cipher/
stream_core.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use crate::{ParBlocks, ParBlocksSizeUser, StreamCipherError};
use crypto_common::{
    generic_array::{ArrayLength, GenericArray},
    typenum::Unsigned,
    Block, BlockSizeUser,
};
use inout::{InOut, InOutBuf};

/// Trait implemented by stream cipher backends.
pub trait StreamBackend: ParBlocksSizeUser {
    /// Generate keystream block.
    fn gen_ks_block(&mut self, block: &mut Block<Self>);

    /// Generate keystream blocks in parallel.
    #[inline(always)]
    fn gen_par_ks_blocks(&mut self, blocks: &mut ParBlocks<Self>) {
        for block in blocks {
            self.gen_ks_block(block);
        }
    }

    /// Generate keystream blocks. Length of the buffer MUST be smaller
    /// than `Self::ParBlocksSize`.
    #[inline(always)]
    fn gen_tail_blocks(&mut self, blocks: &mut [Block<Self>]) {
        assert!(blocks.len() < Self::ParBlocksSize::USIZE);
        for block in blocks {
            self.gen_ks_block(block);
        }
    }
}

/// Trait for [`StreamBackend`] users.
///
/// This trait is used to define rank-2 closures.
pub trait StreamClosure: BlockSizeUser {
    /// Execute closure with the provided stream cipher backend.
    fn call<B: StreamBackend<BlockSize = Self::BlockSize>>(self, backend: &mut B);
}

/// Block-level synchronous stream ciphers.
pub trait StreamCipherCore: BlockSizeUser + Sized {
    /// Return number of remaining blocks before cipher wraps around.
    ///
    /// Returns `None` if number of remaining blocks can not be computed
    /// (e.g. in ciphers based on the sponge construction) or it's too big
    /// to fit into `usize`.
    fn remaining_blocks(&self) -> Option<usize>;

    /// Process data using backend provided to the rank-2 closure.
    fn process_with_backend(&mut self, f: impl StreamClosure<BlockSize = Self::BlockSize>);

    /// Write keystream block.
    ///
    /// WARNING: this method does not check number of remaining blocks!
    #[inline]
    fn write_keystream_block(&mut self, block: &mut Block<Self>) {
        self.process_with_backend(WriteBlockCtx { block });
    }

    /// Write keystream blocks.
    ///
    /// WARNING: this method does not check number of remaining blocks!
    #[inline]
    fn write_keystream_blocks(&mut self, blocks: &mut [Block<Self>]) {
        self.process_with_backend(WriteBlocksCtx { blocks });
    }

    /// Apply keystream block.
    ///
    /// WARNING: this method does not check number of remaining blocks!
    #[inline]
    fn apply_keystream_block_inout(&mut self, block: InOut<'_, '_, Block<Self>>) {
        self.process_with_backend(ApplyBlockCtx { block });
    }

    /// Apply keystream blocks.
    ///
    /// WARNING: this method does not check number of remaining blocks!
    #[inline]
    fn apply_keystream_blocks(&mut self, blocks: &mut [Block<Self>]) {
        self.process_with_backend(ApplyBlocksCtx {
            blocks: blocks.into(),
        });
    }

    /// Apply keystream blocks.
    ///
    /// WARNING: this method does not check number of remaining blocks!
    #[inline]
    fn apply_keystream_blocks_inout(&mut self, blocks: InOutBuf<'_, '_, Block<Self>>) {
        self.process_with_backend(ApplyBlocksCtx { blocks });
    }

    /// Try to apply keystream to data not divided into blocks.
    ///
    /// Consumes cipher since it may consume final keystream block only
    /// partially.
    ///
    /// Returns an error if number of remaining blocks is not sufficient
    /// for processing the input data.
    #[inline]
    fn try_apply_keystream_partial(
        mut self,
        mut buf: InOutBuf<'_, '_, u8>,
    ) -> Result<(), StreamCipherError> {
        if let Some(rem) = self.remaining_blocks() {
            let blocks = if buf.len() % Self::BlockSize::USIZE == 0 {
                buf.len() % Self::BlockSize::USIZE
            } else {
                buf.len() % Self::BlockSize::USIZE + 1
            };
            if blocks > rem {
                return Err(StreamCipherError);
            }
        }

        if buf.len() > Self::BlockSize::USIZE {
            let (blocks, tail) = buf.into_chunks();
            self.apply_keystream_blocks_inout(blocks);
            buf = tail;
        }
        let n = buf.len();
        if n == 0 {
            return Ok(());
        }
        let mut block = Block::<Self>::default();
        block[..n].copy_from_slice(buf.get_in());
        let t = InOutBuf::from_mut(&mut block);
        self.apply_keystream_blocks_inout(t);
        buf.get_out().copy_from_slice(&block[..n]);
        Ok(())
    }

    /// Try to apply keystream to data not divided into blocks.
    ///
    /// Consumes cipher since it may consume final keystream block only
    /// partially.
    ///
    /// # Panics
    /// If number of remaining blocks is not sufficient for processing the
    /// input data.
    #[inline]
    fn apply_keystream_partial(self, buf: InOutBuf<'_, '_, u8>) {
        self.try_apply_keystream_partial(buf).unwrap()
    }
}

// note: unfortunately, currently we can not write blanket impls of
// `BlockEncryptMut` and `BlockDecryptMut` for `T: StreamCipherCore`
// since it requires mutually exclusive traits, see:
// https://github.com/rust-lang/rfcs/issues/1053

/// Counter type usable with [`StreamCipherCore`].
///
/// This trait is implemented for `i32`, `u32`, `u64`, `u128`, and `usize`.
/// It's not intended to be implemented in third-party crates, but doing so
/// is not forbidden.
pub trait Counter:
    TryFrom<i32>
    + TryFrom<u32>
    + TryFrom<u64>
    + TryFrom<u128>
    + TryFrom<usize>
    + TryInto<i32>
    + TryInto<u32>
    + TryInto<u64>
    + TryInto<u128>
    + TryInto<usize>
{
}

/// Block-level seeking trait for stream ciphers.
pub trait StreamCipherSeekCore: StreamCipherCore {
    /// Counter type used inside stream cipher.
    type Counter: Counter;

    /// Get current block position.
    fn get_block_pos(&self) -> Self::Counter;

    /// Set block position.
    fn set_block_pos(&mut self, pos: Self::Counter);
}

macro_rules! impl_counter {
    {$($t:ty )*} => {
        $( impl Counter for $t { } )*
    };
}

impl_counter! { u32 u64 u128 }

/// Partition buffer into 2 parts: buffer of arrays and tail.
///
/// In case if `N` is less or equal to 1, buffer of arrays has length
/// of zero and tail is equal to `self`.
#[inline]
fn into_chunks<T, N: ArrayLength<T>>(buf: &mut [T]) -> (&mut [GenericArray<T, N>], &mut [T]) {
    use core::slice;
    if N::USIZE <= 1 {
        return (&mut [], buf);
    }
    let chunks_len = buf.len() / N::USIZE;
    let tail_pos = N::USIZE * chunks_len;
    let tail_len = buf.len() - tail_pos;
    unsafe {
        let ptr = buf.as_mut_ptr();
        let chunks = slice::from_raw_parts_mut(ptr as *mut GenericArray<T, N>, chunks_len);
        let tail = slice::from_raw_parts_mut(ptr.add(tail_pos), tail_len);
        (chunks, tail)
    }
}

struct WriteBlockCtx<'a, BS: ArrayLength<u8>> {
    block: &'a mut Block<Self>,
}
impl<'a, BS: ArrayLength<u8>> BlockSizeUser for WriteBlockCtx<'a, BS> {
    type BlockSize = BS;
}
impl<'a, BS: ArrayLength<u8>> StreamClosure for WriteBlockCtx<'a, BS> {
    #[inline(always)]
    fn call<B: StreamBackend<BlockSize = BS>>(self, backend: &mut B) {
        backend.gen_ks_block(self.block);
    }
}

struct WriteBlocksCtx<'a, BS: ArrayLength<u8>> {
    blocks: &'a mut [Block<Self>],
}
impl<'a, BS: ArrayLength<u8>> BlockSizeUser for WriteBlocksCtx<'a, BS> {
    type BlockSize = BS;
}
impl<'a, BS: ArrayLength<u8>> StreamClosure for WriteBlocksCtx<'a, BS> {
    #[inline(always)]
    fn call<B: StreamBackend<BlockSize = BS>>(self, backend: &mut B) {
        if B::ParBlocksSize::USIZE > 1 {
            let (chunks, tail) = into_chunks::<_, B::ParBlocksSize>(self.blocks);
            for chunk in chunks {
                backend.gen_par_ks_blocks(chunk);
            }
            backend.gen_tail_blocks(tail);
        } else {
            for block in self.blocks {
                backend.gen_ks_block(block);
            }
        }
    }
}

struct ApplyBlockCtx<'inp, 'out, BS: ArrayLength<u8>> {
    block: InOut<'inp, 'out, Block<Self>>,
}

impl<'inp, 'out, BS: ArrayLength<u8>> BlockSizeUser for ApplyBlockCtx<'inp, 'out, BS> {
    type BlockSize = BS;
}

impl<'inp, 'out, BS: ArrayLength<u8>> StreamClosure for ApplyBlockCtx<'inp, 'out, BS> {
    #[inline(always)]
    fn call<B: StreamBackend<BlockSize = BS>>(mut self, backend: &mut B) {
        let mut t = Default::default();
        backend.gen_ks_block(&mut t);
        self.block.xor_in2out(&t);
    }
}

struct ApplyBlocksCtx<'inp, 'out, BS: ArrayLength<u8>> {
    blocks: InOutBuf<'inp, 'out, Block<Self>>,
}

impl<'inp, 'out, BS: ArrayLength<u8>> BlockSizeUser for ApplyBlocksCtx<'inp, 'out, BS> {
    type BlockSize = BS;
}

impl<'inp, 'out, BS: ArrayLength<u8>> StreamClosure for ApplyBlocksCtx<'inp, 'out, BS> {
    #[inline(always)]
    #[allow(clippy::needless_range_loop)]
    fn call<B: StreamBackend<BlockSize = BS>>(self, backend: &mut B) {
        if B::ParBlocksSize::USIZE > 1 {
            let (chunks, mut tail) = self.blocks.into_chunks::<B::ParBlocksSize>();
            for mut chunk in chunks {
                let mut tmp = Default::default();
                backend.gen_par_ks_blocks(&mut tmp);
                chunk.xor_in2out(&tmp);
            }
            let n = tail.len();
            let mut buf = GenericArray::<_, B::ParBlocksSize>::default();
            let ks = &mut buf[..n];
            backend.gen_tail_blocks(ks);
            for i in 0..n {
                tail.get(i).xor_in2out(&ks[i]);
            }
        } else {
            for mut block in self.blocks {
                let mut t = Default::default();
                backend.gen_ks_block(&mut t);
                block.xor_in2out(&t);
            }
        }
    }
}