1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::reader::error::ReaderError;
use crate::reader::{
    DiagnosticsHierarchy, MissingValueReason, PartialNodeHierarchy, ReadableTree, Snapshot,
};
use fuchsia_async::{DurationExt, TimeoutExt};
use futures::future::BoxFuture;
use futures::prelude::*;
use inspect_format::LinkNodeDisposition;
use std::collections::BTreeMap;
use std::time::Duration;

/// Contains the snapshot of the hierarchy and snapshots of all the lazy nodes in the hierarchy.
#[derive(Debug)]
pub struct SnapshotTree {
    snapshot: Snapshot,
    children: SnapshotTreeMap,
}

impl SnapshotTree {
    /// Loads a snapshot tree from the given inspect tree.
    #[cfg(target_os = "fuchsia")]
    pub async fn try_from(
        tree: &fidl_fuchsia_inspect::TreeProxy,
    ) -> Result<SnapshotTree, ReaderError> {
        load_snapshot_tree(tree, None).await
    }

    pub async fn try_from_with_timeout<T: ReadableTree + Send + Sync>(
        tree: &T,
        lazy_child_timeout: Duration,
    ) -> Result<SnapshotTree, ReaderError> {
        load_snapshot_tree(tree, Some(lazy_child_timeout)).await
    }
}

type SnapshotTreeMap = BTreeMap<String, Result<SnapshotTree, ReaderError>>;

impl TryInto<DiagnosticsHierarchy> for SnapshotTree {
    type Error = ReaderError;

    fn try_into(mut self) -> Result<DiagnosticsHierarchy, Self::Error> {
        let partial = PartialNodeHierarchy::try_from(self.snapshot)?;
        Ok(expand(partial, &mut self.children))
    }
}

fn expand(
    partial: PartialNodeHierarchy,
    snapshot_children: &mut SnapshotTreeMap,
) -> DiagnosticsHierarchy {
    // TODO(miguelfrde): remove recursion or limit depth.
    let children =
        partial.children.into_iter().map(|child| expand(child, snapshot_children)).collect();
    let mut hierarchy = DiagnosticsHierarchy::new(partial.name, partial.properties, children);
    for link_value in partial.links {
        let Some(result) = snapshot_children.remove(&link_value.content) else {
            hierarchy.add_missing(MissingValueReason::LinkNotFound, link_value.name);
            continue;
        };

        // TODO(miguelfrde): remove recursion or limit depth.
        let result: Result<DiagnosticsHierarchy, ReaderError> =
            result.and_then(|snapshot_tree| snapshot_tree.try_into());
        match result {
            Err(ReaderError::TreeTimedOut) => {
                hierarchy.add_missing(MissingValueReason::Timeout, link_value.name);
            }
            Err(_) => {
                hierarchy.add_missing(MissingValueReason::LinkParseFailure, link_value.name);
            }
            Ok(mut child_hierarchy) => match link_value.disposition {
                LinkNodeDisposition::Child => {
                    child_hierarchy.name = link_value.name;
                    hierarchy.children.push(child_hierarchy);
                }
                LinkNodeDisposition::Inline => {
                    hierarchy.children.extend(child_hierarchy.children.into_iter());
                    hierarchy.properties.extend(child_hierarchy.properties.into_iter());
                    hierarchy.missing.extend(child_hierarchy.missing.into_iter());
                }
            },
        }
    }
    hierarchy
}

/// Reads the given `ReadableTree` into a DiagnosticsHierarchy.
/// This reads versions 1 and 2 of the Inspect Format.
pub async fn read<T>(tree: &T) -> Result<DiagnosticsHierarchy, ReaderError>
where
    T: ReadableTree + Send + Sync,
{
    load_snapshot_tree(tree, None).await?.try_into()
}

/// Reads the given `ReadableTree` into a DiagnosticsHierarchy with Lazy Node timeout.
/// This reads versions 1 and 2 of the Inspect Format.
pub async fn read_with_timeout<T>(
    tree: &T,
    lazy_node_timeout: Duration,
) -> Result<DiagnosticsHierarchy, ReaderError>
where
    T: ReadableTree + Send + Sync,
{
    load_snapshot_tree(tree, Some(lazy_node_timeout)).await?.try_into()
}

fn load_snapshot_tree<T>(
    tree: &T,
    lazy_child_timeout: Option<Duration>,
) -> BoxFuture<'_, Result<SnapshotTree, ReaderError>>
where
    T: ReadableTree + Send + Sync,
{
    async move {
        let results = if let Some(t) = lazy_child_timeout {
            future::join(tree.vmo(), tree.tree_names())
                .on_timeout(t.after_now(), || {
                    (Err(ReaderError::TreeTimedOut), Err(ReaderError::TreeTimedOut))
                })
                .await
        } else {
            future::join(tree.vmo(), tree.tree_names()).await
        };

        let vmo = results.0?;
        let children_names = results.1?;
        let mut children = BTreeMap::new();
        // TODO(miguelfrde): remove recursion or limit depth.
        for child_name in children_names {
            let result = if let Some(t) = lazy_child_timeout {
                tree.read_tree(&child_name)
                    .on_timeout(t.after_now(), || Err(ReaderError::TreeTimedOut))
                    .and_then(|child_tree| load(child_tree, lazy_child_timeout))
                    .await
            } else {
                tree.read_tree(&child_name).and_then(|child_tree| load(child_tree, None)).await
            };
            children.insert(child_name, result);
        }
        Ok(SnapshotTree { snapshot: Snapshot::try_from(&vmo)?, children })
    }
    .boxed()
}

async fn load<T>(tree: T, lazy_node_timeout: Option<Duration>) -> Result<SnapshotTree, ReaderError>
where
    T: ReadableTree + Send + Sync,
{
    load_snapshot_tree(&tree, lazy_node_timeout).await
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{reader, Inspector, InspectorConfig};
    use diagnostics_assertions::{assert_data_tree, assert_json_diff};
    use inspect_format::constants;

    #[fuchsia::test]
    async fn test_read() -> Result<(), anyhow::Error> {
        let inspector = test_inspector();
        let hierarchy = read(&inspector).await?;
        assert_data_tree!(hierarchy, root: {
            int: 3i64,
            "lazy-node": {
                a: "test",
                child: {
                    double: 3.25,
                },
            }
        });
        Ok(())
    }

    #[fuchsia::test]
    async fn test_load_snapshot_tree() -> Result<(), anyhow::Error> {
        let inspector = test_inspector();
        let mut snapshot_tree = load_snapshot_tree(&inspector, None).await?;

        let root_hierarchy: DiagnosticsHierarchy =
            PartialNodeHierarchy::try_from(snapshot_tree.snapshot)?.into();
        assert_eq!(snapshot_tree.children.keys().collect::<Vec<&String>>(), vec!["lazy-node-0"]);
        assert_data_tree!(root_hierarchy, root: {
            int: 3i64,
        });

        let mut lazy_node = snapshot_tree.children.remove("lazy-node-0").unwrap().unwrap();
        let lazy_node_hierarchy: DiagnosticsHierarchy =
            PartialNodeHierarchy::try_from(lazy_node.snapshot)?.into();
        assert_eq!(lazy_node.children.keys().collect::<Vec<&String>>(), vec!["lazy-values-0"]);
        assert_data_tree!(lazy_node_hierarchy, root: {
            a: "test",
            child: {},
        });

        let lazy_values = lazy_node.children.remove("lazy-values-0").unwrap().unwrap();
        let lazy_values_hierarchy = PartialNodeHierarchy::try_from(lazy_values.snapshot)?;
        assert_eq!(lazy_values.children.keys().len(), 0);
        assert_data_tree!(lazy_values_hierarchy, root: {
            double: 3.25,
        });

        Ok(())
    }

    #[fuchsia::test]
    async fn read_with_hanging_lazy_node() -> Result<(), anyhow::Error> {
        let inspector = Inspector::default();
        let root = inspector.root();
        root.record_string("child", "value");

        root.record_lazy_values("lazy-node-always-hangs", || {
            async move {
                fuchsia_async::Timer::new(Duration::from_secs(30 * 60).after_now()).await;
                Ok(Inspector::default())
            }
            .boxed()
        });

        root.record_int("int", 3);

        let hierarchy = read_with_timeout(&inspector, Duration::from_secs(2)).await?;
        assert_json_diff!(hierarchy, root: {
            child: "value",
            int: 3i64,
        });

        Ok(())
    }

    #[fuchsia::test]
    async fn read_too_big_string() {
        // magic size is the amount of data that can be written. Basically it is the size of the
        // VMO minus all of the header and bookkeeping data stored in the VMO
        let magic_size_found_by_experiment = 259076;
        let inspector =
            Inspector::new(InspectorConfig::default().size(constants::DEFAULT_VMO_SIZE_BYTES));
        let string_head = "X".repeat(magic_size_found_by_experiment);
        let string_tail =
            "Y".repeat((constants::DEFAULT_VMO_SIZE_BYTES * 2) - magic_size_found_by_experiment);
        let full_string = format!("{string_head}{string_tail}");

        inspector.root().record_int(full_string, 5);
        let hierarchy = reader::read(&inspector).await.unwrap();
        // somewhat redundant to check both things, but checking the size makes fencepost errors
        // obvious, while checking the contents make real problems obvious
        assert_eq!(hierarchy.properties[0].key().len(), string_head.len());
        assert_eq!(hierarchy.properties[0].key(), &string_head);
    }

    #[fuchsia::test]
    async fn missing_value_parse_failure() -> Result<(), anyhow::Error> {
        let inspector = Inspector::default();
        let _lazy_child = inspector.root().create_lazy_child("lazy", || {
            async move {
                // For the sake of the test, force an invalid vmo.
                Ok(Inspector::new(InspectorConfig::default().no_op()))
            }
            .boxed()
        });
        let hierarchy = reader::read(&inspector).await?;
        assert_eq!(hierarchy.missing.len(), 1);
        assert_eq!(hierarchy.missing[0].reason, MissingValueReason::LinkParseFailure);
        assert_data_tree!(hierarchy, root: {});
        Ok(())
    }

    #[fuchsia::test]
    async fn missing_value_not_found() -> Result<(), anyhow::Error> {
        let inspector = Inspector::default();
        if let Some(state) = inspector.state() {
            let mut state = state.try_lock().expect("lock state");
            state
                .allocate_link(
                    "missing".into(),
                    "missing-404".into(),
                    LinkNodeDisposition::Child,
                    0.into(),
                )
                .unwrap();
        }
        let hierarchy = reader::read(&inspector).await?;
        assert_eq!(hierarchy.missing.len(), 1);
        assert_eq!(hierarchy.missing[0].reason, MissingValueReason::LinkNotFound);
        assert_eq!(hierarchy.missing[0].name, "missing");
        assert_data_tree!(hierarchy, root: {});
        Ok(())
    }

    fn test_inspector() -> Inspector {
        let inspector = Inspector::default();
        let root = inspector.root();
        root.record_int("int", 3);
        root.record_lazy_child("lazy-node", || {
            async move {
                let inspector = Inspector::default();
                inspector.root().record_string("a", "test");
                let child = inspector.root().create_child("child");
                child.record_lazy_values("lazy-values", || {
                    async move {
                        let inspector = Inspector::default();
                        inspector.root().record_double("double", 3.25);
                        Ok(inspector)
                    }
                    .boxed()
                });
                inspector.root().record(child);
                Ok(inspector)
            }
            .boxed()
        });
        inspector
    }
}