storage_device/buffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::buffer_allocator::BufferAllocator;
use std::ops::{Bound, Range, RangeBounds};
use std::slice::SliceIndex;
pub use crate::buffer_allocator::BufferFuture;
pub(super) fn round_down<T>(value: T, granularity: T) -> T
where
T: num::Num + Copy,
{
value - value % granularity
}
pub(super) fn round_up<T>(value: T, granularity: T) -> T
where
T: num::Num + Copy,
{
round_down(value + granularity - T::one(), granularity)
}
// Returns a range within a range.
// For example, subrange(100..200, 20..30) = 120..130.
fn subrange<R: RangeBounds<usize>>(source: &Range<usize>, bounds: &R) -> Range<usize> {
let subrange = (match bounds.start_bound() {
Bound::Included(&s) => source.start + s,
Bound::Excluded(&s) => source.start + s + 1,
Bound::Unbounded => source.start,
})..(match bounds.end_bound() {
Bound::Included(&e) => source.start + e + 1,
Bound::Excluded(&e) => source.start + e,
Bound::Unbounded => source.end,
});
assert!(subrange.end <= source.end);
subrange
}
fn split_range(range: &Range<usize>, mid: usize) -> (Range<usize>, Range<usize>) {
let l = range.end - range.start;
let base = range.start;
(base..base + mid, base + mid..base + l)
}
// TODO(jfsulliv): Eventually we will want zero-copy buffers which are provided by filesystem
// clients (e.g. via zx::stream) and which we either splice pages into or out of from a transfer
// buffer, or which we directly connect to the block device, or which we read and write to in some
// different way (involving changes to the block interface).
/// Buffer is a read-write buffer that can be used for I/O with the block device. They are created
/// by a BufferAllocator, and automatically deallocate themselves when they go out of scope.
///
/// Most usage will be on the unowned BufferRef and MutableBufferRef types, since these types are
/// used for Device::read and Device::write.
///
/// Buffers are always block-aligned (both in offset and length), but unaligned slices can be made
/// with the reference types. That said, the Device trait requires aligned BufferRef and
/// MutableBufferRef objects, so alignment must be restored by the time a device read/write is
/// requested.
///
/// For example, when writing an unaligned amount of data to the device, generally two Buffers
/// would need to be involved; the input Buffer could be used to write everything up to the last
/// block, and a second single-block alignment Buffer would be used to read-modify-update the last
/// block.
#[derive(Debug)]
pub struct Buffer<'a>(MutableBufferRef<'a>);
// Alias for the traits which need to be satisfied for |subslice| and friends.
// This trait is automatically satisfied for most typical uses (a..b, a.., ..b, ..).
pub trait SliceRange: Clone + RangeBounds<usize> + SliceIndex<[u8], Output = [u8]> {}
impl<T> SliceRange for T where T: Clone + RangeBounds<usize> + SliceIndex<[u8], Output = [u8]> {}
impl<'a> Buffer<'a> {
pub(super) fn new(
slice: &'a mut [u8],
range: Range<usize>,
allocator: &'a BufferAllocator,
) -> Self {
Self(MutableBufferRef { slice, range, allocator })
}
/// Takes a read-only reference to this buffer.
pub fn as_ref(&self) -> BufferRef<'_> {
self.subslice(..)
}
/// Takes a read-only reference to this buffer over |range| (which must be within the size of
/// the buffer).
pub fn subslice<R: SliceRange>(&self, range: R) -> BufferRef<'_> {
self.0.subslice(range)
}
/// Takes a read-write reference to this buffer.
pub fn as_mut(&mut self) -> MutableBufferRef<'_> {
self.subslice_mut(..)
}
/// Takes a read-write reference to this buffer over |range| (which must be within the size of
/// the buffer).
pub fn subslice_mut<R: SliceRange>(&mut self, range: R) -> MutableBufferRef<'_> {
self.0.reborrow().subslice_mut(range)
}
/// Returns the buffer's capacity.
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns a slice of the buffer's contents.
pub fn as_slice(&self) -> &[u8] {
self.0.as_slice()
}
/// Returns a mutable slice of the buffer's contents.
pub fn as_mut_slice(&mut self) -> &mut [u8] {
self.0.as_mut_slice()
}
/// Returns the range in the underlying BufferSource that this buffer covers.
pub fn range(&self) -> Range<usize> {
self.0.range()
}
/// Returns a reference to the allocator.
pub fn allocator(&self) -> &BufferAllocator {
self.0.allocator
}
}
impl<'a> Drop for Buffer<'a> {
fn drop(&mut self) {
self.0.allocator.free_buffer(self.range());
}
}
/// BufferRef is an unowned, read-only view over a Buffer.
#[derive(Clone, Copy, Debug)]
pub struct BufferRef<'a> {
slice: &'a [u8],
start: usize, // Not range so that we get Copy.
end: usize,
allocator: &'a BufferAllocator,
}
impl<'a> BufferRef<'a> {
/// Returns the buffer's capacity.
pub fn len(&self) -> usize {
self.end - self.start
}
pub fn is_empty(&self) -> bool {
self.end == self.start
}
/// Returns a slice of the buffer's contents.
pub fn as_slice(&self) -> &[u8] {
self.slice
}
/// Slices and consumes this reference. See Buffer::subslice.
pub fn subslice<R: SliceRange>(&self, range: R) -> BufferRef<'_> {
let slice = &self.slice[range.clone()];
let range = subrange(&self.range(), &range);
BufferRef { slice, start: range.start, end: range.end, allocator: self.allocator }
}
/// Splits at |mid| (included in the right child), yielding two BufferRefs.
pub fn split_at(&self, mid: usize) -> (BufferRef<'_>, BufferRef<'_>) {
let slices = self.slice.split_at(mid);
let ranges = split_range(&self.range(), mid);
(
BufferRef {
slice: slices.0,
start: ranges.0.start,
end: ranges.0.end,
allocator: self.allocator,
},
BufferRef {
slice: slices.1,
start: ranges.1.start,
end: ranges.1.end,
allocator: self.allocator,
},
)
}
/// Returns the range in the underlying BufferSource that this BufferRef covers.
/// TODO(jfsulliv): Currently unused in host code. Remove when there is a real Device impl.
#[allow(dead_code)]
pub fn range(&self) -> Range<usize> {
self.start..self.end
}
}
/// MutableBufferRef is an unowned, read-write view of a Buffer.
#[derive(Debug)]
pub struct MutableBufferRef<'a> {
slice: &'a mut [u8],
range: Range<usize>,
allocator: &'a BufferAllocator,
}
impl<'a> MutableBufferRef<'a> {
/// Returns the buffer's capacity.
pub fn len(&self) -> usize {
self.range.end - self.range.start
}
pub fn is_empty(&self) -> bool {
self.range.end == self.range.start
}
pub fn as_ref(&self) -> BufferRef<'_> {
self.subslice(..)
}
pub fn into_ref(self) -> BufferRef<'a> {
BufferRef {
slice: self.slice,
start: self.range.start,
end: self.range.end,
allocator: self.allocator,
}
}
/// Returns a slice of the buffer's contents.
pub fn as_slice(&self) -> &[u8] {
self.slice
}
/// Returns a mutable slice of the buffer's contents.
pub fn as_mut_slice(&mut self) -> &mut [u8] {
self.slice
}
/// Reborrows this reference with a lesser lifetime. This mirrors the usual borrowing semantics
/// (i.e. the borrow ends when the new reference goes out of scope), and exists so that a
/// MutableBufferRef can be subsliced without consuming it.
///
/// For example:
/// let mut buf: MutableBufferRef<'_> = ...;
/// {
/// let sub = buf.reborrow().subslice_mut(a..b);
/// }
pub fn reborrow(&mut self) -> MutableBufferRef<'_> {
MutableBufferRef { slice: self.slice, range: self.range.clone(), allocator: self.allocator }
}
/// Slices this reference. See Buffer::subslice.
pub fn subslice<R: SliceRange>(&self, range: R) -> BufferRef<'_> {
let slice = &self.slice[range.clone()];
let range = subrange(&self.range, &range);
BufferRef { slice, start: range.start, end: range.end, allocator: self.allocator }
}
/// Slices and consumes this reference. See Buffer::subslice_mut.
pub fn subslice_mut<R: SliceRange>(mut self, range: R) -> MutableBufferRef<'a> {
self.slice = &mut self.slice[range.clone()];
self.range = subrange(&self.range, &range);
self
}
/// Splits at |mid| (included in the right child), yielding two BufferRefs.
pub fn split_at(&self, mid: usize) -> (BufferRef<'_>, BufferRef<'_>) {
let slices = self.slice.split_at(mid);
let ranges = split_range(&self.range, mid);
(
BufferRef {
slice: slices.0,
start: ranges.0.start,
end: ranges.0.end,
allocator: self.allocator,
},
BufferRef {
slice: slices.1,
start: ranges.1.start,
end: ranges.1.end,
allocator: self.allocator,
},
)
}
/// Consumes the reference and splits it at |mid| (included in the right child), yielding two
/// MutableBufferRefs.
pub fn split_at_mut(self, mid: usize) -> (MutableBufferRef<'a>, MutableBufferRef<'a>) {
let slices = self.slice.split_at_mut(mid);
let ranges = split_range(&self.range, mid);
(
MutableBufferRef { slice: slices.0, range: ranges.0, allocator: self.allocator },
MutableBufferRef { slice: slices.1, range: ranges.1, allocator: self.allocator },
)
}
/// Returns the range in the underlying BufferSource that this MutableBufferRef covers.
/// TODO(jfsulliv): Currently unused in host code. Remove when there is a real Device impl.
#[allow(dead_code)]
pub fn range(&self) -> Range<usize> {
self.range.clone()
}
}