itertools/
groupbylazy.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
use std::cell::{Cell, RefCell};
use std::vec;

/// A trait to unify FnMut for GroupBy with the chunk key in IntoChunks
trait KeyFunction<A> {
    type Key;
    fn call_mut(&mut self, arg: A) -> Self::Key;
}

impl<'a, A, K, F: ?Sized> KeyFunction<A> for F
    where F: FnMut(A) -> K
{
    type Key = K;
    #[inline]
    fn call_mut(&mut self, arg: A) -> Self::Key {
        (*self)(arg)
    }
}


/// ChunkIndex acts like the grouping key function for IntoChunks
#[derive(Debug)]
struct ChunkIndex {
    size: usize,
    index: usize,
    key: usize,
}

impl ChunkIndex {
    #[inline(always)]
    fn new(size: usize) -> Self {
        ChunkIndex {
            size: size,
            index: 0,
            key: 0,
        }
    }
}

impl<'a, A> KeyFunction<A> for ChunkIndex {
    type Key = usize;
    #[inline(always)]
    fn call_mut(&mut self, _arg: A) -> Self::Key {
        if self.index == self.size {
            self.key += 1;
            self.index = 0;
        }
        self.index += 1;
        self.key
    }
}


struct GroupInner<K, I, F>
    where I: Iterator
{
    key: F,
    iter: I,
    current_key: Option<K>,
    current_elt: Option<I::Item>,
    /// flag set if iterator is exhausted
    done: bool,
    /// Index of group we are currently buffering or visiting
    top_group: usize,
    /// Least index for which we still have elements buffered
    oldest_buffered_group: usize,
    /// Group index for `buffer[0]` -- the slots
    /// bottom_group..oldest_buffered_group are unused and will be erased when
    /// that range is large enough.
    bottom_group: usize,
    /// Buffered groups, from `bottom_group` (index 0) to `top_group`.
    buffer: Vec<vec::IntoIter<I::Item>>,
    /// index of last group iter that was dropped, usize::MAX == none
    dropped_group: usize,
}

impl<K, I, F> GroupInner<K, I, F>
    where I: Iterator,
          F: for<'a> KeyFunction<&'a I::Item, Key=K>,
          K: PartialEq,
{
    /// `client`: Index of group that requests next element
    #[inline(always)]
    fn step(&mut self, client: usize) -> Option<I::Item> {
        /*
        println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]",
                 client, self.bottom_group, self.oldest_buffered_group,
                 self.top_group,
                 self.buffer.iter().map(|elt| elt.len()).format(", "));
        */
        if client < self.oldest_buffered_group {
            None
        } else if client < self.top_group ||
            (client == self.top_group &&
             self.buffer.len() > self.top_group - self.bottom_group)
        {
            self.lookup_buffer(client)
        } else if self.done {
            None
        } else if self.top_group == client {
            self.step_current()
        } else {
            self.step_buffering(client)
        }
    }

    #[inline(never)]
    fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> {
        // if `bufidx` doesn't exist in self.buffer, it might be empty
        let bufidx = client - self.bottom_group;
        if client < self.oldest_buffered_group {
            return None;
        }
        let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next());
        if elt.is_none() && client == self.oldest_buffered_group {
            // FIXME: VecDeque is unfortunately not zero allocation when empty,
            // so we do this job manually.
            // `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it.
            self.oldest_buffered_group += 1;
            // skip forward further empty queues too
            while self.buffer.get(self.oldest_buffered_group - self.bottom_group)
                             .map_or(false, |buf| buf.len() == 0)
            {
                self.oldest_buffered_group += 1;
            }

            let nclear = self.oldest_buffered_group - self.bottom_group;
            if nclear > 0 && nclear >= self.buffer.len() / 2 {
                let mut i = 0;
                self.buffer.retain(|buf| {
                    i += 1;
                    debug_assert!(buf.len() == 0 || i > nclear);
                    i > nclear
                });
                self.bottom_group = self.oldest_buffered_group;
            }
        }
        elt
    }

    /// Take the next element from the iterator, and set the done
    /// flag if exhausted. Must not be called after done.
    #[inline(always)]
    fn next_element(&mut self) -> Option<I::Item> {
        debug_assert!(!self.done);
        match self.iter.next() {
            None => { self.done = true; None }
            otherwise => otherwise,
        }
    }


    #[inline(never)]
    fn step_buffering(&mut self, client: usize) -> Option<I::Item> {
        // requested a later group -- walk through the current group up to
        // the requested group index, and buffer the elements (unless
        // the group is marked as dropped).
        // Because the `Groups` iterator is always the first to request
        // each group index, client is the next index efter top_group.
        debug_assert!(self.top_group + 1 == client);
        let mut group = Vec::new();

        if let Some(elt) = self.current_elt.take() {
            if self.top_group != self.dropped_group {
                group.push(elt);
            }
        }
        let mut first_elt = None; // first element of the next group

        while let Some(elt) = self.next_element() {
            let key = self.key.call_mut(&elt);
            match self.current_key.take() {
                None => {}
                Some(old_key) => if old_key != key {
                    self.current_key = Some(key);
                    first_elt = Some(elt);
                    break;
                },
            }
            self.current_key = Some(key);
            if self.top_group != self.dropped_group {
                group.push(elt);
            }
        }

        if self.top_group != self.dropped_group {
            self.push_next_group(group);
        }
        if first_elt.is_some() {
            self.top_group += 1;
            debug_assert!(self.top_group == client);
        }
        first_elt
    }

    fn push_next_group(&mut self, group: Vec<I::Item>) {
        // When we add a new buffered group, fill up slots between oldest_buffered_group and top_group
        while self.top_group - self.bottom_group > self.buffer.len() {
            if self.buffer.is_empty() {
                self.bottom_group += 1;
                self.oldest_buffered_group += 1;
            } else {
                self.buffer.push(Vec::new().into_iter());
            }
        }
        self.buffer.push(group.into_iter());
        debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len());
    }

    /// This is the immediate case, where we use no buffering
    #[inline]
    fn step_current(&mut self) -> Option<I::Item> {
        debug_assert!(!self.done);
        if let elt @ Some(..) = self.current_elt.take() {
            return elt;
        }
        match self.next_element() {
            None => None,
            Some(elt) => {
                let key = self.key.call_mut(&elt);
                match self.current_key.take() {
                    None => {}
                    Some(old_key) => if old_key != key {
                        self.current_key = Some(key);
                        self.current_elt = Some(elt);
                        self.top_group += 1;
                        return None;
                    },
                }
                self.current_key = Some(key);
                Some(elt)
            }
        }
    }

    /// Request the just started groups' key.
    ///
    /// `client`: Index of group
    ///
    /// **Panics** if no group key is available.
    fn group_key(&mut self, client: usize) -> K {
        // This can only be called after we have just returned the first
        // element of a group.
        // Perform this by simply buffering one more element, grabbing the
        // next key.
        debug_assert!(!self.done);
        debug_assert!(client == self.top_group);
        debug_assert!(self.current_key.is_some());
        debug_assert!(self.current_elt.is_none());
        let old_key = self.current_key.take().unwrap();
        if let Some(elt) = self.next_element() {
            let key = self.key.call_mut(&elt);
            if old_key != key {
                self.top_group += 1;
            }
            self.current_key = Some(key);
            self.current_elt = Some(elt);
        }
        old_key
    }
}

impl<K, I, F> GroupInner<K, I, F>
    where I: Iterator,
{
    /// Called when a group is dropped
    fn drop_group(&mut self, client: usize) {
        // It's only useful to track the maximal index
        if self.dropped_group == !0 || client > self.dropped_group {
            self.dropped_group = client;
        }
    }
}

/// `GroupBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in their original order, or if each
/// group is dropped without keeping it around, then `GroupBy` uses
/// no allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements `IntoIterator` (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// See [`.group_by()`](../trait.Itertools.html#method.group_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct GroupBy<K, I, F>
    where I: Iterator,
{
    inner: RefCell<GroupInner<K, I, F>>,
    // the group iterator's current index. Keep this in the main value
    // so that simultaneous iterators all use the same state.
    index: Cell<usize>,
}

/// Create a new
pub fn new<K, J, F>(iter: J, f: F) -> GroupBy<K, J::IntoIter, F>
    where J: IntoIterator,
          F: FnMut(&J::Item) -> K,
{
    GroupBy {
        inner: RefCell::new(GroupInner {
            key: f,
            iter: iter.into_iter(),
            current_key: None,
            current_elt: None,
            done: false,
            top_group: 0,
            oldest_buffered_group: 0,
            bottom_group: 0,
            buffer: Vec::new(),
            dropped_group: !0,
        }),
        index: Cell::new(0),
    }
}

impl<K, I, F> GroupBy<K, I, F>
    where I: Iterator,
{
    /// `client`: Index of group that requests next element
    fn step(&self, client: usize) -> Option<I::Item>
        where F: FnMut(&I::Item) -> K,
              K: PartialEq,
    {
        self.inner.borrow_mut().step(client)
    }

    /// `client`: Index of group
    fn drop_group(&self, client: usize) {
        self.inner.borrow_mut().drop_group(client)
    }
}

impl<'a, K, I, F> IntoIterator for &'a GroupBy<K, I, F>
    where I: Iterator,
          I::Item: 'a,
          F: FnMut(&I::Item) -> K,
          K: PartialEq
{
    type Item = (K, Group<'a, K, I, F>);
    type IntoIter = Groups<'a, K, I, F>;

    fn into_iter(self) -> Self::IntoIter {
        Groups { parent: self }
    }
}


/// An iterator that yields the Group iterators.
///
/// Iterator element type is `(K, Group)`:
/// the group's key `K` and the group's iterator.
///
/// See [`.group_by()`](../trait.Itertools.html#method.group_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Groups<'a, K: 'a, I: 'a, F: 'a>
    where I: Iterator,
          I::Item: 'a
{
    parent: &'a GroupBy<K, I, F>,
}

impl<'a, K, I, F> Iterator for Groups<'a, K, I, F>
    where I: Iterator,
          I::Item: 'a,
          F: FnMut(&I::Item) -> K,
          K: PartialEq
{
    type Item = (K, Group<'a, K, I, F>);

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let index = self.parent.index.get();
        self.parent.index.set(index + 1);
        let inner = &mut *self.parent.inner.borrow_mut();
        inner.step(index).map(|elt| {
            let key = inner.group_key(index);
            (key, Group {
                parent: self.parent,
                index: index,
                first: Some(elt),
            })
        })
    }
}

/// An iterator for the elements in a single group.
///
/// Iterator element type is `I::Item`.
pub struct Group<'a, K: 'a, I: 'a, F: 'a>
    where I: Iterator,
          I::Item: 'a,
{
    parent: &'a GroupBy<K, I, F>,
    index: usize,
    first: Option<I::Item>,
}

impl<'a, K, I, F> Drop for Group<'a, K, I, F>
    where I: Iterator,
          I::Item: 'a,
{
    fn drop(&mut self) {
        self.parent.drop_group(self.index);
    }
}

impl<'a, K, I, F> Iterator for Group<'a, K, I, F>
    where I: Iterator,
          I::Item: 'a,
          F: FnMut(&I::Item) -> K,
          K: PartialEq,
{
    type Item = I::Item;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if let elt @ Some(..) = self.first.take() {
            return elt;
        }
        self.parent.step(self.index)
    }
}

///// IntoChunks /////

/// Create a new
pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter>
    where J: IntoIterator,
{
    IntoChunks {
        inner: RefCell::new(GroupInner {
            key: ChunkIndex::new(size),
            iter: iter.into_iter(),
            current_key: None,
            current_elt: None,
            done: false,
            top_group: 0,
            oldest_buffered_group: 0,
            bottom_group: 0,
            buffer: Vec::new(),
            dropped_group: !0,
        }),
        index: Cell::new(0),
    }
}


/// `ChunkLazy` is the storage for a lazy chunking operation.
///
/// `IntoChunks` behaves just like `GroupBy`: it is iterable, and
/// it only buffers if several chunk iterators are alive at the same time.
///
/// This type implements `IntoIterator` (it is **not** an iterator
/// itself), because the chunk iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `Chunk`, each chunk's iterator.
///
/// See [`.chunks()`](../trait.Itertools.html#method.chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct IntoChunks<I>
    where I: Iterator,
{
    inner: RefCell<GroupInner<usize, I, ChunkIndex>>,
    // the chunk iterator's current index. Keep this in the main value
    // so that simultaneous iterators all use the same state.
    index: Cell<usize>,
}


impl<I> IntoChunks<I>
    where I: Iterator,
{
    /// `client`: Index of chunk that requests next element
    fn step(&self, client: usize) -> Option<I::Item> {
        self.inner.borrow_mut().step(client)
    }

    /// `client`: Index of chunk
    fn drop_group(&self, client: usize) {
        self.inner.borrow_mut().drop_group(client)
    }
}

impl<'a, I> IntoIterator for &'a IntoChunks<I>
    where I: Iterator,
          I::Item: 'a,
{
    type Item = Chunk<'a, I>;
    type IntoIter = Chunks<'a, I>;

    fn into_iter(self) -> Self::IntoIter {
        Chunks {
            parent: self,
        }
    }
}


/// An iterator that yields the Chunk iterators.
///
/// Iterator element type is `Chunk`.
///
/// See [`.chunks()`](../trait.Itertools.html#method.chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Chunks<'a, I: 'a>
    where I: Iterator,
          I::Item: 'a,
{
    parent: &'a IntoChunks<I>,
}

impl<'a, I> Iterator for Chunks<'a, I>
    where I: Iterator,
          I::Item: 'a,
{
    type Item = Chunk<'a, I>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let index = self.parent.index.get();
        self.parent.index.set(index + 1);
        let inner = &mut *self.parent.inner.borrow_mut();
        inner.step(index).map(|elt| {
            Chunk {
                parent: self.parent,
                index: index,
                first: Some(elt),
            }
        })
    }
}

/// An iterator for the elements in a single chunk.
///
/// Iterator element type is `I::Item`.
pub struct Chunk<'a, I: 'a>
    where I: Iterator,
          I::Item: 'a,
{
    parent: &'a IntoChunks<I>,
    index: usize,
    first: Option<I::Item>,
}

impl<'a, I> Drop for Chunk<'a, I>
    where I: Iterator,
          I::Item: 'a,
{
    fn drop(&mut self) {
        self.parent.drop_group(self.index);
    }
}

impl<'a, I> Iterator for Chunk<'a, I>
    where I: Iterator,
          I::Item: 'a,
{
    type Item = I::Item;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if let elt @ Some(..) = self.first.take() {
            return elt;
        }
        self.parent.step(self.index)
    }
}