siphasher/
sip128.rs

1// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! An implementation of SipHash with a 128-bit output.
12
13use core::cmp;
14use core::hash;
15use core::marker::PhantomData;
16use core::mem;
17use core::ptr;
18use core::u64;
19
20/// A 128-bit (2x64) hash output
21#[derive(Debug, Clone, Copy, Default)]
22#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
23pub struct Hash128 {
24    pub h1: u64,
25    pub h2: u64,
26}
27
28impl From<u128> for Hash128 {
29    fn from(v: u128) -> Self {
30        Hash128 {
31            h1: v as u64,
32            h2: (v >> 64) as u64,
33        }
34    }
35}
36
37impl From<Hash128> for u128 {
38    fn from(h: Hash128) -> u128 {
39        (h.h1 as u128) | ((h.h2 as u128) << 64)
40    }
41}
42
43/// An implementation of SipHash128 1-3.
44#[derive(Debug, Clone, Copy, Default)]
45#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
46pub struct SipHasher13 {
47    hasher: Hasher<Sip13Rounds>,
48}
49
50/// An implementation of SipHash128 2-4.
51#[derive(Debug, Clone, Copy, Default)]
52#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
53pub struct SipHasher24 {
54    hasher: Hasher<Sip24Rounds>,
55}
56
57/// An implementation of SipHash128 2-4.
58///
59/// SipHash is a general-purpose hashing function: it runs at a good
60/// speed (competitive with Spooky and City) and permits strong _keyed_
61/// hashing. This lets you key your hashtables from a strong RNG, such as
62/// [`rand::os::OsRng`](https://doc.rust-lang.org/rand/rand/os/struct.OsRng.html).
63///
64/// Although the SipHash algorithm is considered to be generally strong,
65/// it is not intended for cryptographic purposes. As such, all
66/// cryptographic uses of this implementation are _strongly discouraged_.
67#[derive(Debug, Clone, Copy, Default)]
68pub struct SipHasher(SipHasher24);
69
70#[derive(Debug, Copy)]
71#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
72struct Hasher<S: Sip> {
73    k0: u64,
74    k1: u64,
75    length: usize, // how many bytes we've processed
76    state: State,  // hash State
77    tail: u64,     // unprocessed bytes le
78    ntail: usize,  // how many bytes in tail are valid
79    _marker: PhantomData<S>,
80}
81
82#[derive(Debug, Clone, Copy)]
83#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
84struct State {
85    // v0, v2 and v1, v3 show up in pairs in the algorithm,
86    // and simd implementations of SipHash will use vectors
87    // of v02 and v13. By placing them in this order in the struct,
88    // the compiler can pick up on just a few simd optimizations by itself.
89    v0: u64,
90    v2: u64,
91    v1: u64,
92    v3: u64,
93}
94
95macro_rules! compress {
96    ($state:expr) => {{
97        compress!($state.v0, $state.v1, $state.v2, $state.v3)
98    }};
99    ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{
100        $v0 = $v0.wrapping_add($v1);
101        $v1 = $v1.rotate_left(13);
102        $v1 ^= $v0;
103        $v0 = $v0.rotate_left(32);
104        $v2 = $v2.wrapping_add($v3);
105        $v3 = $v3.rotate_left(16);
106        $v3 ^= $v2;
107        $v0 = $v0.wrapping_add($v3);
108        $v3 = $v3.rotate_left(21);
109        $v3 ^= $v0;
110        $v2 = $v2.wrapping_add($v1);
111        $v1 = $v1.rotate_left(17);
112        $v1 ^= $v2;
113        $v2 = $v2.rotate_left(32);
114    }};
115}
116
117/// Loads an integer of the desired type from a byte stream, in LE order. Uses
118/// `copy_nonoverlapping` to let the compiler generate the most efficient way
119/// to load it from a possibly unaligned address.
120///
121/// Unsafe because: unchecked indexing at `i..i+size_of(int_ty)`
122macro_rules! load_int_le {
123    ($buf:expr, $i:expr, $int_ty:ident) => {{
124        debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
125        let mut data = 0 as $int_ty;
126        ptr::copy_nonoverlapping(
127            $buf.as_ptr().add($i),
128            &mut data as *mut _ as *mut u8,
129            mem::size_of::<$int_ty>(),
130        );
131        data.to_le()
132    }};
133}
134
135/// Loads a u64 using up to 7 bytes of a byte slice. It looks clumsy but the
136/// `copy_nonoverlapping` calls that occur (via `load_int_le!`) all have fixed
137/// sizes and avoid calling `memcpy`, which is good for speed.
138///
139/// Unsafe because: unchecked indexing at start..start+len
140#[inline]
141unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
142    debug_assert!(len < 8);
143    let mut i = 0; // current byte index (from LSB) in the output u64
144    let mut out = 0;
145    if i + 3 < len {
146        out = load_int_le!(buf, start + i, u32) as u64;
147        i += 4;
148    }
149    if i + 1 < len {
150        out |= (load_int_le!(buf, start + i, u16) as u64) << (i * 8);
151        i += 2
152    }
153    if i < len {
154        out |= (*buf.get_unchecked(start + i) as u64) << (i * 8);
155        i += 1;
156    }
157    debug_assert_eq!(i, len);
158    out
159}
160
161pub trait Hasher128 {
162    /// Return a 128-bit hash
163    fn finish128(&self) -> Hash128;
164}
165
166impl SipHasher {
167    /// Creates a new `SipHasher` with the two initial keys set to 0.
168    #[inline]
169    pub fn new() -> SipHasher {
170        SipHasher::new_with_keys(0, 0)
171    }
172
173    /// Creates a `SipHasher` that is keyed off the provided keys.
174    #[inline]
175    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher {
176        SipHasher(SipHasher24::new_with_keys(key0, key1))
177    }
178
179    /// Creates a `SipHasher` from a 16 byte key.
180    pub fn new_with_key(key: &[u8; 16]) -> SipHasher {
181        let mut b0 = [0u8; 8];
182        let mut b1 = [0u8; 8];
183        b0.copy_from_slice(&key[0..8]);
184        b1.copy_from_slice(&key[8..16]);
185        let key0 = u64::from_le_bytes(b0);
186        let key1 = u64::from_le_bytes(b1);
187        Self::new_with_keys(key0, key1)
188    }
189
190    /// Get the keys used by this hasher
191    pub fn keys(&self) -> (u64, u64) {
192        (self.0.hasher.k0, self.0.hasher.k1)
193    }
194
195    /// Get the key used by this hasher as a 16 byte vector
196    pub fn key(&self) -> [u8; 16] {
197        let mut bytes = [0u8; 16];
198        bytes[0..8].copy_from_slice(&self.0.hasher.k0.to_le_bytes());
199        bytes[8..16].copy_from_slice(&self.0.hasher.k1.to_le_bytes());
200        bytes
201    }
202}
203
204impl Hasher128 for SipHasher {
205    /// Return a 128-bit hash
206    #[inline]
207    fn finish128(&self) -> Hash128 {
208        self.0.finish128()
209    }
210}
211
212impl SipHasher13 {
213    /// Creates a new `SipHasher13` with the two initial keys set to 0.
214    #[inline]
215    pub fn new() -> SipHasher13 {
216        SipHasher13::new_with_keys(0, 0)
217    }
218
219    /// Creates a `SipHasher13` that is keyed off the provided keys.
220    #[inline]
221    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 {
222        SipHasher13 {
223            hasher: Hasher::new_with_keys(key0, key1),
224        }
225    }
226
227    /// Creates a `SipHasher13` from a 16 byte key.
228    pub fn new_with_key(key: &[u8; 16]) -> SipHasher13 {
229        let mut b0 = [0u8; 8];
230        let mut b1 = [0u8; 8];
231        b0.copy_from_slice(&key[0..8]);
232        b1.copy_from_slice(&key[8..16]);
233        let key0 = u64::from_le_bytes(b0);
234        let key1 = u64::from_le_bytes(b1);
235        Self::new_with_keys(key0, key1)
236    }
237
238    /// Get the keys used by this hasher
239    pub fn keys(&self) -> (u64, u64) {
240        (self.hasher.k0, self.hasher.k1)
241    }
242
243    /// Get the key used by this hasher as a 16 byte vector
244    pub fn key(&self) -> [u8; 16] {
245        let mut bytes = [0u8; 16];
246        bytes[0..8].copy_from_slice(&self.hasher.k0.to_le_bytes());
247        bytes[8..16].copy_from_slice(&self.hasher.k1.to_le_bytes());
248        bytes
249    }
250}
251
252impl Hasher128 for SipHasher13 {
253    /// Return a 128-bit hash
254    #[inline]
255    fn finish128(&self) -> Hash128 {
256        self.hasher.finish128()
257    }
258}
259
260impl SipHasher24 {
261    /// Creates a new `SipHasher24` with the two initial keys set to 0.
262    #[inline]
263    pub fn new() -> SipHasher24 {
264        SipHasher24::new_with_keys(0, 0)
265    }
266
267    /// Creates a `SipHasher24` that is keyed off the provided keys.
268    #[inline]
269    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher24 {
270        SipHasher24 {
271            hasher: Hasher::new_with_keys(key0, key1),
272        }
273    }
274
275    /// Creates a `SipHasher24` from a 16 byte key.
276    pub fn new_with_key(key: &[u8; 16]) -> SipHasher24 {
277        let mut b0 = [0u8; 8];
278        let mut b1 = [0u8; 8];
279        b0.copy_from_slice(&key[0..8]);
280        b1.copy_from_slice(&key[8..16]);
281        let key0 = u64::from_le_bytes(b0);
282        let key1 = u64::from_le_bytes(b1);
283        Self::new_with_keys(key0, key1)
284    }
285
286    /// Get the keys used by this hasher
287    pub fn keys(&self) -> (u64, u64) {
288        (self.hasher.k0, self.hasher.k1)
289    }
290
291    /// Get the key used by this hasher as a 16 byte vector
292    pub fn key(&self) -> [u8; 16] {
293        let mut bytes = [0u8; 16];
294        bytes[0..8].copy_from_slice(&self.hasher.k0.to_le_bytes());
295        bytes[8..16].copy_from_slice(&self.hasher.k1.to_le_bytes());
296        bytes
297    }
298}
299
300impl Hasher128 for SipHasher24 {
301    /// Return a 128-bit hash
302    #[inline]
303    fn finish128(&self) -> Hash128 {
304        self.hasher.finish128()
305    }
306}
307
308impl<S: Sip> Hasher<S> {
309    #[inline]
310    fn new_with_keys(key0: u64, key1: u64) -> Hasher<S> {
311        let mut state = Hasher {
312            k0: key0,
313            k1: key1,
314            length: 0,
315            state: State {
316                v0: 0,
317                v1: 0xee,
318                v2: 0,
319                v3: 0,
320            },
321            tail: 0,
322            ntail: 0,
323            _marker: PhantomData,
324        };
325        state.reset();
326        state
327    }
328
329    #[inline]
330    fn reset(&mut self) {
331        self.length = 0;
332        self.state.v0 = self.k0 ^ 0x736f6d6570736575;
333        self.state.v1 = self.k1 ^ 0x646f72616e646f83;
334        self.state.v2 = self.k0 ^ 0x6c7967656e657261;
335        self.state.v3 = self.k1 ^ 0x7465646279746573;
336        self.ntail = 0;
337    }
338
339    // A specialized write function for values with size <= 8.
340    //
341    // The hashing of multi-byte integers depends on endianness. E.g.:
342    // - little-endian: `write_u32(0xDDCCBBAA)` == `write([0xAA, 0xBB, 0xCC, 0xDD])`
343    // - big-endian:    `write_u32(0xDDCCBBAA)` == `write([0xDD, 0xCC, 0xBB, 0xAA])`
344    //
345    // This function does the right thing for little-endian hardware. On
346    // big-endian hardware `x` must be byte-swapped first to give the right
347    // behaviour. After any byte-swapping, the input must be zero-extended to
348    // 64-bits. The caller is responsible for the byte-swapping and
349    // zero-extension.
350    #[inline]
351    fn short_write<T>(&mut self, _x: T, x: u64) {
352        let size = mem::size_of::<T>();
353        self.length += size;
354
355        // The original number must be zero-extended, not sign-extended.
356        debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true });
357
358        // The number of bytes needed to fill `self.tail`.
359        let needed = 8 - self.ntail;
360
361        self.tail |= x << (8 * self.ntail);
362        if size < needed {
363            self.ntail += size;
364            return;
365        }
366
367        // `self.tail` is full, process it.
368        self.state.v3 ^= self.tail;
369        S::c_rounds(&mut self.state);
370        self.state.v0 ^= self.tail;
371
372        self.ntail = size - needed;
373        self.tail = if needed < 8 { x >> (8 * needed) } else { 0 };
374    }
375}
376
377impl<S: Sip> Hasher<S> {
378    #[inline]
379    pub fn finish128(&self) -> Hash128 {
380        let mut state = self.state;
381
382        let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;
383
384        state.v3 ^= b;
385        S::c_rounds(&mut state);
386        state.v0 ^= b;
387
388        state.v2 ^= 0xee;
389        S::d_rounds(&mut state);
390        let h1 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
391
392        state.v1 ^= 0xdd;
393        S::d_rounds(&mut state);
394        let h2 = state.v0 ^ state.v1 ^ state.v2 ^ state.v3;
395
396        Hash128 { h1, h2 }
397    }
398}
399
400impl hash::Hasher for SipHasher {
401    #[inline]
402    fn write(&mut self, msg: &[u8]) {
403        self.0.write(msg)
404    }
405
406    #[inline]
407    fn finish(&self) -> u64 {
408        self.0.finish()
409    }
410
411    #[inline]
412    fn write_usize(&mut self, i: usize) {
413        self.0.write_usize(i);
414    }
415
416    #[inline]
417    fn write_u8(&mut self, i: u8) {
418        self.0.write_u8(i);
419    }
420
421    #[inline]
422    fn write_u16(&mut self, i: u16) {
423        self.0.write_u16(i);
424    }
425
426    #[inline]
427    fn write_u32(&mut self, i: u32) {
428        self.0.write_u32(i);
429    }
430
431    #[inline]
432    fn write_u64(&mut self, i: u64) {
433        self.0.write_u64(i);
434    }
435}
436
437impl hash::Hasher for SipHasher13 {
438    #[inline]
439    fn write(&mut self, msg: &[u8]) {
440        self.hasher.write(msg)
441    }
442
443    #[inline]
444    fn finish(&self) -> u64 {
445        self.hasher.finish()
446    }
447
448    #[inline]
449    fn write_usize(&mut self, i: usize) {
450        self.hasher.write_usize(i);
451    }
452
453    #[inline]
454    fn write_u8(&mut self, i: u8) {
455        self.hasher.write_u8(i);
456    }
457
458    #[inline]
459    fn write_u16(&mut self, i: u16) {
460        self.hasher.write_u16(i);
461    }
462
463    #[inline]
464    fn write_u32(&mut self, i: u32) {
465        self.hasher.write_u32(i);
466    }
467
468    #[inline]
469    fn write_u64(&mut self, i: u64) {
470        self.hasher.write_u64(i);
471    }
472}
473
474impl hash::Hasher for SipHasher24 {
475    #[inline]
476    fn write(&mut self, msg: &[u8]) {
477        self.hasher.write(msg)
478    }
479
480    #[inline]
481    fn finish(&self) -> u64 {
482        self.hasher.finish()
483    }
484
485    #[inline]
486    fn write_usize(&mut self, i: usize) {
487        self.hasher.write_usize(i);
488    }
489
490    #[inline]
491    fn write_u8(&mut self, i: u8) {
492        self.hasher.write_u8(i);
493    }
494
495    #[inline]
496    fn write_u16(&mut self, i: u16) {
497        self.hasher.write_u16(i);
498    }
499
500    #[inline]
501    fn write_u32(&mut self, i: u32) {
502        self.hasher.write_u32(i);
503    }
504
505    #[inline]
506    fn write_u64(&mut self, i: u64) {
507        self.hasher.write_u64(i);
508    }
509}
510
511impl<S: Sip> hash::Hasher for Hasher<S> {
512    #[inline]
513    fn write_usize(&mut self, i: usize) {
514        self.short_write(i, i.to_le() as u64);
515    }
516
517    #[inline]
518    fn write_u8(&mut self, i: u8) {
519        self.short_write(i, i as u64);
520    }
521
522    #[inline]
523    fn write_u32(&mut self, i: u32) {
524        self.short_write(i, i.to_le() as u64);
525    }
526
527    #[inline]
528    fn write_u64(&mut self, i: u64) {
529        self.short_write(i, i.to_le() as u64);
530    }
531
532    #[inline]
533    fn write(&mut self, msg: &[u8]) {
534        let length = msg.len();
535        self.length += length;
536
537        let mut needed = 0;
538
539        if self.ntail != 0 {
540            needed = 8 - self.ntail;
541            self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
542            if length < needed {
543                self.ntail += length;
544                return;
545            } else {
546                self.state.v3 ^= self.tail;
547                S::c_rounds(&mut self.state);
548                self.state.v0 ^= self.tail;
549                self.ntail = 0;
550            }
551        }
552
553        // Buffered tail is now flushed, process new input.
554        let len = length - needed;
555        let left = len & 0x7;
556
557        let mut i = needed;
558        while i < len - left {
559            let mi = unsafe { load_int_le!(msg, i, u64) };
560
561            self.state.v3 ^= mi;
562            S::c_rounds(&mut self.state);
563            self.state.v0 ^= mi;
564
565            i += 8;
566        }
567
568        self.tail = unsafe { u8to64_le(msg, i, left) };
569        self.ntail = left;
570    }
571
572    #[inline]
573    fn finish(&self) -> u64 {
574        self.finish128().h2
575    }
576}
577
578impl<S: Sip> Clone for Hasher<S> {
579    #[inline]
580    fn clone(&self) -> Hasher<S> {
581        Hasher {
582            k0: self.k0,
583            k1: self.k1,
584            length: self.length,
585            state: self.state,
586            tail: self.tail,
587            ntail: self.ntail,
588            _marker: self._marker,
589        }
590    }
591}
592
593impl<S: Sip> Default for Hasher<S> {
594    /// Creates a `Hasher<S>` with the two initial keys set to 0.
595    #[inline]
596    fn default() -> Hasher<S> {
597        Hasher::new_with_keys(0, 0)
598    }
599}
600
601#[doc(hidden)]
602trait Sip {
603    fn c_rounds(_: &mut State);
604    fn d_rounds(_: &mut State);
605}
606
607#[derive(Debug, Clone, Copy, Default)]
608struct Sip13Rounds;
609
610impl Sip for Sip13Rounds {
611    #[inline]
612    fn c_rounds(state: &mut State) {
613        compress!(state);
614    }
615
616    #[inline]
617    fn d_rounds(state: &mut State) {
618        compress!(state);
619        compress!(state);
620        compress!(state);
621    }
622}
623
624#[derive(Debug, Clone, Copy, Default)]
625struct Sip24Rounds;
626
627impl Sip for Sip24Rounds {
628    #[inline]
629    fn c_rounds(state: &mut State) {
630        compress!(state);
631        compress!(state);
632    }
633
634    #[inline]
635    fn d_rounds(state: &mut State) {
636        compress!(state);
637        compress!(state);
638        compress!(state);
639        compress!(state);
640    }
641}
642
643impl Hash128 {
644    /// Convert into a 16-bytes vector
645    pub fn as_bytes(&self) -> [u8; 16] {
646        let mut bytes = [0u8; 16];
647        let h1 = self.h1.to_le();
648        let h2 = self.h2.to_le();
649        unsafe {
650            ptr::copy_nonoverlapping(&h1 as *const _ as *const u8, bytes.as_mut_ptr(), 8);
651            ptr::copy_nonoverlapping(&h2 as *const _ as *const u8, bytes.as_mut_ptr().add(8), 8);
652        }
653        bytes
654    }
655
656    /// Convert into a `u128`
657    #[inline]
658    pub fn as_u128(&self) -> u128 {
659        let h1 = self.h1.to_le();
660        let h2 = self.h2.to_le();
661        h1 as u128 | ((h2 as u128) << 64)
662    }
663
664    /// Convert into `(u64, u64)`
665    #[inline]
666    pub fn as_u64(&self) -> (u64, u64) {
667        let h1 = self.h1.to_le();
668        let h2 = self.h2.to_le();
669        (h1, h2)
670    }
671}