate::{engine::Engine, DecodeError, DecodeSliceError, PAD_BYTE};
2use std::{cmp, fmt, io};
3
4// This should be large, but it has to fit on the stack.
5pub(crate) const BUF_SIZE: usize = 1024;
6
7// 4 bytes of base64 data encode 3 bytes of raw data (modulo padding).
8const BASE64_CHUNK_SIZE: usize = 4;
9const DECODED_CHUNK_SIZE: usize = 3;
10
11/// A `Read` implementation that decodes base64 data read from an underlying reader.
12///
13/// # Examples
14///
15/// ```
16/// use std::io::Read;
17/// use std::io::Cursor;
18/// use base64::engine::general_purpose;
19///
20/// // use a cursor as the simplest possible `Read` -- in real code this is probably a file, etc.
21/// let mut wrapped_reader = Cursor::new(b"YXNkZg==");
22/// let mut decoder = base64::read::DecoderReader::new(
23/// &mut wrapped_reader,
24/// &general_purpose::STANDARD);
25///
26/// // handle errors as you normally would
27/// let mut result = Vec::new();
28/// decoder.read_to_end(&mut result).unwrap();
29///
30/// assert_eq!(b"asdf", &result[..]);
31///
32/// ```
33pub struct DecoderReader<'e, E: Engine, R: io::Read> {
34 engine: &'e E,
35 /// Where b64 data is read from
36 inner: R,
37
38 /// Holds b64 data read from the delegate reader.
39 b64_buffer: [u8; BUF_SIZE],
40 /// The start of the pending buffered data in `b64_buffer`.
41 b64_offset: usize,
42 /// The amount of buffered b64 data after `b64_offset` in `b64_len`.
43 b64_len: usize,
44 /// Since the caller may provide us with a buffer of size 1 or 2 that's too small to copy a
45 /// decoded chunk in to, we have to be able to hang on to a few decoded bytes.
46 /// Technically we only need to hold 2 bytes, but then we'd need a separate temporary buffer to
47 /// decode 3 bytes into and then juggle copying one byte into the provided read buf and the rest
48 /// into here, which seems like a lot of complexity for 1 extra byte of storage.
49 decoded_chunk_buffer: [u8; DECODED_CHUNK_SIZE],
50 /// Index of start of decoded data in `decoded_chunk_buffer`
51 decoded_offset: usize,
52 /// Length of decoded data after `decoded_offset` in `decoded_chunk_buffer`
53 decoded_len: usize,
54 /// Input length consumed so far.
55 /// Used to provide accurate offsets in errors
56 input_consumed_len: usize,
57 /// offset of previously seen padding, if any
58 padding_offset: Option<usize>,
59}
60
61// exclude b64_buffer as it's uselessly large
62impl<'e, E: Engine, R: io::Read> fmt::Debug for DecoderReader<'e, E, R> {
63 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
64 f.debug_struct("DecoderReader")
65 .field("b64_offset", &self.b64_offset)
66 .field("b64_len", &self.b64_len)
67 .field("decoded_chunk_buffer", &self.decoded_chunk_buffer)
68 .field("decoded_offset", &self.decoded_offset)
69 .field("decoded_len", &self.decoded_len)
70 .field("input_consumed_len", &self.input_consumed_len)
71 .field("padding_offset", &self.padding_offset)
72 .finish()
73 }
74}
75
76impl<'e, E: Engine, R: io::Read> DecoderReader<'e, E, R> {
77 /// Create a new decoder that will read from the provided reader `r`.
78 pub fn new(reader: R, engine: &'e E) -> Self {
79 DecoderReader {
80 engine,
81 inner: reader,
82 b64_buffer: [0; BUF_SIZE],
83 b64_offset: 0,
84 b64_len: 0,
85 decoded_chunk_buffer: [0; DECODED_CHUNK_SIZE],
86 decoded_offset: 0,
87 decoded_len: 0,
88 input_consumed_len: 0,
89 padding_offset: None,
90 }
91 }
92
93 /// Write as much as possible of the decoded buffer into the target buffer.
94 /// Must only be called when there is something to write and space to write into.
95 /// Returns a Result with the number of (decoded) bytes copied.
96 fn flush_decoded_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> {
97 debug_assert!(self.decoded_len > 0);
98 debug_assert!(!buf.is_empty());
99
100 let copy_len = cmp::min(self.decoded_len, buf.len());
101 debug_assert!(copy_len > 0);
102 debug_assert!(copy_len <= self.decoded_len);
103
104 buf[..copy_len].copy_from_slice(
105 &self.decoded_chunk_buffer[self.decoded_offset..self.decoded_offset + copy_len],
106 );
107
108 self.decoded_offset += copy_len;
109 self.decoded_len -= copy_len;
110
111 debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
112
113 Ok(copy_len)
114 }
115
116 /// Read into the remaining space in the buffer after the current contents.
117 /// Must only be called when there is space to read into in the buffer.
118 /// Returns the number of bytes read.
119 fn read_from_delegate(&mut self) -> io::Result<usize> {
120 debug_assert!(self.b64_offset + self.b64_len < BUF_SIZE);
121
122 let read = self
123 .inner
124 .read(&mut self.b64_buffer[self.b64_offset + self.b64_len..])?;
125 self.b64_len += read;
126
127 debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
128
129 Ok(read)
130 }
131
132 /// Decode the requested number of bytes from the b64 buffer into the provided buffer. It's the
133 /// caller's responsibility to choose the number of b64 bytes to decode correctly.
134 ///
135 /// Returns a Result with the number of decoded bytes written to `buf`.
136 ///
137 /// # Panics
138 ///
139 /// panics if `buf` is too small
140 fn decode_to_buf(&mut self, b64_len_to_decode: usize, buf: &mut [u8]) -> io::Result<usize> {
141 debug_assert!(self.b64_len >= b64_len_to_decode);
142 debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
143 debug_assert!(!buf.is_empty());
144
145 let b64_to_decode = &self.b64_buffer[self.b64_offset..self.b64_offset + b64_len_to_decode];
146 let decode_metadata = self
147 .engine
148 .internal_decode(
149 b64_to_decode,
150 buf,
151 self.engine.internal_decoded_len_estimate(b64_len_to_decode),
152 )
153 .map_err(|dse| match dse {
154 DecodeSliceError::DecodeError(de) => {
155 match de {
156 DecodeError::InvalidByte(offset, byte) => {
157 match (byte, self.padding_offset) {
158 // if there was padding in a previous block of decoding that happened to
159 // be correct, and we now find more padding that happens to be incorrect,
160 // to be consistent with non-reader decodes, record the error at the first
161 // padding
162 (PAD_BYTE, Some(first_pad_offset)) => {
163 DecodeError::InvalidByte(first_pad_offset, PAD_BYTE)
164 }
165 _ => {
166 DecodeError::InvalidByte(self.input_consumed_len + offset, byte)
167 }
168 }
169 }
170 DecodeError::InvalidLength(len) => {
171 DecodeError::InvalidLength(self.input_consumed_len + len)
172 }
173 DecodeError::InvalidLastSymbol(offset, byte) => {
174 DecodeError::InvalidLastSymbol(self.input_consumed_len + offset, byte)
175 }
176 DecodeError::InvalidPadding => DecodeError::InvalidPadding,
177 }
178 }
179 DecodeSliceError::OutputSliceTooSmall => {
180 unreachable!("buf is sized correctly in calling code")
181 }
182 })
183 .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
184
185 if let Some(offset) = self.padding_offset {
186 // we've already seen padding
187 if decode_metadata.decoded_len > 0 {
188 // we read more after already finding padding; report error at first padding byte
189 return Err(io::Error::new(
190 io::ErrorKind::InvalidData,
191 DecodeError::InvalidByte(offset, PAD_BYTE),
192 ));
193 }
194 }
195
196 self.padding_offset = self.padding_offset.or(decode_metadata
197 .padding_offset
198 .map(|offset| self.input_consumed_len + offset));
199 self.input_consumed_len += b64_len_to_decode;
200 self.b64_offset += b64_len_to_decode;
201 self.b64_len -= b64_len_to_decode;
202
203 debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
204
205 Ok(decode_metadata.decoded_len)
206 }
207
208 /// Unwraps this `DecoderReader`, returning the base reader which it reads base64 encoded
209 /// input from.
210 ///
211 /// Because `DecoderReader` performs internal buffering, the state of the inner reader is
212 /// unspecified. This function is mainly provided because the inner reader type may provide
213 /// additional functionality beyond the `Read` implementation which may still be useful.
214 pub fn into_inner(self) -> R {
215 self.inner
216 }
217}
218
219impl<'e, E: Engine, R: io::Read> io::Read for DecoderReader<'e, E, R> {
220 /// Decode input from the wrapped reader.
221 ///
222 /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes
223 /// written in `buf`.
224 ///
225 /// Where possible, this function buffers base64 to minimize the number of read() calls to the
226 /// delegate reader.
227 ///
228 /// # Errors
229 ///
230 /// Any errors emitted by the delegate reader are returned. Decoding errors due to invalid
231 /// base64 are also possible, and will have `io::ErrorKind::InvalidData`.
232 fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
233 if buf.is_empty() {
234 return Ok(0);
235 }
236
237 // offset == BUF_SIZE when we copied it all last time
238 debug_assert!(self.b64_offset <= BUF_SIZE);
239 debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
240 debug_assert!(if self.b64_offset == BUF_SIZE {
241 self.b64_len == 0
242 } else {
243 self.b64_len <= BUF_SIZE
244 });
245
246 debug_assert!(if self.decoded_len == 0 {
247 // can be = when we were able to copy the complete chunk
248 self.decoded_offset <= DECODED_CHUNK_SIZE
249 } else {
250 self.decoded_offset < DECODED_CHUNK_SIZE
251 });
252
253 // We shouldn't ever decode into decoded_buffer when we can't immediately write at least one
254 // byte into the provided buf, so the effective length should only be 3 momentarily between
255 // when we decode and when we copy into the target buffer.
256 debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
257 debug_assert!(self.decoded_len + self.decoded_offset <= DECODED_CHUNK_SIZE);
258
259 if self.decoded_len > 0 {
260 // we have a few leftover decoded bytes; flush that rather than pull in more b64
261 self.flush_decoded_buf(buf)
262 } else {
263 let mut at_eof = false;
264 while self.b64_len < BASE64_CHUNK_SIZE {
265 // Copy any bytes we have to the start of the buffer.
266 self.b64_buffer
267 .copy_within(self.b64_offset..self.b64_offset + self.b64_len, 0);
268 self.b64_offset = 0;
269
270 // then fill in more data
271 let read = self.read_from_delegate()?;
272 if read == 0 {
273 // we never read into an empty buf, so 0 => we've hit EOF
274 at_eof = true;
275 break;
276 }
277 }
278
279 if self.b64_len == 0 {
280 debug_assert!(at_eof);
281 // we must be at EOF, and we have no data left to decode
282 return Ok(0);
283 };
284
285 debug_assert!(if at_eof {
286 // if we are at eof, we may not have a complete chunk
287 self.b64_len > 0
288 } else {
289 // otherwise, we must have at least one chunk
290 self.b64_len >= BASE64_CHUNK_SIZE
291 });
292
293 debug_assert_eq!(0, self.decoded_len);
294
295 if buf.len() < DECODED_CHUNK_SIZE {
296 // caller requested an annoyingly short read
297 // have to write to a tmp buf first to avoid double mutable borrow
298 let mut decoded_chunk = [0_u8; DECODED_CHUNK_SIZE];
299 // if we are at eof, could have less than BASE64_CHUNK_SIZE, in which case we have
300 // to assume that these last few tokens are, in fact, valid (i.e. must be 2-4 b64
301 // tokens, not 1, since 1 token can't decode to 1 byte).
302 let to_decode = cmp::min(self.b64_len, BASE64_CHUNK_SIZE);
303
304 let decoded = self.decode_to_buf(to_decode, &mut decoded_chunk[..])?;
305 self.decoded_chunk_buffer[..decoded].copy_from_slice(&decoded_chunk[..decoded]);
306
307 self.decoded_offset = 0;
308 self.decoded_len = decoded;
309
310 // can be less than 3 on last block due to padding
311 debug_assert!(decoded <= 3);
312
313 self.flush_decoded_buf(buf)
314 } else {
315 let b64_bytes_that_can_decode_into_buf = (buf.len() / DECODED_CHUNK_SIZE)
316 .checked_mul(BASE64_CHUNK_SIZE)
317 .expect("too many chunks");
318 debug_assert!(b64_bytes_that_can_decode_into_buf >= BASE64_CHUNK_SIZE);
319
320 let b64_bytes_available_to_decode = if at_eof {
321 self.b64_len
322 } else {
323 // only use complete chunks
324 self.b64_len - self.b64_len % 4
325 };
326
327 let actual_decode_len = cmp::min(
328 b64_bytes_that_can_decode_into_buf,
329 b64_bytes_available_to_decode,
330 );
331 self.decode_to_buf(actual_decode_len, buf)
332 }
333 }
334 }
335}