input_pipeline/input_pipeline.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::autorepeater::Autorepeater;
use crate::display_ownership::DisplayOwnership;
use crate::focus_listener::FocusListener;
use crate::{input_device, input_handler, metrics};
use anyhow::{format_err, Context, Error};
use focus_chain_provider::FocusChainProviderPublisher;
use fuchsia_fs::directory::{WatchEvent, Watcher};
use fuchsia_inspect::health::Reporter;
use fuchsia_inspect::NumericProperty;
use futures::channel::mpsc::{self, UnboundedReceiver, UnboundedSender};
use futures::lock::Mutex;
use futures::{StreamExt, TryStreamExt};
use itertools::Itertools;
use metrics_registry::*;
use std::collections::HashMap;
use std::path::PathBuf;
use std::rc::Rc;
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::{Arc, LazyLock};
use {fidl_fuchsia_io as fio, fuchsia_async as fasync};
/// Use a self incremental u32 unique id for device_id.
///
/// device id start from 10 to avoid conflict with default devices in Starnix.
/// Currently, Starnix using 0 and 1 as default devices' id. Starnix need to
/// use default devices to deliver events from physical devices until we have
/// API to expose device changes to UI clients.
static NEXT_DEVICE_ID: LazyLock<AtomicU32> = LazyLock::new(|| AtomicU32::new(10));
/// Each time this function is invoked, it returns the current value of its
/// internal counter (serving as a unique id for device_id) and then increments
/// that counter in preparation for the next call.
fn get_next_device_id() -> u32 {
NEXT_DEVICE_ID.fetch_add(1, Ordering::SeqCst)
}
type BoxedInputDeviceBinding = Box<dyn input_device::InputDeviceBinding>;
/// An [`InputDeviceBindingHashMap`] maps an input device to one or more InputDeviceBindings.
/// It uses unique device id as key.
pub type InputDeviceBindingHashMap = Arc<Mutex<HashMap<u32, Vec<BoxedInputDeviceBinding>>>>;
/// An input pipeline assembly.
///
/// Represents a partial stage of the input pipeline which accepts inputs through an asynchronous
/// sender channel, and emits outputs through an asynchronous receiver channel. Use [new] to
/// create a new assembly. Use [add_handler], or [add_all_handlers] to add the input pipeline
/// handlers to use. When done, [InputPipeline::new] can be used to make a new input pipeline.
///
/// # Implementation notes
///
/// Internally, when a new [InputPipelineAssembly] is created with multiple [InputHandler]s, the
/// handlers are connected together using async queues. This allows fully streamed processing of
/// input events, and also allows some pipeline stages to generate events spontaneously, i.e.
/// without an external stimulus.
pub struct InputPipelineAssembly {
/// The top-level sender: send into this queue to inject an event into the input
/// pipeline.
sender: UnboundedSender<input_device::InputEvent>,
/// The bottom-level receiver: any events that fall through the entire pipeline can
/// be read from this receiver. See [catch_unhandled] for a canned way to catch and
/// log unhandled events.
receiver: UnboundedReceiver<input_device::InputEvent>,
/// The tasks that were instantiated as result of calling [new]. You *must*
/// submit all the tasks to an executor to have them start. Use [components] to
/// get the tasks. See [run] for a canned way to start these tasks.
tasks: Vec<fuchsia_async::Task<()>>,
/// The metrics logger.
metrics_logger: metrics::MetricsLogger,
}
impl InputPipelineAssembly {
/// Create a new but empty [InputPipelineAssembly]. Use [add_handler] or similar
/// to add new handlers to it.
pub fn new(metrics_logger: metrics::MetricsLogger) -> Self {
let (sender, receiver) = mpsc::unbounded();
let tasks = vec![];
InputPipelineAssembly { sender, receiver, tasks, metrics_logger }
}
/// Adds another [input_handler::InputHandler] into the [InputPipelineAssembly]. The handlers
/// are invoked in the order they are added, and successive handlers are glued together using
/// unbounded queues. Returns `Self` for chaining.
pub fn add_handler(self, handler: Rc<dyn input_handler::InputHandler>) -> Self {
let (sender, mut receiver, mut tasks, metrics_logger) = self.into_components();
let metrics_logger_clone = metrics_logger.clone();
let (next_sender, next_receiver) = mpsc::unbounded();
let handler_name = handler.get_name();
tasks.push(fasync::Task::local(async move {
handler.clone().set_handler_healthy();
while let Some(event) = receiver.next().await {
// Note: the `handler_name` _should not_ be used as ABI (e.g. referenced from
// data processing scripts), as `handler_name` is not guaranteed to be consistent
// between releases.
let out_events = {
let _async_trace = fuchsia_trace::async_enter!(
fuchsia_trace::Id::new(),
c"input",
c"handle_input_event",
"name" => handler_name
);
handler.clone().handle_input_event(event).await
};
for out_event in out_events.into_iter() {
if let Err(e) = next_sender.unbounded_send(out_event) {
metrics_logger_clone.log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineCouldNotForwardEvent,
std::format!(
"could not forward event output from handler: {:?}: {:?}",
handler_name,
e));
// This is not a recoverable error, break here.
break;
}
}
}
handler.clone().set_handler_unhealthy(std::format!("Receive loop terminated for handler: {:?}", handler_name).as_str());
panic!("receive loop is not supposed to terminate for handler: {:?}", handler_name);
}));
receiver = next_receiver;
InputPipelineAssembly { sender, receiver, tasks, metrics_logger }
}
/// Adds all handlers into the assembly in the order they appear in `handlers`.
pub fn add_all_handlers(self, handlers: Vec<Rc<dyn input_handler::InputHandler>>) -> Self {
handlers.into_iter().fold(self, |assembly, handler| assembly.add_handler(handler))
}
/// Adds the [DisplayOwnership] to the input pipeline. The `display_ownership_event` is
/// assumed to be the Scenic event used to report changes in display ownership, obtained
/// by `fuchsia.ui.scenic/Scenic.GetDisplayOwnershipEvent`. This code has no way to check
/// whether that invariant is upheld, so this is something that the user will need to
/// ensure.
pub fn add_display_ownership(
self,
display_ownership_event: zx::Event,
input_handlers_node: &fuchsia_inspect::Node,
) -> InputPipelineAssembly {
let (sender, autorepeat_receiver, mut tasks, metrics_logger) = self.into_components();
let (autorepeat_sender, receiver) = mpsc::unbounded();
let h = DisplayOwnership::new(display_ownership_event, input_handlers_node);
let metrics_logger_clone = metrics_logger.clone();
tasks.push(fasync::Task::local(async move {
h.clone().set_handler_healthy();
h.clone().handle_input_events(autorepeat_receiver, autorepeat_sender)
.await
.map_err(|e| {
metrics_logger_clone.log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineDisplayOwnershipIsNotSupposedToTerminate,
std::format!(
"display ownership is not supposed to terminate - this is likely a problem: {:?}", e));
}).unwrap();
h.set_handler_unhealthy("Receive loop terminated for handler: DisplayOwnership");
}));
InputPipelineAssembly { sender, receiver, tasks, metrics_logger }
}
/// Adds the autorepeater into the input pipeline assembly. The autorepeater
/// is installed after any handlers that have been already added to the
/// assembly.
pub fn add_autorepeater(self, input_handlers_node: &fuchsia_inspect::Node) -> Self {
let (sender, autorepeat_receiver, mut tasks, metrics_logger) = self.into_components();
let (autorepeat_sender, receiver) = mpsc::unbounded();
let metrics_logger_clone = metrics_logger.clone();
let a = Autorepeater::new(autorepeat_receiver, input_handlers_node, metrics_logger.clone());
tasks.push(fasync::Task::local(async move {
a.clone().set_handler_healthy();
a.clone()
.run(autorepeat_sender)
.await
.map_err(|e| {
metrics_logger_clone.log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineAutorepeatRunningError,
std::format!("error while running autorepeater: {:?}", e),
);
})
.expect("autorepeater should never error out");
a.set_handler_unhealthy("Receive loop terminated for handler: Autorepeater");
}));
InputPipelineAssembly { sender, receiver, tasks, metrics_logger }
}
/// Deconstructs the assembly into constituent components, used when constructing
/// [InputPipeline].
///
/// You should call [catch_unhandled] on the returned [async_channel::Receiver], and
/// [run] on the returned [fuchsia_async::Tasks] (or supply own equivalents).
fn into_components(
self,
) -> (
UnboundedSender<input_device::InputEvent>,
UnboundedReceiver<input_device::InputEvent>,
Vec<fuchsia_async::Task<()>>,
metrics::MetricsLogger,
) {
(self.sender, self.receiver, self.tasks, self.metrics_logger)
}
/// Adds a focus listener task into the input pipeline assembly. The focus
/// listener forwards focus chain changes to
/// `fuchsia.ui.keyboard.focus.Controller` and watchers of
/// `fuchsia.ui.focus.FocusChainProvider`. It is required for the correct
/// operation of the implementors of those protocols, e.g. `text_manager`.
///
/// # Arguments:
/// * `focus_chain_publisher`: to forward to other downstream watchers.
///
/// # Requires:
/// * `fuchsia.ui.views.FocusChainListenerRegistry`: to register for updates.
/// * `fuchsia.ui.keyboard.focus.Controller`: to forward to text_manager.
pub fn add_focus_listener(self, focus_chain_publisher: FocusChainProviderPublisher) -> Self {
let (sender, receiver, mut tasks, metrics_logger) = self.into_components();
let metrics_logger_clone = metrics_logger.clone();
tasks.push(fasync::Task::local(async move {
if let Ok(mut focus_listener) =
FocusListener::new(focus_chain_publisher, metrics_logger_clone).map_err(|e| {
log::warn!(
"could not create focus listener, focus will not be dispatched: {:?}",
e
)
})
{
// This will await indefinitely and process focus messages in a loop, unless there
// is a problem.
let _result = focus_listener
.dispatch_focus_changes()
.await
.map(|_| {
log::warn!("dispatch focus loop ended, focus will no longer be dispatched")
})
.map_err(|e| {
panic!("could not dispatch focus changes, this is a fatal error: {:?}", e)
});
}
}));
InputPipelineAssembly { sender, receiver, tasks, metrics_logger }
}
}
/// An [`InputPipeline`] manages input devices and propagates input events through input handlers.
///
/// On creation, clients declare what types of input devices an [`InputPipeline`] manages. The
/// [`InputPipeline`] will continuously detect new input devices of supported type(s).
///
/// # Example
/// ```
/// let ime_handler =
/// ImeHandler::new(scene_manager.session.clone(), scene_manager.compositor_id).await?;
/// let touch_handler = TouchHandler::new(
/// scene_manager.session.clone(),
/// scene_manager.compositor_id,
/// scene_manager.display_size
/// ).await?;
///
/// let assembly = InputPipelineAssembly::new()
/// .add_handler(Box::new(ime_handler)),
/// .add_handler(Box::new(touch_handler)),
/// let input_pipeline = InputPipeline::new(
/// vec![
/// input_device::InputDeviceType::Touch,
/// input_device::InputDeviceType::Keyboard,
/// ],
/// assembly,
/// );
/// input_pipeline.handle_input_events().await;
/// ```
pub struct InputPipeline {
/// The entry point into the input handler pipeline. Incoming input events should
/// be inserted into this async queue, and the input pipeline will ensure that they
/// are propagated through all the input handlers in the appropriate sequence.
pipeline_sender: UnboundedSender<input_device::InputEvent>,
/// A clone of this sender is given to every InputDeviceBinding that this pipeline owns.
/// Each InputDeviceBinding will send InputEvents to the pipeline through this channel.
device_event_sender: UnboundedSender<input_device::InputEvent>,
/// Receives InputEvents from all InputDeviceBindings that this pipeline owns.
device_event_receiver: UnboundedReceiver<input_device::InputEvent>,
/// The types of devices this pipeline supports.
input_device_types: Vec<input_device::InputDeviceType>,
/// The InputDeviceBindings bound to this pipeline.
input_device_bindings: InputDeviceBindingHashMap,
/// This node is bound to the lifetime of this InputPipeline.
/// Inspect data will be dumped for this pipeline as long as it exists.
inspect_node: fuchsia_inspect::Node,
/// The metrics logger.
metrics_logger: metrics::MetricsLogger,
}
impl InputPipeline {
/// Does the work that is common to building an input pipeline, across
/// the integration-test and production configurations.
fn new_common(
input_device_types: Vec<input_device::InputDeviceType>,
assembly: InputPipelineAssembly,
inspect_node: fuchsia_inspect::Node,
) -> Self {
let (pipeline_sender, receiver, tasks, metrics_logger) = assembly.into_components();
// Add properties to inspect node
inspect_node.record_string("supported_input_devices", input_device_types.iter().join(", "));
inspect_node.record_uint("handlers_registered", tasks.len() as u64);
inspect_node.record_uint("handlers_healthy", tasks.len() as u64);
// Add a stage that catches events which drop all the way down through the pipeline
// and logs them.
InputPipeline::catch_unhandled(receiver);
// The tasks in the assembly are all unstarted. Run them now.
InputPipeline::run(tasks);
let (device_event_sender, device_event_receiver) = futures::channel::mpsc::unbounded();
let input_device_bindings: InputDeviceBindingHashMap = Arc::new(Mutex::new(HashMap::new()));
InputPipeline {
pipeline_sender,
device_event_sender,
device_event_receiver,
input_device_types,
input_device_bindings,
inspect_node,
metrics_logger,
}
}
/// Creates a new [`InputPipeline`] for integration testing.
/// Unlike a production input pipeline, this pipeline will not monitor
/// `/dev/class/input-report` for devices.
///
/// # Parameters
/// - `input_device_types`: The types of devices the new [`InputPipeline`] will support.
/// - `assembly`: The input handlers that the [`InputPipeline`] sends InputEvents to.
pub fn new_for_test(
input_device_types: Vec<input_device::InputDeviceType>,
assembly: InputPipelineAssembly,
) -> Self {
let inspector = fuchsia_inspect::Inspector::default();
let root = inspector.root();
let test_node = root.create_child("input_pipeline");
Self::new_common(input_device_types, assembly, test_node)
}
/// Creates a new [`InputPipeline`] for production use.
///
/// # Parameters
/// - `input_device_types`: The types of devices the new [`InputPipeline`] will support.
/// - `assembly`: The input handlers that the [`InputPipeline`] sends InputEvents to.
/// - `inspect_node`: The root node for InputPipeline's Inspect tree
pub fn new(
input_device_types: Vec<input_device::InputDeviceType>,
assembly: InputPipelineAssembly,
inspect_node: fuchsia_inspect::Node,
metrics_logger: metrics::MetricsLogger,
) -> Result<Self, Error> {
let input_pipeline = Self::new_common(input_device_types, assembly, inspect_node);
let input_device_types = input_pipeline.input_device_types.clone();
let input_event_sender = input_pipeline.device_event_sender.clone();
let input_device_bindings = input_pipeline.input_device_bindings.clone();
let devices_node = input_pipeline.inspect_node.create_child("input_devices");
fasync::Task::local(async move {
// Watches the input device directory for new input devices. Creates new InputDeviceBindings
// that send InputEvents to `input_event_receiver`.
match async {
let dir_proxy = fuchsia_fs::directory::open_in_namespace(
input_device::INPUT_REPORT_PATH,
fuchsia_fs::PERM_READABLE,
)
.with_context(|| format!("failed to open {}", input_device::INPUT_REPORT_PATH))?;
let device_watcher =
Watcher::new(&dir_proxy).await.context("failed to create watcher")?;
Self::watch_for_devices(
device_watcher,
dir_proxy,
input_device_types,
input_event_sender,
input_device_bindings,
&devices_node,
false, /* break_on_idle */
metrics_logger.clone(),
)
.await
.context("failed to watch for devices")
}
.await
{
Ok(()) => {}
Err(err) => {
// This error is usually benign in tests: it means that the setup does not
// support dynamic device discovery. Almost no tests support dynamic
// device discovery, and they also do not need those.
metrics_logger.log_warn(
InputPipelineErrorMetricDimensionEvent::InputPipelineUnableToWatchForNewInputDevices,
std::format!(
"Input pipeline is unable to watch for new input devices: {:?}",
err
));
}
}
})
.detach();
Ok(input_pipeline)
}
/// Gets the input device bindings.
pub fn input_device_bindings(&self) -> &InputDeviceBindingHashMap {
&self.input_device_bindings
}
/// Gets the input device sender: this is the channel that should be cloned
/// and used for injecting events from the drivers into the input pipeline.
pub fn input_event_sender(&self) -> &UnboundedSender<input_device::InputEvent> {
&self.device_event_sender
}
/// Gets a list of input device types supported by this input pipeline.
pub fn input_device_types(&self) -> &Vec<input_device::InputDeviceType> {
&self.input_device_types
}
/// Forwards all input events into the input pipeline.
pub async fn handle_input_events(mut self) {
let metrics_logger_clone = self.metrics_logger.clone();
while let Some(input_event) = self.device_event_receiver.next().await {
if let Err(e) = self.pipeline_sender.unbounded_send(input_event) {
metrics_logger_clone.log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineCouldNotForwardEventFromDriver,
std::format!("could not forward event from driver: {:?}", &e));
}
}
metrics_logger_clone.log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineStopHandlingEvents,
"Input pipeline stopped handling input events.".to_string(),
);
}
/// Watches the input report directory for new input devices. Creates InputDeviceBindings
/// if new devices match a type in `device_types`.
///
/// # Parameters
/// - `device_watcher`: Watches the input report directory for new devices.
/// - `dir_proxy`: The directory containing InputDevice connections.
/// - `device_types`: The types of devices to watch for.
/// - `input_event_sender`: The channel new InputDeviceBindings will send InputEvents to.
/// - `bindings`: Holds all the InputDeviceBindings
/// - `input_devices_node`: The parent node for all device bindings' inspect nodes.
/// - `break_on_idle`: If true, stops watching for devices once all existing devices are handled.
/// - `metrics_logger`: The metrics logger.
///
/// # Errors
/// If the input report directory or a file within it cannot be read.
async fn watch_for_devices(
mut device_watcher: Watcher,
dir_proxy: fio::DirectoryProxy,
device_types: Vec<input_device::InputDeviceType>,
input_event_sender: UnboundedSender<input_device::InputEvent>,
bindings: InputDeviceBindingHashMap,
input_devices_node: &fuchsia_inspect::Node,
break_on_idle: bool,
metrics_logger: metrics::MetricsLogger,
) -> Result<(), Error> {
// Add non-static properties to inspect node.
let devices_discovered = input_devices_node.create_uint("devices_discovered", 0);
let devices_connected = input_devices_node.create_uint("devices_connected", 0);
while let Some(msg) = device_watcher.try_next().await? {
if let Ok(filename) = msg.filename.into_os_string().into_string() {
if filename == "." {
continue;
}
let pathbuf = PathBuf::from(filename.clone());
match msg.event {
WatchEvent::EXISTING | WatchEvent::ADD_FILE => {
log::info!("found input device {}", filename);
devices_discovered.add(1);
let device_proxy =
input_device::get_device_from_dir_entry_path(&dir_proxy, &pathbuf)?;
add_device_bindings(
&device_types,
&filename,
device_proxy,
&input_event_sender,
&bindings,
get_next_device_id(),
input_devices_node,
Some(&devices_connected),
metrics_logger.clone(),
)
.await;
}
WatchEvent::IDLE => {
if break_on_idle {
break;
}
}
_ => (),
}
}
}
// Ensure inspect properties persist for debugging if device watch loop ends.
input_devices_node.record(devices_discovered);
input_devices_node.record(devices_connected);
Err(format_err!("Input pipeline stopped watching for new input devices."))
}
/// Handles the incoming InputDeviceRegistryRequestStream.
///
/// This method will end when the request stream is closed. If the stream closes with an
/// error the error will be returned in the Result.
///
/// **NOTE**: Only one stream is handled at a time. https://fxbug.dev/42061078
///
/// # Parameters
/// - `stream`: The stream of InputDeviceRegistryRequests.
/// - `device_types`: The types of devices to watch for.
/// - `input_event_sender`: The channel new InputDeviceBindings will send InputEvents to.
/// - `bindings`: Holds all the InputDeviceBindings associated with the InputPipeline.
/// - `input_devices_node`: The parent node for all injected devices' inspect nodes.
/// - `metrics_logger`: The metrics logger.
pub async fn handle_input_device_registry_request_stream(
mut stream: fidl_fuchsia_input_injection::InputDeviceRegistryRequestStream,
device_types: &Vec<input_device::InputDeviceType>,
input_event_sender: &UnboundedSender<input_device::InputEvent>,
bindings: &InputDeviceBindingHashMap,
input_devices_node: &fuchsia_inspect::Node,
metrics_logger: metrics::MetricsLogger,
) -> Result<(), Error> {
while let Some(request) = stream
.try_next()
.await
.context("Error handling input device registry request stream")?
{
match request {
fidl_fuchsia_input_injection::InputDeviceRegistryRequest::Register {
device,
..
} => {
// Add a binding if the device is a type being tracked
let device_proxy = device.into_proxy();
let device_id = get_next_device_id();
add_device_bindings(
device_types,
&format!("input-device-registry-{}", device_id),
device_proxy,
input_event_sender,
bindings,
device_id,
input_devices_node,
None,
metrics_logger.clone(),
)
.await;
}
fidl_fuchsia_input_injection::InputDeviceRegistryRequest::RegisterAndGetDeviceInfo {
device,
responder,
.. } => {
// Add a binding if the device is a type being tracked
let device_proxy = device.into_proxy();
let device_id = get_next_device_id();
add_device_bindings(
device_types,
&format!("input-device-registry-{}", device_id),
device_proxy,
input_event_sender,
bindings,
device_id,
input_devices_node,
None,
metrics_logger.clone(),
)
.await;
responder.send(fidl_fuchsia_input_injection::InputDeviceRegistryRegisterAndGetDeviceInfoResponse{
device_id: Some(device_id),
..Default::default()
}).expect("Failed to respond to RegisterAndGetDeviceInfo request");
}
}
}
Ok(())
}
/// Starts all tasks in an asynchronous executor.
fn run(tasks: Vec<fuchsia_async::Task<()>>) {
fasync::Task::local(async move {
futures::future::join_all(tasks).await;
panic!("Runner task is not supposed to terminate.")
})
.detach();
}
/// Installs a handler that will print a warning for each event that is received
/// unhandled from this receiver.
fn catch_unhandled(mut receiver: UnboundedReceiver<input_device::InputEvent>) {
fasync::Task::local(async move {
while let Some(event) = receiver.next().await {
if event.handled == input_device::Handled::No {
log::warn!("unhandled input event: {:?}", &event);
}
}
panic!("unhandled event catcher is not supposed to terminate.");
})
.detach();
}
}
/// Adds `InputDeviceBinding`s to `bindings` for all `device_types` exposed by `device_proxy`.
///
/// # Parameters
/// - `device_types`: The types of devices to watch for.
/// - `device_proxy`: A proxy to the input device.
/// - `input_event_sender`: The channel new InputDeviceBindings will send InputEvents to.
/// - `bindings`: Holds all the InputDeviceBindings associated with the InputPipeline.
/// - `device_id`: The device id of the associated bindings.
/// - `input_devices_node`: The parent node for all device bindings' inspect nodes.
///
/// # Note
/// This will create multiple bindings, in the case where
/// * `device_proxy().get_descriptor()` returns a `fidl_fuchsia_input_report::DeviceDescriptor`
/// with multiple table fields populated, and
/// * multiple populated table fields correspond to device types present in `device_types`
///
/// This is used, for example, to support the Atlas touchpad. In that case, a single
/// node in `/dev/class/input-report` provides both a `fuchsia.input.report.MouseDescriptor` and
/// a `fuchsia.input.report.TouchDescriptor`.
async fn add_device_bindings(
device_types: &Vec<input_device::InputDeviceType>,
filename: &String,
device_proxy: fidl_fuchsia_input_report::InputDeviceProxy,
input_event_sender: &UnboundedSender<input_device::InputEvent>,
bindings: &InputDeviceBindingHashMap,
device_id: u32,
input_devices_node: &fuchsia_inspect::Node,
devices_connected: Option<&fuchsia_inspect::UintProperty>,
metrics_logger: metrics::MetricsLogger,
) {
let mut matched_device_types = vec![];
if let Ok(descriptor) = device_proxy.get_descriptor().await {
for device_type in device_types {
if input_device::is_device_type(&descriptor, *device_type).await {
matched_device_types.push(device_type);
match devices_connected {
Some(dev_connected) => {
let _ = dev_connected.add(1);
}
None => (),
};
}
}
if matched_device_types.is_empty() {
log::info!(
"device {} did not match any supported device types: {:?}",
filename,
device_types
);
let device_node = input_devices_node.create_child(format!("{}_Unsupported", filename));
let mut health = fuchsia_inspect::health::Node::new(&device_node);
health.set_unhealthy("Unsupported device type.");
device_node.record(health);
input_devices_node.record(device_node);
return;
}
} else {
metrics_logger.clone().log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineNoDeviceDescriptor,
std::format!("cannot bind device {} without a device descriptor", filename),
);
return;
}
log::info!(
"binding {} to device types: {}",
filename,
matched_device_types
.iter()
.fold(String::new(), |device_types_string, device_type| device_types_string
+ &format!("{:?}, ", device_type))
);
let mut new_bindings: Vec<BoxedInputDeviceBinding> = vec![];
for device_type in matched_device_types {
// Clone `device_proxy`, so that multiple bindings (e.g. a `MouseBinding` and a
// `TouchBinding`) can read data from the same `/dev/class/input-report` node.
//
// There's no conflict in having multiple bindings read from the same node,
// since:
// * each binding will create its own `fuchsia.input.report.InputReportsReader`, and
// * the device driver will copy each incoming report to each connected reader.
//
// This does mean that reports from the Atlas touchpad device get read twice
// (by a `MouseBinding` and a `TouchBinding`), regardless of whether the device
// is operating in mouse mode or touchpad mode.
//
// This hasn't been an issue because:
// * Semantically: things are fine, because each binding discards irrelevant reports.
// (E.g. `MouseBinding` discards anything that isn't a `MouseInputReport`), and
// * Performance wise: things are fine, because the data rate of the touchpad is low
// (125 HZ).
//
// If we add additional cases where bindings share an underlying `input-report` node,
// we might consider adding a multiplexing binding, to avoid reading duplicate reports.
let proxy = device_proxy.clone();
let device_node = input_devices_node.create_child(format!("{}_{}", filename, device_type));
match input_device::get_device_binding(
*device_type,
proxy,
device_id,
input_event_sender.clone(),
device_node,
metrics_logger.clone(),
)
.await
{
Ok(binding) => new_bindings.push(binding),
Err(e) => {
metrics_logger.log_error(
InputPipelineErrorMetricDimensionEvent::InputPipelineFailedToBind,
std::format!("failed to bind {} as {:?}: {}", filename, device_type, e),
);
}
}
}
if !new_bindings.is_empty() {
let mut bindings = bindings.lock().await;
bindings.entry(device_id).or_insert(Vec::new()).extend(new_bindings);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::input_device::InputDeviceBinding;
use crate::utils::Position;
use crate::{
fake_input_device_binding, mouse_binding, mouse_model_database,
observe_fake_events_input_handler,
};
use diagnostics_assertions::AnyProperty;
use fidl::endpoints::{create_proxy, create_proxy_and_stream, create_request_stream};
use fuchsia_async as fasync;
use futures::FutureExt;
use pretty_assertions::assert_eq;
use rand::Rng;
use std::collections::HashSet;
use vfs::directory::entry_container::Directory;
use vfs::execution_scope::ExecutionScope;
use vfs::path::Path;
use vfs::{pseudo_directory, service as pseudo_fs_service};
const COUNTS_PER_MM: u32 = 12;
/// Returns the InputEvent sent over `sender`.
///
/// # Parameters
/// - `sender`: The channel to send the InputEvent over.
fn send_input_event(
sender: UnboundedSender<input_device::InputEvent>,
) -> input_device::InputEvent {
let mut rng = rand::thread_rng();
let offset = Position { x: rng.gen_range(0..10) as f32, y: rng.gen_range(0..10) as f32 };
let input_event = input_device::InputEvent {
device_event: input_device::InputDeviceEvent::Mouse(mouse_binding::MouseEvent::new(
mouse_binding::MouseLocation::Relative(mouse_binding::RelativeLocation {
millimeters: Position {
x: offset.x / COUNTS_PER_MM as f32,
y: offset.y / COUNTS_PER_MM as f32,
},
}),
None, /* wheel_delta_v */
None, /* wheel_delta_h */
mouse_binding::MousePhase::Move,
HashSet::new(),
HashSet::new(),
None, /* is_precision_scroll */
)),
device_descriptor: input_device::InputDeviceDescriptor::Mouse(
mouse_binding::MouseDeviceDescriptor {
device_id: 1,
absolute_x_range: None,
absolute_y_range: None,
wheel_v_range: None,
wheel_h_range: None,
buttons: None,
counts_per_mm: COUNTS_PER_MM,
},
),
event_time: zx::MonotonicInstant::get(),
handled: input_device::Handled::No,
trace_id: None,
};
match sender.unbounded_send(input_event.clone()) {
Err(_) => assert!(false),
_ => {}
}
input_event
}
/// Returns a MouseDescriptor on an InputDeviceRequest.
///
/// # Parameters
/// - `input_device_request`: The request to handle.
fn handle_input_device_request(
input_device_request: fidl_fuchsia_input_report::InputDeviceRequest,
) {
match input_device_request {
fidl_fuchsia_input_report::InputDeviceRequest::GetDescriptor { responder } => {
let _ = responder.send(&fidl_fuchsia_input_report::DeviceDescriptor {
device_information: None,
mouse: Some(fidl_fuchsia_input_report::MouseDescriptor {
input: Some(fidl_fuchsia_input_report::MouseInputDescriptor {
movement_x: None,
movement_y: None,
scroll_v: None,
scroll_h: None,
buttons: Some(vec![0]),
position_x: None,
position_y: None,
..Default::default()
}),
..Default::default()
}),
sensor: None,
touch: None,
keyboard: None,
consumer_control: None,
..Default::default()
});
}
_ => {}
}
}
/// Tests that an input pipeline handles events from multiple devices.
#[fasync::run_singlethreaded(test)]
async fn multiple_devices_single_handler() {
// Create two fake device bindings.
let (device_event_sender, device_event_receiver) = futures::channel::mpsc::unbounded();
let first_device_binding =
fake_input_device_binding::FakeInputDeviceBinding::new(device_event_sender.clone());
let second_device_binding =
fake_input_device_binding::FakeInputDeviceBinding::new(device_event_sender.clone());
// Create a fake input handler.
let (handler_event_sender, mut handler_event_receiver) =
futures::channel::mpsc::channel(100);
let input_handler = observe_fake_events_input_handler::ObserveFakeEventsInputHandler::new(
handler_event_sender,
);
// Build the input pipeline.
let (sender, receiver, tasks, _) =
InputPipelineAssembly::new(metrics::MetricsLogger::default())
.add_handler(input_handler)
.into_components();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("input_pipeline");
let input_pipeline = InputPipeline {
pipeline_sender: sender,
device_event_sender,
device_event_receiver,
input_device_types: vec![],
input_device_bindings: Arc::new(Mutex::new(HashMap::new())),
inspect_node: test_node,
metrics_logger: metrics::MetricsLogger::default(),
};
InputPipeline::catch_unhandled(receiver);
InputPipeline::run(tasks);
// Send an input event from each device.
let first_device_event = send_input_event(first_device_binding.input_event_sender());
let second_device_event = send_input_event(second_device_binding.input_event_sender());
// Run the pipeline.
fasync::Task::local(async {
input_pipeline.handle_input_events().await;
})
.detach();
// Assert the handler receives the events.
let first_handled_event = handler_event_receiver.next().await;
assert_eq!(first_handled_event, Some(first_device_event));
let second_handled_event = handler_event_receiver.next().await;
assert_eq!(second_handled_event, Some(second_device_event));
}
/// Tests that an input pipeline handles events through multiple input handlers.
#[fasync::run_singlethreaded(test)]
async fn single_device_multiple_handlers() {
// Create two fake device bindings.
let (device_event_sender, device_event_receiver) = futures::channel::mpsc::unbounded();
let input_device_binding =
fake_input_device_binding::FakeInputDeviceBinding::new(device_event_sender.clone());
// Create two fake input handlers.
let (first_handler_event_sender, mut first_handler_event_receiver) =
futures::channel::mpsc::channel(100);
let first_input_handler =
observe_fake_events_input_handler::ObserveFakeEventsInputHandler::new(
first_handler_event_sender,
);
let (second_handler_event_sender, mut second_handler_event_receiver) =
futures::channel::mpsc::channel(100);
let second_input_handler =
observe_fake_events_input_handler::ObserveFakeEventsInputHandler::new(
second_handler_event_sender,
);
// Build the input pipeline.
let (sender, receiver, tasks, _) =
InputPipelineAssembly::new(metrics::MetricsLogger::default())
.add_handler(first_input_handler)
.add_handler(second_input_handler)
.into_components();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("input_pipeline");
let input_pipeline = InputPipeline {
pipeline_sender: sender,
device_event_sender,
device_event_receiver,
input_device_types: vec![],
input_device_bindings: Arc::new(Mutex::new(HashMap::new())),
inspect_node: test_node,
metrics_logger: metrics::MetricsLogger::default(),
};
InputPipeline::catch_unhandled(receiver);
InputPipeline::run(tasks);
// Send an input event.
let input_event = send_input_event(input_device_binding.input_event_sender());
// Run the pipeline.
fasync::Task::local(async {
input_pipeline.handle_input_events().await;
})
.detach();
// Assert both handlers receive the event.
let first_handler_event = first_handler_event_receiver.next().await;
assert_eq!(first_handler_event, Some(input_event.clone()));
let second_handler_event = second_handler_event_receiver.next().await;
assert_eq!(second_handler_event, Some(input_event));
}
/// Tests that a single mouse device binding is created for the one input device in the
/// input report directory.
#[fasync::run_singlethreaded(test)]
async fn watch_devices_one_match_exists() {
// Create a file in a pseudo directory that represents an input device.
let mut count: i8 = 0;
let dir = pseudo_directory! {
"file_name" => pseudo_fs_service::host(
move |mut request_stream: fidl_fuchsia_input_report::InputDeviceRequestStream| {
async move {
while count < 3 {
if let Some(input_device_request) =
request_stream.try_next().await.unwrap()
{
handle_input_device_request(input_device_request);
count += 1;
}
}
}.boxed()
},
)
};
// Create a Watcher on the pseudo directory.
let pseudo_dir_clone = dir.clone();
let (dir_proxy_for_watcher, dir_server_for_watcher) =
create_proxy::<fio::DirectoryMarker>();
let server_end_for_watcher = dir_server_for_watcher.into_channel().into();
let scope_for_watcher = ExecutionScope::new();
dir.open(scope_for_watcher, fio::OpenFlags::empty(), Path::dot(), server_end_for_watcher);
let device_watcher = Watcher::new(&dir_proxy_for_watcher).await.unwrap();
// Get a proxy to the pseudo directory for the input pipeline. The input pipeline uses this
// proxy to get connections to input devices.
let (dir_proxy_for_pipeline, dir_server_for_pipeline) =
create_proxy::<fio::DirectoryMarker>();
let server_end_for_pipeline = dir_server_for_pipeline.into_channel().into();
let scope_for_pipeline = ExecutionScope::new();
pseudo_dir_clone.open(
scope_for_pipeline,
fio::OpenFlags::empty(),
Path::dot(),
server_end_for_pipeline,
);
let (input_event_sender, _input_event_receiver) = futures::channel::mpsc::unbounded();
let bindings: InputDeviceBindingHashMap = Arc::new(Mutex::new(HashMap::new()));
let supported_device_types = vec![input_device::InputDeviceType::Mouse];
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("input_pipeline");
test_node.record_string(
"supported_input_devices",
supported_device_types.clone().iter().join(", "),
);
let input_devices = test_node.create_child("input_devices");
// Assert that inspect tree is initialized with no devices.
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_pipeline: {
supported_input_devices: "Mouse",
input_devices: {}
}
});
let _ = InputPipeline::watch_for_devices(
device_watcher,
dir_proxy_for_pipeline,
supported_device_types,
input_event_sender,
bindings.clone(),
&input_devices,
true, /* break_on_idle */
metrics::MetricsLogger::default(),
)
.await;
// Assert that one mouse device with accurate device id was found.
let bindings_hashmap = bindings.lock().await;
assert_eq!(bindings_hashmap.len(), 1);
let bindings_vector = bindings_hashmap.get(&10);
assert!(bindings_vector.is_some());
assert_eq!(bindings_vector.unwrap().len(), 1);
let boxed_mouse_binding = bindings_vector.unwrap().get(0);
assert!(boxed_mouse_binding.is_some());
assert_eq!(
boxed_mouse_binding.unwrap().get_device_descriptor(),
input_device::InputDeviceDescriptor::Mouse(mouse_binding::MouseDeviceDescriptor {
device_id: 10,
absolute_x_range: None,
absolute_y_range: None,
wheel_v_range: None,
wheel_h_range: None,
buttons: Some(vec![0]),
counts_per_mm: mouse_model_database::db::DEFAULT_COUNTS_PER_MM,
})
);
// Assert that inspect tree reflects new device discovered and connected.
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_pipeline: {
supported_input_devices: "Mouse",
input_devices: {
devices_discovered: 1u64,
devices_connected: 1u64,
"file_name_Mouse": contains {
reports_received_count: 0u64,
reports_filtered_count: 0u64,
events_generated: 0u64,
last_received_timestamp_ns: 0u64,
last_generated_timestamp_ns: 0u64,
"fuchsia.inspect.Health": {
status: "OK",
// Timestamp value is unpredictable and not relevant in this context,
// so we only assert that the property is present.
start_timestamp_nanos: AnyProperty
},
}
}
}
});
}
/// Tests that no device bindings are created because the input pipeline looks for keyboard devices
/// but only a mouse exists.
#[fasync::run_singlethreaded(test)]
async fn watch_devices_no_matches_exist() {
// Create a file in a pseudo directory that represents an input device.
let mut count: i8 = 0;
let dir = pseudo_directory! {
"file_name" => pseudo_fs_service::host(
move |mut request_stream: fidl_fuchsia_input_report::InputDeviceRequestStream| {
async move {
while count < 1 {
if let Some(input_device_request) =
request_stream.try_next().await.unwrap()
{
handle_input_device_request(input_device_request);
count += 1;
}
}
}.boxed()
},
)
};
// Create a Watcher on the pseudo directory.
let pseudo_dir_clone = dir.clone();
let (dir_proxy_for_watcher, dir_server_for_watcher) =
create_proxy::<fio::DirectoryMarker>();
let server_end_for_watcher = dir_server_for_watcher.into_channel().into();
let scope_for_watcher = ExecutionScope::new();
dir.open(scope_for_watcher, fio::OpenFlags::empty(), Path::dot(), server_end_for_watcher);
let device_watcher = Watcher::new(&dir_proxy_for_watcher).await.unwrap();
// Get a proxy to the pseudo directory for the input pipeline. The input pipeline uses this
// proxy to get connections to input devices.
let (dir_proxy_for_pipeline, dir_server_for_pipeline) =
create_proxy::<fio::DirectoryMarker>();
let server_end_for_pipeline = dir_server_for_pipeline.into_channel().into();
let scope_for_pipeline = ExecutionScope::new();
pseudo_dir_clone.open(
scope_for_pipeline,
fio::OpenFlags::empty(),
Path::dot(),
server_end_for_pipeline,
);
let (input_event_sender, _input_event_receiver) = futures::channel::mpsc::unbounded();
let bindings: InputDeviceBindingHashMap = Arc::new(Mutex::new(HashMap::new()));
let supported_device_types = vec![input_device::InputDeviceType::Keyboard];
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("input_pipeline");
test_node.record_string(
"supported_input_devices",
supported_device_types.clone().iter().join(", "),
);
let input_devices = test_node.create_child("input_devices");
// Assert that inspect tree is initialized with no devices.
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_pipeline: {
supported_input_devices: "Keyboard",
input_devices: {}
}
});
let _ = InputPipeline::watch_for_devices(
device_watcher,
dir_proxy_for_pipeline,
supported_device_types,
input_event_sender,
bindings.clone(),
&input_devices,
true, /* break_on_idle */
metrics::MetricsLogger::default(),
)
.await;
// Assert that no devices were found.
let bindings = bindings.lock().await;
assert_eq!(bindings.len(), 0);
// Assert that inspect tree reflects new device discovered, but not connected.
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_pipeline: {
supported_input_devices: "Keyboard",
input_devices: {
devices_discovered: 1u64,
devices_connected: 0u64,
"file_name_Unsupported": {
"fuchsia.inspect.Health": {
status: "UNHEALTHY",
message: "Unsupported device type.",
// Timestamp value is unpredictable and not relevant in this context,
// so we only assert that the property is present.
start_timestamp_nanos: AnyProperty
},
}
}
}
});
}
/// Tests that a single keyboard device binding is created for the input device registered
/// through InputDeviceRegistry.
#[fasync::run_singlethreaded(test)]
async fn handle_input_device_registry_request_stream() {
let (input_device_registry_proxy, input_device_registry_request_stream) =
create_proxy_and_stream::<fidl_fuchsia_input_injection::InputDeviceRegistryMarker>();
let (input_device_client_end, mut input_device_request_stream) =
create_request_stream::<fidl_fuchsia_input_report::InputDeviceMarker>();
let device_types = vec![input_device::InputDeviceType::Mouse];
let (input_event_sender, _input_event_receiver) = futures::channel::mpsc::unbounded();
let bindings: InputDeviceBindingHashMap = Arc::new(Mutex::new(HashMap::new()));
// Handle input device requests.
let mut count: i8 = 0;
fasync::Task::local(async move {
// Register a device.
let _ = input_device_registry_proxy.register(input_device_client_end);
while count < 3 {
if let Some(input_device_request) =
input_device_request_stream.try_next().await.unwrap()
{
handle_input_device_request(input_device_request);
count += 1;
}
}
// End handle_input_device_registry_request_stream() by taking the event stream.
input_device_registry_proxy.take_event_stream();
})
.detach();
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("input_pipeline");
// Start listening for InputDeviceRegistryRequests.
let bindings_clone = bindings.clone();
let _ = InputPipeline::handle_input_device_registry_request_stream(
input_device_registry_request_stream,
&device_types,
&input_event_sender,
&bindings_clone,
&test_node,
metrics::MetricsLogger::default(),
)
.await;
// Assert that a device was registered.
let bindings = bindings.lock().await;
assert_eq!(bindings.len(), 1);
}
// Tests that correct properties are added to inspect node when InputPipeline is created.
#[fasync::run_singlethreaded(test)]
async fn check_inspect_node_has_correct_properties() {
let device_types = vec![
input_device::InputDeviceType::Touch,
input_device::InputDeviceType::ConsumerControls,
];
let inspector = fuchsia_inspect::Inspector::default();
let test_node = inspector.root().create_child("input_pipeline");
// Create fake input handler for assembly
let (fake_handler_event_sender, _fake_handler_event_receiver) =
futures::channel::mpsc::channel(100);
let fake_input_handler =
observe_fake_events_input_handler::ObserveFakeEventsInputHandler::new(
fake_handler_event_sender,
);
let assembly = InputPipelineAssembly::new(metrics::MetricsLogger::default())
.add_handler(fake_input_handler);
let _test_input_pipeline = InputPipeline::new(
device_types,
assembly,
test_node,
metrics::MetricsLogger::default(),
);
diagnostics_assertions::assert_data_tree!(inspector, root: {
input_pipeline: {
supported_input_devices: "Touch, ConsumerControls",
handlers_registered: 1u64,
handlers_healthy: 1u64,
input_devices: {}
}
});
}
}