parking_lot/rwlock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::raw_rwlock::RawRwLock;
use lock_api;
/// A reader-writer lock
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// This lock uses a task-fair locking policy which avoids both reader and
/// writer starvation. This means that readers trying to acquire the lock will
/// block even if the lock is unlocked when there are writers waiting to acquire
/// the lock. Because of this, attempts to recursively acquire a read lock
/// within a single thread may result in a deadlock.
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across threads and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// # Fairness
///
/// A typical unfair lock can often end up in a situation where a single thread
/// quickly acquires and releases the same lock in succession, which can starve
/// other threads waiting to acquire the rwlock. While this improves throughput
/// because it doesn't force a context switch when a thread tries to re-acquire
/// a rwlock it has just released, this can starve other threads.
///
/// This rwlock uses [eventual fairness](https://trac.webkit.org/changeset/203350)
/// to ensure that the lock will be fair on average without sacrificing
/// throughput. This is done by forcing a fair unlock on average every 0.5ms,
/// which will force the lock to go to the next thread waiting for the rwlock.
///
/// Additionally, any critical section longer than 1ms will always use a fair
/// unlock, which has a negligible impact on throughput considering the length
/// of the critical section.
///
/// You can also force a fair unlock by calling `RwLockReadGuard::unlock_fair`
/// or `RwLockWriteGuard::unlock_fair` when unlocking a mutex instead of simply
/// dropping the guard.
///
/// # Differences from the standard library `RwLock`
///
/// - Supports atomically downgrading a write lock into a read lock.
/// - Task-fair locking policy instead of an unspecified platform default.
/// - No poisoning, the lock is released normally on panic.
/// - Only requires 1 word of space, whereas the standard library boxes the
/// `RwLock` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
/// - Efficient handling of micro-contention using adaptive spinning.
/// - Allows raw locking & unlocking without a guard.
/// - Supports eventual fairness so that the rwlock is fair on average.
/// - Optionally allows making the rwlock fair by calling
/// `RwLockReadGuard::unlock_fair` and `RwLockWriteGuard::unlock_fair`.
///
/// # Examples
///
/// ```
/// use parking_lot::RwLock;
///
/// let lock = RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
/// let r1 = lock.read();
/// let r2 = lock.read();
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
/// let mut w = lock.write();
/// *w += 1;
/// assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub type RwLock<T> = lock_api::RwLock<RawRwLock, T>;
/// Creates a new instance of an `RwLock<T>` which is unlocked.
///
/// This allows creating a `RwLock<T>` in a constant context on stable Rust.
pub const fn const_rwlock<T>(val: T) -> RwLock<T> {
RwLock::const_new(<RawRwLock as lock_api::RawRwLock>::INIT, val)
}
/// RAII structure used to release the shared read access of a lock when
/// dropped.
pub type RwLockReadGuard<'a, T> = lock_api::RwLockReadGuard<'a, RawRwLock, T>;
/// RAII structure used to release the exclusive write access of a lock when
/// dropped.
pub type RwLockWriteGuard<'a, T> = lock_api::RwLockWriteGuard<'a, RawRwLock, T>;
/// An RAII read lock guard returned by `RwLockReadGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedRwLockReadGuard` and `RwLockReadGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
pub type MappedRwLockReadGuard<'a, T> = lock_api::MappedRwLockReadGuard<'a, RawRwLock, T>;
/// An RAII write lock guard returned by `RwLockWriteGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedRwLockWriteGuard` and `RwLockWriteGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
pub type MappedRwLockWriteGuard<'a, T> = lock_api::MappedRwLockWriteGuard<'a, RawRwLock, T>;
/// RAII structure used to release the upgradable read access of a lock when
/// dropped.
pub type RwLockUpgradableReadGuard<'a, T> = lock_api::RwLockUpgradableReadGuard<'a, RawRwLock, T>;
#[cfg(test)]
mod tests {
use crate::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard};
use rand::Rng;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
use std::time::Duration;
#[cfg(feature = "serde")]
use bincode::{deserialize, serialize};
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
#[test]
fn smoke() {
let l = RwLock::new(());
drop(l.read());
drop(l.write());
drop(l.upgradable_read());
drop((l.read(), l.read()));
drop((l.read(), l.upgradable_read()));
drop(l.write());
}
#[test]
fn frob() {
const N: u32 = 10;
const M: u32 = 1000;
let r = Arc::new(RwLock::new(()));
let (tx, rx) = channel::<()>();
for _ in 0..N {
let tx = tx.clone();
let r = r.clone();
thread::spawn(move || {
let mut rng = rand::thread_rng();
for _ in 0..M {
if rng.gen_bool(1.0 / N as f64) {
drop(r.write());
} else {
drop(r.read());
}
}
drop(tx);
});
}
drop(tx);
let _ = rx.recv();
}
#[test]
fn test_rw_arc_no_poison_wr() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.write();
panic!();
})
.join();
let lock = arc.read();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc_no_poison_ww() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.write();
panic!();
})
.join();
let lock = arc.write();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc_no_poison_rr() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.read();
panic!();
})
.join();
let lock = arc.read();
assert_eq!(*lock, 1);
}
#[test]
fn test_rw_arc_no_poison_rw() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _: Result<(), _> = thread::spawn(move || {
let _lock = arc2.read();
panic!()
})
.join();
let lock = arc.write();
assert_eq!(*lock, 1);
}
#[test]
fn test_ruw_arc() {
let arc = Arc::new(RwLock::new(0));
let arc2 = arc.clone();
let (tx, rx) = channel();
thread::spawn(move || {
for _ in 0..10 {
let mut lock = arc2.write();
let tmp = *lock;
*lock = -1;
thread::yield_now();
*lock = tmp + 1;
}
tx.send(()).unwrap();
});
let mut children = Vec::new();
// Upgradable readers try to catch the writer in the act and also
// try to touch the value
for _ in 0..5 {
let arc3 = arc.clone();
children.push(thread::spawn(move || {
let lock = arc3.upgradable_read();
let tmp = *lock;
assert!(tmp >= 0);
thread::yield_now();
let mut lock = RwLockUpgradableReadGuard::upgrade(lock);
assert_eq!(tmp, *lock);
*lock = -1;
thread::yield_now();
*lock = tmp + 1;
}));
}
// Readers try to catch the writers in the act
for _ in 0..5 {
let arc4 = arc.clone();
children.push(thread::spawn(move || {
let lock = arc4.read();
assert!(*lock >= 0);
}));
}
// Wait for children to pass their asserts
for r in children {
assert!(r.join().is_ok());
}
// Wait for writer to finish
rx.recv().unwrap();
let lock = arc.read();
assert_eq!(*lock, 15);
}
#[test]
fn test_rw_arc() {
let arc = Arc::new(RwLock::new(0));
let arc2 = arc.clone();
let (tx, rx) = channel();
thread::spawn(move || {
let mut lock = arc2.write();
for _ in 0..10 {
let tmp = *lock;
*lock = -1;
thread::yield_now();
*lock = tmp + 1;
}
tx.send(()).unwrap();
});
// Readers try to catch the writer in the act
let mut children = Vec::new();
for _ in 0..5 {
let arc3 = arc.clone();
children.push(thread::spawn(move || {
let lock = arc3.read();
assert!(*lock >= 0);
}));
}
// Wait for children to pass their asserts
for r in children {
assert!(r.join().is_ok());
}
// Wait for writer to finish
rx.recv().unwrap();
let lock = arc.read();
assert_eq!(*lock, 10);
}
#[test]
fn test_rw_arc_access_in_unwind() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || {
struct Unwinder {
i: Arc<RwLock<isize>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
let mut lock = self.i.write();
*lock += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.read();
assert_eq!(*lock, 2);
}
#[test]
fn test_rwlock_unsized() {
let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
{
let b = &mut *rw.write();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*rw.read(), comp);
}
#[test]
fn test_rwlock_try_read() {
let lock = RwLock::new(0isize);
{
let read_guard = lock.read();
let read_result = lock.try_read();
assert!(
read_result.is_some(),
"try_read should succeed while read_guard is in scope"
);
drop(read_guard);
}
{
let upgrade_guard = lock.upgradable_read();
let read_result = lock.try_read();
assert!(
read_result.is_some(),
"try_read should succeed while upgrade_guard is in scope"
);
drop(upgrade_guard);
}
{
let write_guard = lock.write();
let read_result = lock.try_read();
assert!(
read_result.is_none(),
"try_read should fail while write_guard is in scope"
);
drop(write_guard);
}
}
#[test]
fn test_rwlock_try_write() {
let lock = RwLock::new(0isize);
{
let read_guard = lock.read();
let write_result = lock.try_write();
assert!(
write_result.is_none(),
"try_write should fail while read_guard is in scope"
);
assert!(lock.is_locked());
assert!(!lock.is_locked_exclusive());
drop(read_guard);
}
{
let upgrade_guard = lock.upgradable_read();
let write_result = lock.try_write();
assert!(
write_result.is_none(),
"try_write should fail while upgrade_guard is in scope"
);
assert!(lock.is_locked());
assert!(!lock.is_locked_exclusive());
drop(upgrade_guard);
}
{
let write_guard = lock.write();
let write_result = lock.try_write();
assert!(
write_result.is_none(),
"try_write should fail while write_guard is in scope"
);
assert!(lock.is_locked());
assert!(lock.is_locked_exclusive());
drop(write_guard);
}
}
#[test]
fn test_rwlock_try_upgrade() {
let lock = RwLock::new(0isize);
{
let read_guard = lock.read();
let upgrade_result = lock.try_upgradable_read();
assert!(
upgrade_result.is_some(),
"try_upgradable_read should succeed while read_guard is in scope"
);
drop(read_guard);
}
{
let upgrade_guard = lock.upgradable_read();
let upgrade_result = lock.try_upgradable_read();
assert!(
upgrade_result.is_none(),
"try_upgradable_read should fail while upgrade_guard is in scope"
);
drop(upgrade_guard);
}
{
let write_guard = lock.write();
let upgrade_result = lock.try_upgradable_read();
assert!(
upgrade_result.is_none(),
"try_upgradable should fail while write_guard is in scope"
);
drop(write_guard);
}
}
#[test]
fn test_into_inner() {
let m = RwLock::new(NonCopy(10));
assert_eq!(m.into_inner(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = RwLock::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_get_mut() {
let mut m = RwLock::new(NonCopy(10));
*m.get_mut() = NonCopy(20);
assert_eq!(m.into_inner(), NonCopy(20));
}
#[test]
fn test_rwlockguard_sync() {
fn sync<T: Sync>(_: T) {}
let rwlock = RwLock::new(());
sync(rwlock.read());
sync(rwlock.write());
}
#[test]
fn test_rwlock_downgrade() {
let x = Arc::new(RwLock::new(0));
let mut handles = Vec::new();
for _ in 0..8 {
let x = x.clone();
handles.push(thread::spawn(move || {
for _ in 0..100 {
let mut writer = x.write();
*writer += 1;
let cur_val = *writer;
let reader = RwLockWriteGuard::downgrade(writer);
assert_eq!(cur_val, *reader);
}
}));
}
for handle in handles {
handle.join().unwrap()
}
assert_eq!(*x.read(), 800);
}
#[test]
fn test_rwlock_recursive() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let lock1 = arc.read();
let t = thread::spawn(move || {
let _lock = arc2.write();
});
if cfg!(not(all(target_env = "sgx", target_vendor = "fortanix"))) {
thread::sleep(Duration::from_millis(100));
} else {
// FIXME: https://github.com/fortanix/rust-sgx/issues/31
for _ in 0..100 {
thread::yield_now();
}
}
// A normal read would block here since there is a pending writer
let lock2 = arc.read_recursive();
// Unblock the thread and join it.
drop(lock1);
drop(lock2);
t.join().unwrap();
}
#[test]
fn test_rwlock_debug() {
let x = RwLock::new(vec![0u8, 10]);
assert_eq!(format!("{:?}", x), "RwLock { data: [0, 10] }");
let _lock = x.write();
assert_eq!(format!("{:?}", x), "RwLock { data: <locked> }");
}
#[test]
fn test_clone() {
let rwlock = RwLock::new(Arc::new(1));
let a = rwlock.read_recursive();
let b = a.clone();
assert_eq!(Arc::strong_count(&b), 2);
}
#[cfg(feature = "serde")]
#[test]
fn test_serde() {
let contents: Vec<u8> = vec![0, 1, 2];
let mutex = RwLock::new(contents.clone());
let serialized = serialize(&mutex).unwrap();
let deserialized: RwLock<Vec<u8>> = deserialize(&serialized).unwrap();
assert_eq!(*(mutex.read()), *(deserialized.read()));
assert_eq!(contents, *(deserialized.read()));
}
#[test]
fn test_issue_203() {
struct Bar(RwLock<()>);
impl Drop for Bar {
fn drop(&mut self) {
let _n = self.0.write();
}
}
thread_local! {
static B: Bar = Bar(RwLock::new(()));
}
thread::spawn(|| {
B.with(|_| ());
let a = RwLock::new(());
let _a = a.read();
})
.join()
.unwrap();
}
#[test]
fn test_rw_write_is_locked() {
let lock = RwLock::new(0isize);
{
let _read_guard = lock.read();
assert!(lock.is_locked());
assert!(!lock.is_locked_exclusive());
}
{
let _write_guard = lock.write();
assert!(lock.is_locked());
assert!(lock.is_locked_exclusive());
}
}
}