binder/native.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use crate::binder::{
AsNative, Interface, InterfaceClassMethods, Remotable, Stability, TransactionCode,
};
use crate::error::{status_result, status_t, Result, StatusCode};
use crate::parcel::{BorrowedParcel, Serialize};
use crate::proxy::SpIBinder;
use crate::sys;
use std::convert::TryFrom;
use std::ffi::{c_void, CStr};
use std::io::Write;
use std::mem::ManuallyDrop;
use std::ops::Deref;
use std::os::raw::c_char;
/// Rust wrapper around Binder remotable objects.
///
/// Implements the C++ `BBinder` class, and therefore implements the C++
/// `IBinder` interface.
#[repr(C)]
pub struct Binder<T: Remotable> {
ibinder: *mut sys::AIBinder,
rust_object: *mut T,
}
/// Safety:
///
/// A `Binder<T>` is a pair of unique owning pointers to two values:
/// * a C++ ABBinder which the C++ API guarantees can be passed between threads
/// * a Rust object which implements `Remotable`; this trait requires `Send + Sync`
///
/// Both pointers are unique (never escape the `Binder<T>` object and are not copied)
/// so we can essentially treat `Binder<T>` as a box-like containing the two objects;
/// the box-like object inherits `Send` from the two inner values, similarly
/// to how `Box<T>` is `Send` if `T` is `Send`.
unsafe impl<T: Remotable> Send for Binder<T> {}
/// Safety:
///
/// A `Binder<T>` is a pair of unique owning pointers to two values:
/// * a C++ ABBinder which is thread-safe, i.e. `Send + Sync`
/// * a Rust object which implements `Remotable`; this trait requires `Send + Sync`
///
/// `ABBinder` contains an immutable `mUserData` pointer, which is actually a
/// pointer to a boxed `T: Remotable`, which is `Sync`. `ABBinder` also contains
/// a mutable pointer to its class, but mutation of this field is controlled by
/// a mutex and it is only allowed to be set once, therefore we can concurrently
/// access this field safely. `ABBinder` inherits from `BBinder`, which is also
/// thread-safe. Thus `ABBinder` is thread-safe.
///
/// Both pointers are unique (never escape the `Binder<T>` object and are not copied)
/// so we can essentially treat `Binder<T>` as a box-like containing the two objects;
/// the box-like object inherits `Sync` from the two inner values, similarly
/// to how `Box<T>` is `Sync` if `T` is `Sync`.
unsafe impl<T: Remotable> Sync for Binder<T> {}
impl<T: Remotable> Binder<T> {
/// Create a new Binder remotable object with default stability
///
/// This moves the `rust_object` into an owned [`Box`] and Binder will
/// manage its lifetime.
pub fn new(rust_object: T) -> Binder<T> {
Self::new_with_stability(rust_object, Stability::default())
}
/// Create a new Binder remotable object with the given stability
///
/// This moves the `rust_object` into an owned [`Box`] and Binder will
/// manage its lifetime.
pub fn new_with_stability(rust_object: T, stability: Stability) -> Binder<T> {
let class = T::get_class();
let rust_object = Box::into_raw(Box::new(rust_object));
// Safety: `AIBinder_new` expects a valid class pointer (which we
// initialize via `get_class`), and an arbitrary pointer
// argument. The caller owns the returned `AIBinder` pointer, which
// is a strong reference to a `BBinder`. This reference should be
// decremented via `AIBinder_decStrong` when the reference lifetime
// ends.
let ibinder = unsafe { sys::AIBinder_new(class.into(), rust_object as *mut c_void) };
let mut binder = Binder { ibinder, rust_object };
binder.mark_stability(stability);
binder
}
/// Set the extension of a binder interface. This allows a downstream
/// developer to add an extension to an interface without modifying its
/// interface file. This should be called immediately when the object is
/// created before it is passed to another thread.
///
/// # Examples
///
/// For instance, imagine if we have this Binder AIDL interface definition:
/// interface IFoo { void doFoo(); }
///
/// If an unrelated owner (perhaps in a downstream codebase) wants to make a
/// change to the interface, they have two options:
///
/// 1) Historical option that has proven to be BAD! Only the original
/// author of an interface should change an interface. If someone
/// downstream wants additional functionality, they should not ever
/// change the interface or use this method.
/// ```AIDL
/// BAD TO DO: interface IFoo { BAD TO DO
/// BAD TO DO: void doFoo(); BAD TO DO
/// BAD TO DO: + void doBar(); // adding a method BAD TO DO
/// BAD TO DO: } BAD TO DO
/// ```
///
/// 2) Option that this method enables!
/// Leave the original interface unchanged (do not change IFoo!).
/// Instead, create a new AIDL interface in a downstream package:
/// ```AIDL
/// package com.<name>; // new functionality in a new package
/// interface IBar { void doBar(); }
/// ```
///
/// When registering the interface, add:
///
/// # use binder::{Binder, Interface};
/// # type MyFoo = ();
/// # type MyBar = ();
/// # let my_foo = ();
/// # let my_bar = ();
/// let mut foo: Binder<MyFoo> = Binder::new(my_foo); // class in AOSP codebase
/// let bar: Binder<MyBar> = Binder::new(my_bar); // custom extension class
/// foo.set_extension(&mut bar.as_binder()); // use method in Binder
///
/// Then, clients of `IFoo` can get this extension:
///
/// # use binder::{declare_binder_interface, Binder, TransactionCode, Parcel};
/// # trait IBar {}
/// # declare_binder_interface! {
/// # IBar["test"] {
/// # native: BnBar(on_transact),
/// # proxy: BpBar,
/// # }
/// # }
/// # fn on_transact(
/// # service: &dyn IBar,
/// # code: TransactionCode,
/// # data: &BorrowedParcel,
/// # reply: &mut BorrowedParcel,
/// # ) -> binder::Result<()> {
/// # Ok(())
/// # }
/// # impl IBar for BpBar {}
/// # impl IBar for Binder<BnBar> {}
/// # fn main() -> binder::Result<()> {
/// # let binder = Binder::new(());
/// if let Some(barBinder) = binder.get_extension()? {
/// let bar = BpBar::new(barBinder)
/// .expect("Extension was not of type IBar");
/// } else {
/// // There was no extension
/// }
/// # }
pub fn set_extension(&mut self, extension: &mut SpIBinder) -> Result<()> {
let status =
// Safety: `AIBinder_setExtension` expects two valid, mutable
// `AIBinder` pointers. We are guaranteed that both `self` and
// `extension` contain valid `AIBinder` pointers, because they
// cannot be initialized without a valid
// pointer. `AIBinder_setExtension` does not take ownership of
// either parameter.
unsafe { sys::AIBinder_setExtension(self.as_native_mut(), extension.as_native_mut()) };
status_result(status)
}
/// Retrieve the interface descriptor string for this object's Binder
/// interface.
pub fn get_descriptor() -> &'static str {
T::get_descriptor()
}
/// Mark this binder object with the given stability guarantee
fn mark_stability(&mut self, stability: Stability) {
match stability {
Stability::Local => self.mark_local_stability(),
Stability::Vintf => {
// Safety: Self always contains a valid `AIBinder` pointer, so
// we can always call this C API safely.
unsafe {
sys::AIBinder_markVintfStability(self.as_native_mut());
}
}
}
}
/// Mark this binder object with local stability, which is vendor if we are
/// building for android_vendor and system otherwise.
#[cfg(android_vendor)]
fn mark_local_stability(&mut self) {
// Safety: Self always contains a valid `AIBinder` pointer, so we can
// always call this C API safely.
unsafe {
sys::AIBinder_markVendorStability(self.as_native_mut());
}
}
/// Mark this binder object with local stability, which is vendor if we are
/// building for android_vendor and system otherwise.
#[cfg(not(android_vendor))]
fn mark_local_stability(&mut self) {
// Safety: Self always contains a valid `AIBinder` pointer, so we can
// always call this C API safely.
unsafe {
sys::AIBinder_markSystemStability(self.as_native_mut());
}
}
}
impl<T: Remotable> Interface for Binder<T> {
/// Converts the local remotable object into a generic `SpIBinder`
/// reference.
///
/// The resulting `SpIBinder` will hold its own strong reference to this
/// remotable object, which will prevent the object from being dropped while
/// the `SpIBinder` is alive.
fn as_binder(&self) -> SpIBinder {
// Safety: `self.ibinder` is guaranteed to always be a valid pointer
// to an `AIBinder` by the `Binder` constructor. We are creating a
// copy of the `self.ibinder` strong reference, but
// `SpIBinder::from_raw` assumes it receives an owned pointer with
// its own strong reference. We first increment the reference count,
// so that the new `SpIBinder` will be tracked as a new reference.
unsafe {
sys::AIBinder_incStrong(self.ibinder);
SpIBinder::from_raw(self.ibinder).unwrap()
}
}
}
impl<T: Remotable> InterfaceClassMethods for Binder<T> {
fn get_descriptor() -> &'static str {
<T as Remotable>::get_descriptor()
}
/// Called whenever a transaction needs to be processed by a local
/// implementation.
///
/// # Safety
///
/// Must be called with a non-null, valid pointer to a local `AIBinder` that
/// contains a `T` pointer in its user data. The `data` and `reply` parcel
/// parameters must be valid pointers to `AParcel` objects. This method does
/// not take ownership of any of its parameters.
///
/// These conditions hold when invoked by `ABBinder::onTransact`.
unsafe extern "C" fn on_transact(
binder: *mut sys::AIBinder,
code: u32,
data: *const sys::AParcel,
reply: *mut sys::AParcel,
) -> status_t {
let res = {
// Safety: The caller must give us a parcel pointer which is either
// null or valid at least for the duration of this function call. We
// don't keep the resulting value beyond the function.
let mut reply = unsafe { BorrowedParcel::from_raw(reply).unwrap() };
// Safety: The caller must give us a parcel pointer which is either
// null or valid at least for the duration of this function call. We
// don't keep the resulting value beyond the function.
let data = unsafe { BorrowedParcel::from_raw(data as *mut sys::AParcel).unwrap() };
// Safety: Our caller promised that `binder` is a non-null, valid
// pointer to a local `AIBinder`.
let object = unsafe { sys::AIBinder_getUserData(binder) };
// Safety: Our caller promised that the binder has a `T` pointer in
// its user data.
let binder: &T = unsafe { &*(object as *const T) };
binder.on_transact(code, &data, &mut reply)
};
match res {
Ok(()) => 0i32,
Err(e) => e as i32,
}
}
/// Called whenever an `AIBinder` object is no longer referenced and needs
/// destroyed.
///
/// # Safety
///
/// Must be called with a valid pointer to a `T` object. After this call,
/// the pointer will be invalid and should not be dereferenced.
unsafe extern "C" fn on_destroy(object: *mut c_void) {
// Safety: Our caller promised that `object` is a valid pointer to a
// `T`.
drop(unsafe { Box::from_raw(object as *mut T) });
}
/// Called whenever a new, local `AIBinder` object is needed of a specific
/// class.
///
/// Constructs the user data pointer that will be stored in the object,
/// which will be a heap-allocated `T` object.
///
/// # Safety
///
/// Must be called with a valid pointer to a `T` object allocated via `Box`.
unsafe extern "C" fn on_create(args: *mut c_void) -> *mut c_void {
// We just return the argument, as it is already a pointer to the rust
// object created by Box.
args
}
/// Called to handle the `dump` transaction.
///
/// # Safety
///
/// Must be called with a non-null, valid pointer to a local `AIBinder` that
/// contains a `T` pointer in its user data. fd should be a non-owned file
/// descriptor, and args must be an array of null-terminated string
/// pointers with length num_args.
#[cfg(not(trusty))]
unsafe extern "C" fn on_dump(
binder: *mut sys::AIBinder,
fd: i32,
args: *mut *const c_char,
num_args: u32,
) -> status_t {
if fd < 0 {
return StatusCode::UNEXPECTED_NULL as status_t;
}
use std::os::fd::FromRawFd;
// Safety: Our caller promised that fd is a file descriptor. We don't
// own this file descriptor, so we need to be careful not to drop it.
let mut file = unsafe { ManuallyDrop::new(std::fs::File::from_raw_fd(fd)) };
if args.is_null() && num_args != 0 {
return StatusCode::UNEXPECTED_NULL as status_t;
}
let args = if args.is_null() || num_args == 0 {
vec![]
} else {
// Safety: Our caller promised that `args` is an array of
// null-terminated string pointers with length `num_args`.
unsafe {
std::slice::from_raw_parts(args, num_args as usize)
.iter()
.map(|s| CStr::from_ptr(*s))
.collect()
}
};
// Safety: Our caller promised that `binder` is a non-null, valid
// pointer to a local `AIBinder`.
let object = unsafe { sys::AIBinder_getUserData(binder) };
// Safety: Our caller promised that the binder has a `T` pointer in its
// user data.
let binder: &T = unsafe { &*(object as *const T) };
let res = binder.on_dump(&mut *file, &args);
match res {
Ok(()) => 0,
Err(e) => e as status_t,
}
}
/// Called to handle the `dump` transaction.
#[cfg(trusty)]
unsafe extern "C" fn on_dump(
_binder: *mut sys::AIBinder,
_fd: i32,
_args: *mut *const c_char,
_num_args: u32,
) -> status_t {
// This operation is not supported on Trusty right now
// because we do not have a uniform way of writing to handles
StatusCode::INVALID_OPERATION as status_t
}
}
impl<T: Remotable> Drop for Binder<T> {
// This causes C++ to decrease the strong ref count of the `AIBinder`
// object. We specifically do not drop the `rust_object` here. When C++
// actually destroys the object, it calls `on_destroy` and we can drop the
// `rust_object` then.
fn drop(&mut self) {
// Safety: When `self` is dropped, we can no longer access the
// reference, so can decrement the reference count. `self.ibinder` is
// always a valid `AIBinder` pointer, so is valid to pass to
// `AIBinder_decStrong`.
unsafe {
sys::AIBinder_decStrong(self.ibinder);
}
}
}
impl<T: Remotable> Deref for Binder<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
// Safety: While `self` is alive, the reference count of the underlying
// object is > 0 and therefore `on_destroy` cannot be called. Therefore
// while `self` is alive, we know that `rust_object` is still a valid
// pointer to a heap allocated object of type `T`.
unsafe { &*self.rust_object }
}
}
impl<B: Remotable> Serialize for Binder<B> {
fn serialize(&self, parcel: &mut BorrowedParcel<'_>) -> Result<()> {
parcel.write_binder(Some(&self.as_binder()))
}
}
// This implementation is an idiomatic implementation of the C++
// `IBinder::localBinder` interface if the binder object is a Rust binder
// service.
impl<B: Remotable> TryFrom<SpIBinder> for Binder<B> {
type Error = StatusCode;
fn try_from(mut ibinder: SpIBinder) -> Result<Self> {
let class = B::get_class();
if Some(class) != ibinder.get_class() {
return Err(StatusCode::BAD_TYPE);
}
// Safety: `SpIBinder` always holds a valid pointer pointer to an
// `AIBinder`, which we can safely pass to `AIBinder_getUserData`.
// `ibinder` retains ownership of the returned pointer.
let userdata = unsafe { sys::AIBinder_getUserData(ibinder.as_native_mut()) };
if userdata.is_null() {
return Err(StatusCode::UNEXPECTED_NULL);
}
// We are transferring the ownership of the AIBinder into the new Binder
// object.
let mut ibinder = ManuallyDrop::new(ibinder);
Ok(Binder { ibinder: ibinder.as_native_mut(), rust_object: userdata as *mut B })
}
}
/// Safety: The constructor for `Binder` guarantees that `self.ibinder` will
/// contain a valid, non-null pointer to an `AIBinder`, so this implementation
/// is type safe. `self.ibinder` will remain valid for the entire lifetime of
/// `self` because we hold a strong reference to the `AIBinder` until `self` is
/// dropped.
unsafe impl<B: Remotable> AsNative<sys::AIBinder> for Binder<B> {
fn as_native(&self) -> *const sys::AIBinder {
self.ibinder
}
fn as_native_mut(&mut self) -> *mut sys::AIBinder {
self.ibinder
}
}
/// Tests often create a base BBinder instance; so allowing the unit
/// type to be remotable translates nicely to Binder::new(()).
impl Remotable for () {
fn get_descriptor() -> &'static str {
""
}
fn on_transact(
&self,
_code: TransactionCode,
_data: &BorrowedParcel<'_>,
_reply: &mut BorrowedParcel<'_>,
) -> Result<()> {
Ok(())
}
fn on_dump(&self, _writer: &mut dyn Write, _args: &[&CStr]) -> Result<()> {
Ok(())
}
binder_fn_get_class!(Binder::<Self>);
}
impl Interface for () {}