tokio/sync/watch.rs
1#![cfg_attr(not(feature = "sync"), allow(dead_code, unreachable_pub))]
2
3//! A multi-producer, multi-consumer channel that only retains the *last* sent
4//! value.
5//!
6//! This channel is useful for watching for changes to a value from multiple
7//! points in the code base, for example, changes to configuration values.
8//!
9//! # Usage
10//!
11//! [`channel`] returns a [`Sender`] / [`Receiver`] pair. These are the producer
12//! and consumer halves of the channel. The channel is created with an initial
13//! value.
14//!
15//! Each [`Receiver`] independently tracks the last value *seen* by its caller.
16//!
17//! To access the **current** value stored in the channel and mark it as *seen*
18//! by a given [`Receiver`], use [`Receiver::borrow_and_update()`].
19//!
20//! To access the current value **without** marking it as *seen*, use
21//! [`Receiver::borrow()`]. (If the value has already been marked *seen*,
22//! [`Receiver::borrow()`] is equivalent to [`Receiver::borrow_and_update()`].)
23//!
24//! For more information on when to use these methods, see
25//! [here](#borrow_and_update-versus-borrow).
26//!
27//! ## Change notifications
28//!
29//! The [`Receiver`] half provides an asynchronous [`changed`] method. This
30//! method is ready when a new, *unseen* value is sent via the [`Sender`] half.
31//!
32//! * [`Receiver::changed()`] returns `Ok(())` on receiving a new value, or
33//! `Err(`[`error::RecvError`]`)` if the [`Sender`] has been dropped.
34//! * If the current value is *unseen* when calling [`changed`], then
35//! [`changed`] will return immediately. If the current value is *seen*, then
36//! it will sleep until either a new message is sent via the [`Sender`] half,
37//! or the [`Sender`] is dropped.
38//! * On completion, the [`changed`] method marks the new value as *seen*.
39//! * At creation, the initial value is considered *seen*. In other words,
40//! [`Receiver::changed()`] will not return until a subsequent value is sent.
41//! * New [`Receiver`] instances can be created with [`Sender::subscribe()`].
42//! The current value at the time the [`Receiver`] is created is considered
43//! *seen*.
44//!
45//! ## `borrow_and_update` versus `borrow`
46//!
47//! If the receiver intends to await notifications from [`changed`] in a loop,
48//! [`Receiver::borrow_and_update()`] should be preferred over
49//! [`Receiver::borrow()`]. This avoids a potential race where a new value is
50//! sent between [`changed`] being ready and the value being read. (If
51//! [`Receiver::borrow()`] is used, the loop may run twice with the same value.)
52//!
53//! If the receiver is only interested in the current value, and does not intend
54//! to wait for changes, then [`Receiver::borrow()`] can be used. It may be more
55//! convenient to use [`borrow`](Receiver::borrow) since it's an `&self`
56//! method---[`borrow_and_update`](Receiver::borrow_and_update) requires `&mut
57//! self`.
58//!
59//! # Examples
60//!
61//! The following example prints `hello! world! `.
62//!
63//! ```
64//! use tokio::sync::watch;
65//! use tokio::time::{Duration, sleep};
66//!
67//! # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
68//! let (tx, mut rx) = watch::channel("hello");
69//!
70//! tokio::spawn(async move {
71//! // Use the equivalent of a "do-while" loop so the initial value is
72//! // processed before awaiting the `changed()` future.
73//! loop {
74//! println!("{}! ", *rx.borrow_and_update());
75//! if rx.changed().await.is_err() {
76//! break;
77//! }
78//! }
79//! });
80//!
81//! sleep(Duration::from_millis(100)).await;
82//! tx.send("world")?;
83//! # Ok(())
84//! # }
85//! ```
86//!
87//! # Closing
88//!
89//! [`Sender::is_closed`] and [`Sender::closed`] allow the producer to detect
90//! when all [`Receiver`] handles have been dropped. This indicates that there
91//! is no further interest in the values being produced and work can be stopped.
92//!
93//! The value in the channel will not be dropped until the sender and all
94//! receivers have been dropped.
95//!
96//! # Thread safety
97//!
98//! Both [`Sender`] and [`Receiver`] are thread safe. They can be moved to other
99//! threads and can be used in a concurrent environment. Clones of [`Receiver`]
100//! handles may be moved to separate threads and also used concurrently.
101//!
102//! [`Sender`]: crate::sync::watch::Sender
103//! [`Receiver`]: crate::sync::watch::Receiver
104//! [`changed`]: crate::sync::watch::Receiver::changed
105//! [`Receiver::changed()`]: crate::sync::watch::Receiver::changed
106//! [`Receiver::borrow()`]: crate::sync::watch::Receiver::borrow
107//! [`Receiver::borrow_and_update()`]:
108//! crate::sync::watch::Receiver::borrow_and_update
109//! [`channel`]: crate::sync::watch::channel
110//! [`Sender::is_closed`]: crate::sync::watch::Sender::is_closed
111//! [`Sender::closed`]: crate::sync::watch::Sender::closed
112//! [`Sender::subscribe()`]: crate::sync::watch::Sender::subscribe
113
114use crate::sync::notify::Notify;
115
116use crate::loom::sync::atomic::AtomicUsize;
117use crate::loom::sync::atomic::Ordering::{AcqRel, Relaxed};
118use crate::loom::sync::{Arc, RwLock, RwLockReadGuard};
119use std::fmt;
120use std::mem;
121use std::ops;
122use std::panic;
123
124/// Receives values from the associated [`Sender`](struct@Sender).
125///
126/// Instances are created by the [`channel`](fn@channel) function.
127///
128/// To turn this receiver into a `Stream`, you can use the [`WatchStream`]
129/// wrapper.
130///
131/// [`WatchStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.WatchStream.html
132#[derive(Debug)]
133pub struct Receiver<T> {
134 /// Pointer to the shared state
135 shared: Arc<Shared<T>>,
136
137 /// Last observed version
138 version: Version,
139}
140
141/// Sends values to the associated [`Receiver`](struct@Receiver).
142///
143/// Instances are created by the [`channel`](fn@channel) function.
144#[derive(Debug)]
145pub struct Sender<T> {
146 shared: Arc<Shared<T>>,
147}
148
149impl<T> Clone for Sender<T> {
150 fn clone(&self) -> Self {
151 self.shared.ref_count_tx.fetch_add(1, Relaxed);
152
153 Self {
154 shared: self.shared.clone(),
155 }
156 }
157}
158
159/// Returns a reference to the inner value.
160///
161/// Outstanding borrows hold a read lock on the inner value. This means that
162/// long-lived borrows could cause the producer half to block. It is recommended
163/// to keep the borrow as short-lived as possible. Additionally, if you are
164/// running in an environment that allows `!Send` futures, you must ensure that
165/// the returned `Ref` type is never held alive across an `.await` point,
166/// otherwise, it can lead to a deadlock.
167///
168/// The priority policy of the lock is dependent on the underlying lock
169/// implementation, and this type does not guarantee that any particular policy
170/// will be used. In particular, a producer which is waiting to acquire the lock
171/// in `send` might or might not block concurrent calls to `borrow`, e.g.:
172///
173/// <details><summary>Potential deadlock example</summary>
174///
175/// ```text
176/// // Task 1 (on thread A) | // Task 2 (on thread B)
177/// let _ref1 = rx.borrow(); |
178/// | // will block
179/// | let _ = tx.send(());
180/// // may deadlock |
181/// let _ref2 = rx.borrow(); |
182/// ```
183/// </details>
184#[derive(Debug)]
185pub struct Ref<'a, T> {
186 inner: RwLockReadGuard<'a, T>,
187 has_changed: bool,
188}
189
190impl<'a, T> Ref<'a, T> {
191 /// Indicates if the borrowed value is considered as _changed_ since the last
192 /// time it has been marked as seen.
193 ///
194 /// Unlike [`Receiver::has_changed()`], this method does not fail if the channel is closed.
195 ///
196 /// When borrowed from the [`Sender`] this function will always return `false`.
197 ///
198 /// # Examples
199 ///
200 /// ```
201 /// use tokio::sync::watch;
202 ///
203 /// #[tokio::main]
204 /// async fn main() {
205 /// let (tx, mut rx) = watch::channel("hello");
206 ///
207 /// tx.send("goodbye").unwrap();
208 /// // The sender does never consider the value as changed.
209 /// assert!(!tx.borrow().has_changed());
210 ///
211 /// // Drop the sender immediately, just for testing purposes.
212 /// drop(tx);
213 ///
214 /// // Even if the sender has already been dropped...
215 /// assert!(rx.has_changed().is_err());
216 /// // ...the modified value is still readable and detected as changed.
217 /// assert_eq!(*rx.borrow(), "goodbye");
218 /// assert!(rx.borrow().has_changed());
219 ///
220 /// // Read the changed value and mark it as seen.
221 /// {
222 /// let received = rx.borrow_and_update();
223 /// assert_eq!(*received, "goodbye");
224 /// assert!(received.has_changed());
225 /// // Release the read lock when leaving this scope.
226 /// }
227 ///
228 /// // Now the value has already been marked as seen and could
229 /// // never be modified again (after the sender has been dropped).
230 /// assert!(!rx.borrow().has_changed());
231 /// }
232 /// ```
233 pub fn has_changed(&self) -> bool {
234 self.has_changed
235 }
236}
237
238struct Shared<T> {
239 /// The most recent value.
240 value: RwLock<T>,
241
242 /// The current version.
243 ///
244 /// The lowest bit represents a "closed" state. The rest of the bits
245 /// represent the current version.
246 state: AtomicState,
247
248 /// Tracks the number of `Receiver` instances.
249 ref_count_rx: AtomicUsize,
250
251 /// Tracks the number of `Sender` instances.
252 ref_count_tx: AtomicUsize,
253
254 /// Notifies waiting receivers that the value changed.
255 notify_rx: big_notify::BigNotify,
256
257 /// Notifies any task listening for `Receiver` dropped events.
258 notify_tx: Notify,
259}
260
261impl<T: fmt::Debug> fmt::Debug for Shared<T> {
262 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
263 let state = self.state.load();
264 f.debug_struct("Shared")
265 .field("value", &self.value)
266 .field("version", &state.version())
267 .field("is_closed", &state.is_closed())
268 .field("ref_count_rx", &self.ref_count_rx)
269 .finish()
270 }
271}
272
273pub mod error {
274 //! Watch error types.
275
276 use std::error::Error;
277 use std::fmt;
278
279 /// Error produced when sending a value fails.
280 #[derive(PartialEq, Eq, Clone, Copy)]
281 pub struct SendError<T>(pub T);
282
283 // ===== impl SendError =====
284
285 impl<T> fmt::Debug for SendError<T> {
286 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
287 f.debug_struct("SendError").finish_non_exhaustive()
288 }
289 }
290
291 impl<T> fmt::Display for SendError<T> {
292 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
293 write!(fmt, "channel closed")
294 }
295 }
296
297 impl<T> Error for SendError<T> {}
298
299 /// Error produced when receiving a change notification.
300 #[derive(Debug, Clone)]
301 pub struct RecvError(pub(super) ());
302
303 // ===== impl RecvError =====
304
305 impl fmt::Display for RecvError {
306 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
307 write!(fmt, "channel closed")
308 }
309 }
310
311 impl Error for RecvError {}
312}
313
314mod big_notify {
315 use super::Notify;
316 use crate::sync::notify::Notified;
317
318 // To avoid contention on the lock inside the `Notify`, we store multiple
319 // copies of it. Then, we use either circular access or randomness to spread
320 // out threads over different `Notify` objects.
321 //
322 // Some simple benchmarks show that randomness performs slightly better than
323 // circular access (probably due to contention on `next`), so we prefer to
324 // use randomness when Tokio is compiled with a random number generator.
325 //
326 // When the random number generator is not available, we fall back to
327 // circular access.
328
329 pub(super) struct BigNotify {
330 #[cfg(not(all(not(loom), feature = "sync", any(feature = "rt", feature = "macros"))))]
331 next: std::sync::atomic::AtomicUsize,
332 inner: [Notify; 8],
333 }
334
335 impl BigNotify {
336 pub(super) fn new() -> Self {
337 Self {
338 #[cfg(not(all(
339 not(loom),
340 feature = "sync",
341 any(feature = "rt", feature = "macros")
342 )))]
343 next: std::sync::atomic::AtomicUsize::new(0),
344 inner: Default::default(),
345 }
346 }
347
348 pub(super) fn notify_waiters(&self) {
349 for notify in &self.inner {
350 notify.notify_waiters();
351 }
352 }
353
354 /// This function implements the case where randomness is not available.
355 #[cfg(not(all(not(loom), feature = "sync", any(feature = "rt", feature = "macros"))))]
356 pub(super) fn notified(&self) -> Notified<'_> {
357 let i = self.next.fetch_add(1, std::sync::atomic::Ordering::Relaxed) % 8;
358 self.inner[i].notified()
359 }
360
361 /// This function implements the case where randomness is available.
362 #[cfg(all(not(loom), feature = "sync", any(feature = "rt", feature = "macros")))]
363 pub(super) fn notified(&self) -> Notified<'_> {
364 let i = crate::runtime::context::thread_rng_n(8) as usize;
365 self.inner[i].notified()
366 }
367 }
368}
369
370use self::state::{AtomicState, Version};
371mod state {
372 use crate::loom::sync::atomic::AtomicUsize;
373 use crate::loom::sync::atomic::Ordering;
374
375 const CLOSED_BIT: usize = 1;
376
377 // Using 2 as the step size preserves the `CLOSED_BIT`.
378 const STEP_SIZE: usize = 2;
379
380 /// The version part of the state. The lowest bit is always zero.
381 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
382 pub(super) struct Version(usize);
383
384 /// Snapshot of the state. The first bit is used as the CLOSED bit.
385 /// The remaining bits are used as the version.
386 ///
387 /// The CLOSED bit tracks whether the Sender has been dropped. Dropping all
388 /// receivers does not set it.
389 #[derive(Copy, Clone, Debug)]
390 pub(super) struct StateSnapshot(usize);
391
392 /// The state stored in an atomic integer.
393 ///
394 /// The `Sender` uses `Release` ordering for storing a new state
395 /// and the `Receiver`s use `Acquire` ordering for loading the
396 /// current state. This ensures that written values are seen by
397 /// the `Receiver`s for a proper handover.
398 #[derive(Debug)]
399 pub(super) struct AtomicState(AtomicUsize);
400
401 impl Version {
402 /// Decrements the version.
403 pub(super) fn decrement(&mut self) {
404 // Using a wrapping decrement here is required to ensure that the
405 // operation is consistent with `std::sync::atomic::AtomicUsize::fetch_add()`
406 // which wraps on overflow.
407 self.0 = self.0.wrapping_sub(STEP_SIZE);
408 }
409
410 pub(super) const INITIAL: Self = Version(0);
411 }
412
413 impl StateSnapshot {
414 /// Extract the version from the state.
415 pub(super) fn version(self) -> Version {
416 Version(self.0 & !CLOSED_BIT)
417 }
418
419 /// Is the closed bit set?
420 pub(super) fn is_closed(self) -> bool {
421 (self.0 & CLOSED_BIT) == CLOSED_BIT
422 }
423 }
424
425 impl AtomicState {
426 /// Create a new `AtomicState` that is not closed and which has the
427 /// version set to `Version::INITIAL`.
428 pub(super) fn new() -> Self {
429 AtomicState(AtomicUsize::new(Version::INITIAL.0))
430 }
431
432 /// Load the current value of the state.
433 ///
434 /// Only used by the receiver and for debugging purposes.
435 ///
436 /// The receiver side (read-only) uses `Acquire` ordering for a proper handover
437 /// of the shared value with the sender side (single writer). The state is always
438 /// updated after modifying and before releasing the (exclusive) lock on the
439 /// shared value.
440 pub(super) fn load(&self) -> StateSnapshot {
441 StateSnapshot(self.0.load(Ordering::Acquire))
442 }
443
444 /// Increment the version counter.
445 pub(super) fn increment_version_while_locked(&self) {
446 // Use `Release` ordering to ensure that the shared value
447 // has been written before updating the version. The shared
448 // value is still protected by an exclusive lock during this
449 // method.
450 self.0.fetch_add(STEP_SIZE, Ordering::Release);
451 }
452
453 /// Set the closed bit in the state.
454 pub(super) fn set_closed(&self) {
455 self.0.fetch_or(CLOSED_BIT, Ordering::Release);
456 }
457 }
458}
459
460/// Creates a new watch channel, returning the "send" and "receive" handles.
461///
462/// All values sent by [`Sender`] will become visible to the [`Receiver`] handles.
463/// Only the last value sent is made available to the [`Receiver`] half. All
464/// intermediate values are dropped.
465///
466/// # Examples
467///
468/// The following example prints `hello! world! `.
469///
470/// ```
471/// use tokio::sync::watch;
472/// use tokio::time::{Duration, sleep};
473///
474/// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
475/// let (tx, mut rx) = watch::channel("hello");
476///
477/// tokio::spawn(async move {
478/// // Use the equivalent of a "do-while" loop so the initial value is
479/// // processed before awaiting the `changed()` future.
480/// loop {
481/// println!("{}! ", *rx.borrow_and_update());
482/// if rx.changed().await.is_err() {
483/// break;
484/// }
485/// }
486/// });
487///
488/// sleep(Duration::from_millis(100)).await;
489/// tx.send("world")?;
490/// # Ok(())
491/// # }
492/// ```
493///
494/// [`Sender`]: struct@Sender
495/// [`Receiver`]: struct@Receiver
496pub fn channel<T>(init: T) -> (Sender<T>, Receiver<T>) {
497 let shared = Arc::new(Shared {
498 value: RwLock::new(init),
499 state: AtomicState::new(),
500 ref_count_rx: AtomicUsize::new(1),
501 ref_count_tx: AtomicUsize::new(1),
502 notify_rx: big_notify::BigNotify::new(),
503 notify_tx: Notify::new(),
504 });
505
506 let tx = Sender {
507 shared: shared.clone(),
508 };
509
510 let rx = Receiver {
511 shared,
512 version: Version::INITIAL,
513 };
514
515 (tx, rx)
516}
517
518impl<T> Receiver<T> {
519 fn from_shared(version: Version, shared: Arc<Shared<T>>) -> Self {
520 // No synchronization necessary as this is only used as a counter and
521 // not memory access.
522 shared.ref_count_rx.fetch_add(1, Relaxed);
523
524 Self { shared, version }
525 }
526
527 /// Returns a reference to the most recently sent value.
528 ///
529 /// This method does not mark the returned value as seen, so future calls to
530 /// [`changed`] may return immediately even if you have already seen the
531 /// value with a call to `borrow`.
532 ///
533 /// Outstanding borrows hold a read lock on the inner value. This means that
534 /// long-lived borrows could cause the producer half to block. It is recommended
535 /// to keep the borrow as short-lived as possible. Additionally, if you are
536 /// running in an environment that allows `!Send` futures, you must ensure that
537 /// the returned `Ref` type is never held alive across an `.await` point,
538 /// otherwise, it can lead to a deadlock.
539 ///
540 /// The priority policy of the lock is dependent on the underlying lock
541 /// implementation, and this type does not guarantee that any particular policy
542 /// will be used. In particular, a producer which is waiting to acquire the lock
543 /// in `send` might or might not block concurrent calls to `borrow`, e.g.:
544 ///
545 /// <details><summary>Potential deadlock example</summary>
546 ///
547 /// ```text
548 /// // Task 1 (on thread A) | // Task 2 (on thread B)
549 /// let _ref1 = rx.borrow(); |
550 /// | // will block
551 /// | let _ = tx.send(());
552 /// // may deadlock |
553 /// let _ref2 = rx.borrow(); |
554 /// ```
555 /// </details>
556 ///
557 /// For more information on when to use this method versus
558 /// [`borrow_and_update`], see [here](self#borrow_and_update-versus-borrow).
559 ///
560 /// [`changed`]: Receiver::changed
561 /// [`borrow_and_update`]: Receiver::borrow_and_update
562 ///
563 /// # Examples
564 ///
565 /// ```
566 /// use tokio::sync::watch;
567 ///
568 /// let (_, rx) = watch::channel("hello");
569 /// assert_eq!(*rx.borrow(), "hello");
570 /// ```
571 pub fn borrow(&self) -> Ref<'_, T> {
572 let inner = self.shared.value.read().unwrap();
573
574 // After obtaining a read-lock no concurrent writes could occur
575 // and the loaded version matches that of the borrowed reference.
576 let new_version = self.shared.state.load().version();
577 let has_changed = self.version != new_version;
578
579 Ref { inner, has_changed }
580 }
581
582 /// Returns a reference to the most recently sent value and marks that value
583 /// as seen.
584 ///
585 /// This method marks the current value as seen. Subsequent calls to [`changed`]
586 /// will not return immediately until the [`Sender`] has modified the shared
587 /// value again.
588 ///
589 /// Outstanding borrows hold a read lock on the inner value. This means that
590 /// long-lived borrows could cause the producer half to block. It is recommended
591 /// to keep the borrow as short-lived as possible. Additionally, if you are
592 /// running in an environment that allows `!Send` futures, you must ensure that
593 /// the returned `Ref` type is never held alive across an `.await` point,
594 /// otherwise, it can lead to a deadlock.
595 ///
596 /// The priority policy of the lock is dependent on the underlying lock
597 /// implementation, and this type does not guarantee that any particular policy
598 /// will be used. In particular, a producer which is waiting to acquire the lock
599 /// in `send` might or might not block concurrent calls to `borrow`, e.g.:
600 ///
601 /// <details><summary>Potential deadlock example</summary>
602 ///
603 /// ```text
604 /// // Task 1 (on thread A) | // Task 2 (on thread B)
605 /// let _ref1 = rx1.borrow_and_update(); |
606 /// | // will block
607 /// | let _ = tx.send(());
608 /// // may deadlock |
609 /// let _ref2 = rx2.borrow_and_update(); |
610 /// ```
611 /// </details>
612 ///
613 /// For more information on when to use this method versus [`borrow`], see
614 /// [here](self#borrow_and_update-versus-borrow).
615 ///
616 /// [`changed`]: Receiver::changed
617 /// [`borrow`]: Receiver::borrow
618 pub fn borrow_and_update(&mut self) -> Ref<'_, T> {
619 let inner = self.shared.value.read().unwrap();
620
621 // After obtaining a read-lock no concurrent writes could occur
622 // and the loaded version matches that of the borrowed reference.
623 let new_version = self.shared.state.load().version();
624 let has_changed = self.version != new_version;
625
626 // Mark the shared value as seen by updating the version
627 self.version = new_version;
628
629 Ref { inner, has_changed }
630 }
631
632 /// Checks if this channel contains a message that this receiver has not yet
633 /// seen. The new value is not marked as seen.
634 ///
635 /// Although this method is called `has_changed`, it does not check new
636 /// messages for equality, so this call will return true even if the new
637 /// message is equal to the old message.
638 ///
639 /// Returns an error if the channel has been closed.
640 /// # Examples
641 ///
642 /// ```
643 /// use tokio::sync::watch;
644 ///
645 /// #[tokio::main]
646 /// async fn main() {
647 /// let (tx, mut rx) = watch::channel("hello");
648 ///
649 /// tx.send("goodbye").unwrap();
650 ///
651 /// assert!(rx.has_changed().unwrap());
652 /// assert_eq!(*rx.borrow_and_update(), "goodbye");
653 ///
654 /// // The value has been marked as seen
655 /// assert!(!rx.has_changed().unwrap());
656 ///
657 /// drop(tx);
658 /// // The `tx` handle has been dropped
659 /// assert!(rx.has_changed().is_err());
660 /// }
661 /// ```
662 pub fn has_changed(&self) -> Result<bool, error::RecvError> {
663 // Load the version from the state
664 let state = self.shared.state.load();
665 if state.is_closed() {
666 // The sender has dropped.
667 return Err(error::RecvError(()));
668 }
669 let new_version = state.version();
670
671 Ok(self.version != new_version)
672 }
673
674 /// Marks the state as changed.
675 ///
676 /// After invoking this method [`has_changed()`](Self::has_changed)
677 /// returns `true` and [`changed()`](Self::changed) returns
678 /// immediately, regardless of whether a new value has been sent.
679 ///
680 /// This is useful for triggering an initial change notification after
681 /// subscribing to synchronize new receivers.
682 pub fn mark_changed(&mut self) {
683 self.version.decrement();
684 }
685
686 /// Marks the state as unchanged.
687 ///
688 /// The current value will be considered seen by the receiver.
689 ///
690 /// This is useful if you are not interested in the current value
691 /// visible in the receiver.
692 pub fn mark_unchanged(&mut self) {
693 let current_version = self.shared.state.load().version();
694 self.version = current_version;
695 }
696
697 /// Waits for a change notification, then marks the newest value as seen.
698 ///
699 /// If the newest value in the channel has not yet been marked seen when
700 /// this method is called, the method marks that value seen and returns
701 /// immediately. If the newest value has already been marked seen, then the
702 /// method sleeps until a new message is sent by the [`Sender`] connected to
703 /// this `Receiver`, or until the [`Sender`] is dropped.
704 ///
705 /// This method returns an error if and only if the [`Sender`] is dropped.
706 ///
707 /// For more information, see
708 /// [*Change notifications*](self#change-notifications) in the module-level documentation.
709 ///
710 /// # Cancel safety
711 ///
712 /// This method is cancel safe. If you use it as the event in a
713 /// [`tokio::select!`](crate::select) statement and some other branch
714 /// completes first, then it is guaranteed that no values have been marked
715 /// seen by this call to `changed`.
716 ///
717 /// [`Sender`]: struct@Sender
718 ///
719 /// # Examples
720 ///
721 /// ```
722 /// use tokio::sync::watch;
723 ///
724 /// #[tokio::main]
725 /// async fn main() {
726 /// let (tx, mut rx) = watch::channel("hello");
727 ///
728 /// tokio::spawn(async move {
729 /// tx.send("goodbye").unwrap();
730 /// });
731 ///
732 /// assert!(rx.changed().await.is_ok());
733 /// assert_eq!(*rx.borrow_and_update(), "goodbye");
734 ///
735 /// // The `tx` handle has been dropped
736 /// assert!(rx.changed().await.is_err());
737 /// }
738 /// ```
739 pub async fn changed(&mut self) -> Result<(), error::RecvError> {
740 changed_impl(&self.shared, &mut self.version).await
741 }
742
743 /// Waits for a value that satisfies the provided condition.
744 ///
745 /// This method will call the provided closure whenever something is sent on
746 /// the channel. Once the closure returns `true`, this method will return a
747 /// reference to the value that was passed to the closure.
748 ///
749 /// Before `wait_for` starts waiting for changes, it will call the closure
750 /// on the current value. If the closure returns `true` when given the
751 /// current value, then `wait_for` will immediately return a reference to
752 /// the current value. This is the case even if the current value is already
753 /// considered seen.
754 ///
755 /// The watch channel only keeps track of the most recent value, so if
756 /// several messages are sent faster than `wait_for` is able to call the
757 /// closure, then it may skip some updates. Whenever the closure is called,
758 /// it will be called with the most recent value.
759 ///
760 /// When this function returns, the value that was passed to the closure
761 /// when it returned `true` will be considered seen.
762 ///
763 /// If the channel is closed, then `wait_for` will return a `RecvError`.
764 /// Once this happens, no more messages can ever be sent on the channel.
765 /// When an error is returned, it is guaranteed that the closure has been
766 /// called on the last value, and that it returned `false` for that value.
767 /// (If the closure returned `true`, then the last value would have been
768 /// returned instead of the error.)
769 ///
770 /// Like the `borrow` method, the returned borrow holds a read lock on the
771 /// inner value. This means that long-lived borrows could cause the producer
772 /// half to block. It is recommended to keep the borrow as short-lived as
773 /// possible. See the documentation of `borrow` for more information on
774 /// this.
775 ///
776 /// [`Receiver::changed()`]: crate::sync::watch::Receiver::changed
777 ///
778 /// # Examples
779 ///
780 /// ```
781 /// use tokio::sync::watch;
782 ///
783 /// #[tokio::main]
784 ///
785 /// async fn main() {
786 /// let (tx, _rx) = watch::channel("hello");
787 ///
788 /// tx.send("goodbye").unwrap();
789 ///
790 /// // here we subscribe to a second receiver
791 /// // now in case of using `changed` we would have
792 /// // to first check the current value and then wait
793 /// // for changes or else `changed` would hang.
794 /// let mut rx2 = tx.subscribe();
795 ///
796 /// // in place of changed we have use `wait_for`
797 /// // which would automatically check the current value
798 /// // and wait for changes until the closure returns true.
799 /// assert!(rx2.wait_for(|val| *val == "goodbye").await.is_ok());
800 /// assert_eq!(*rx2.borrow(), "goodbye");
801 /// }
802 /// ```
803 pub async fn wait_for(
804 &mut self,
805 mut f: impl FnMut(&T) -> bool,
806 ) -> Result<Ref<'_, T>, error::RecvError> {
807 let mut closed = false;
808 loop {
809 {
810 let inner = self.shared.value.read().unwrap();
811
812 let new_version = self.shared.state.load().version();
813 let has_changed = self.version != new_version;
814 self.version = new_version;
815
816 if !closed || has_changed {
817 let result = panic::catch_unwind(panic::AssertUnwindSafe(|| f(&inner)));
818 match result {
819 Ok(true) => {
820 return Ok(Ref { inner, has_changed });
821 }
822 Ok(false) => {
823 // Skip the value.
824 }
825 Err(panicked) => {
826 // Drop the read-lock to avoid poisoning it.
827 drop(inner);
828 // Forward the panic to the caller.
829 panic::resume_unwind(panicked);
830 // Unreachable
831 }
832 };
833 }
834 }
835
836 if closed {
837 return Err(error::RecvError(()));
838 }
839
840 // Wait for the value to change.
841 closed = changed_impl(&self.shared, &mut self.version).await.is_err();
842 }
843 }
844
845 /// Returns `true` if receivers belong to the same channel.
846 ///
847 /// # Examples
848 ///
849 /// ```
850 /// let (tx, rx) = tokio::sync::watch::channel(true);
851 /// let rx2 = rx.clone();
852 /// assert!(rx.same_channel(&rx2));
853 ///
854 /// let (tx3, rx3) = tokio::sync::watch::channel(true);
855 /// assert!(!rx3.same_channel(&rx2));
856 /// ```
857 pub fn same_channel(&self, other: &Self) -> bool {
858 Arc::ptr_eq(&self.shared, &other.shared)
859 }
860
861 cfg_process_driver! {
862 pub(crate) fn try_has_changed(&mut self) -> Option<Result<(), error::RecvError>> {
863 maybe_changed(&self.shared, &mut self.version)
864 }
865 }
866}
867
868fn maybe_changed<T>(
869 shared: &Shared<T>,
870 version: &mut Version,
871) -> Option<Result<(), error::RecvError>> {
872 // Load the version from the state
873 let state = shared.state.load();
874 let new_version = state.version();
875
876 if *version != new_version {
877 // Observe the new version and return
878 *version = new_version;
879 return Some(Ok(()));
880 }
881
882 if state.is_closed() {
883 // The sender has been dropped.
884 return Some(Err(error::RecvError(())));
885 }
886
887 None
888}
889
890async fn changed_impl<T>(
891 shared: &Shared<T>,
892 version: &mut Version,
893) -> Result<(), error::RecvError> {
894 crate::trace::async_trace_leaf().await;
895
896 loop {
897 // In order to avoid a race condition, we first request a notification,
898 // **then** check the current value's version. If a new version exists,
899 // the notification request is dropped.
900 let notified = shared.notify_rx.notified();
901
902 if let Some(ret) = maybe_changed(shared, version) {
903 return ret;
904 }
905
906 notified.await;
907 // loop around again in case the wake-up was spurious
908 }
909}
910
911impl<T> Clone for Receiver<T> {
912 fn clone(&self) -> Self {
913 let version = self.version;
914 let shared = self.shared.clone();
915
916 Self::from_shared(version, shared)
917 }
918}
919
920impl<T> Drop for Receiver<T> {
921 fn drop(&mut self) {
922 // No synchronization necessary as this is only used as a counter and
923 // not memory access.
924 if 1 == self.shared.ref_count_rx.fetch_sub(1, Relaxed) {
925 // This is the last `Receiver` handle, tasks waiting on `Sender::closed()`
926 self.shared.notify_tx.notify_waiters();
927 }
928 }
929}
930
931impl<T> Sender<T> {
932 /// Creates the sending-half of the [`watch`] channel.
933 ///
934 /// See documentation of [`watch::channel`] for errors when calling this function.
935 /// Beware that attempting to send a value when there are no receivers will
936 /// return an error.
937 ///
938 /// [`watch`]: crate::sync::watch
939 /// [`watch::channel`]: crate::sync::watch
940 ///
941 /// # Examples
942 /// ```
943 /// let sender = tokio::sync::watch::Sender::new(0u8);
944 /// assert!(sender.send(3).is_err());
945 /// let _rec = sender.subscribe();
946 /// assert!(sender.send(4).is_ok());
947 /// ```
948 pub fn new(init: T) -> Self {
949 let (tx, _) = channel(init);
950 tx
951 }
952
953 /// Sends a new value via the channel, notifying all receivers.
954 ///
955 /// This method fails if the channel is closed, which is the case when
956 /// every receiver has been dropped. It is possible to reopen the channel
957 /// using the [`subscribe`] method. However, when `send` fails, the value
958 /// isn't made available for future receivers (but returned with the
959 /// [`SendError`]).
960 ///
961 /// To always make a new value available for future receivers, even if no
962 /// receiver currently exists, one of the other send methods
963 /// ([`send_if_modified`], [`send_modify`], or [`send_replace`]) can be
964 /// used instead.
965 ///
966 /// [`subscribe`]: Sender::subscribe
967 /// [`SendError`]: error::SendError
968 /// [`send_if_modified`]: Sender::send_if_modified
969 /// [`send_modify`]: Sender::send_modify
970 /// [`send_replace`]: Sender::send_replace
971 pub fn send(&self, value: T) -> Result<(), error::SendError<T>> {
972 // This is pretty much only useful as a hint anyway, so synchronization isn't critical.
973 if 0 == self.receiver_count() {
974 return Err(error::SendError(value));
975 }
976
977 self.send_replace(value);
978 Ok(())
979 }
980
981 /// Modifies the watched value **unconditionally** in-place,
982 /// notifying all receivers.
983 ///
984 /// This can be useful for modifying the watched value, without
985 /// having to allocate a new instance. Additionally, this
986 /// method permits sending values even when there are no receivers.
987 ///
988 /// Prefer to use the more versatile function [`Self::send_if_modified()`]
989 /// if the value is only modified conditionally during the mutable borrow
990 /// to prevent unneeded change notifications for unmodified values.
991 ///
992 /// # Panics
993 ///
994 /// This function panics when the invocation of the `modify` closure panics.
995 /// No receivers are notified when panicking. All changes of the watched
996 /// value applied by the closure before panicking will be visible in
997 /// subsequent calls to `borrow`.
998 ///
999 /// # Examples
1000 ///
1001 /// ```
1002 /// use tokio::sync::watch;
1003 ///
1004 /// struct State {
1005 /// counter: usize,
1006 /// }
1007 /// let (state_tx, state_rx) = watch::channel(State { counter: 0 });
1008 /// state_tx.send_modify(|state| state.counter += 1);
1009 /// assert_eq!(state_rx.borrow().counter, 1);
1010 /// ```
1011 pub fn send_modify<F>(&self, modify: F)
1012 where
1013 F: FnOnce(&mut T),
1014 {
1015 self.send_if_modified(|value| {
1016 modify(value);
1017 true
1018 });
1019 }
1020
1021 /// Modifies the watched value **conditionally** in-place,
1022 /// notifying all receivers only if modified.
1023 ///
1024 /// This can be useful for modifying the watched value, without
1025 /// having to allocate a new instance. Additionally, this
1026 /// method permits sending values even when there are no receivers.
1027 ///
1028 /// The `modify` closure must return `true` if the value has actually
1029 /// been modified during the mutable borrow. It should only return `false`
1030 /// if the value is guaranteed to be unmodified despite the mutable
1031 /// borrow.
1032 ///
1033 /// Receivers are only notified if the closure returned `true`. If the
1034 /// closure has modified the value but returned `false` this results
1035 /// in a *silent modification*, i.e. the modified value will be visible
1036 /// in subsequent calls to `borrow`, but receivers will not receive
1037 /// a change notification.
1038 ///
1039 /// Returns the result of the closure, i.e. `true` if the value has
1040 /// been modified and `false` otherwise.
1041 ///
1042 /// # Panics
1043 ///
1044 /// This function panics when the invocation of the `modify` closure panics.
1045 /// No receivers are notified when panicking. All changes of the watched
1046 /// value applied by the closure before panicking will be visible in
1047 /// subsequent calls to `borrow`.
1048 ///
1049 /// # Examples
1050 ///
1051 /// ```
1052 /// use tokio::sync::watch;
1053 ///
1054 /// struct State {
1055 /// counter: usize,
1056 /// }
1057 /// let (state_tx, mut state_rx) = watch::channel(State { counter: 1 });
1058 /// let inc_counter_if_odd = |state: &mut State| {
1059 /// if state.counter % 2 == 1 {
1060 /// state.counter += 1;
1061 /// return true;
1062 /// }
1063 /// false
1064 /// };
1065 ///
1066 /// assert_eq!(state_rx.borrow().counter, 1);
1067 ///
1068 /// assert!(!state_rx.has_changed().unwrap());
1069 /// assert!(state_tx.send_if_modified(inc_counter_if_odd));
1070 /// assert!(state_rx.has_changed().unwrap());
1071 /// assert_eq!(state_rx.borrow_and_update().counter, 2);
1072 ///
1073 /// assert!(!state_rx.has_changed().unwrap());
1074 /// assert!(!state_tx.send_if_modified(inc_counter_if_odd));
1075 /// assert!(!state_rx.has_changed().unwrap());
1076 /// assert_eq!(state_rx.borrow_and_update().counter, 2);
1077 /// ```
1078 pub fn send_if_modified<F>(&self, modify: F) -> bool
1079 where
1080 F: FnOnce(&mut T) -> bool,
1081 {
1082 {
1083 // Acquire the write lock and update the value.
1084 let mut lock = self.shared.value.write().unwrap();
1085
1086 // Update the value and catch possible panic inside func.
1087 let result = panic::catch_unwind(panic::AssertUnwindSafe(|| modify(&mut lock)));
1088 match result {
1089 Ok(modified) => {
1090 if !modified {
1091 // Abort, i.e. don't notify receivers if unmodified
1092 return false;
1093 }
1094 // Continue if modified
1095 }
1096 Err(panicked) => {
1097 // Drop the lock to avoid poisoning it.
1098 drop(lock);
1099 // Forward the panic to the caller.
1100 panic::resume_unwind(panicked);
1101 // Unreachable
1102 }
1103 };
1104
1105 self.shared.state.increment_version_while_locked();
1106
1107 // Release the write lock.
1108 //
1109 // Incrementing the version counter while holding the lock ensures
1110 // that receivers are able to figure out the version number of the
1111 // value they are currently looking at.
1112 drop(lock);
1113 }
1114
1115 self.shared.notify_rx.notify_waiters();
1116
1117 true
1118 }
1119
1120 /// Sends a new value via the channel, notifying all receivers and returning
1121 /// the previous value in the channel.
1122 ///
1123 /// This can be useful for reusing the buffers inside a watched value.
1124 /// Additionally, this method permits sending values even when there are no
1125 /// receivers.
1126 ///
1127 /// # Examples
1128 ///
1129 /// ```
1130 /// use tokio::sync::watch;
1131 ///
1132 /// let (tx, _rx) = watch::channel(1);
1133 /// assert_eq!(tx.send_replace(2), 1);
1134 /// assert_eq!(tx.send_replace(3), 2);
1135 /// ```
1136 pub fn send_replace(&self, mut value: T) -> T {
1137 // swap old watched value with the new one
1138 self.send_modify(|old| mem::swap(old, &mut value));
1139
1140 value
1141 }
1142
1143 /// Returns a reference to the most recently sent value
1144 ///
1145 /// Outstanding borrows hold a read lock on the inner value. This means that
1146 /// long-lived borrows could cause the producer half to block. It is recommended
1147 /// to keep the borrow as short-lived as possible. Additionally, if you are
1148 /// running in an environment that allows `!Send` futures, you must ensure that
1149 /// the returned `Ref` type is never held alive across an `.await` point,
1150 /// otherwise, it can lead to a deadlock.
1151 ///
1152 /// # Examples
1153 ///
1154 /// ```
1155 /// use tokio::sync::watch;
1156 ///
1157 /// let (tx, _) = watch::channel("hello");
1158 /// assert_eq!(*tx.borrow(), "hello");
1159 /// ```
1160 pub fn borrow(&self) -> Ref<'_, T> {
1161 let inner = self.shared.value.read().unwrap();
1162
1163 // The sender/producer always sees the current version
1164 let has_changed = false;
1165
1166 Ref { inner, has_changed }
1167 }
1168
1169 /// Checks if the channel has been closed. This happens when all receivers
1170 /// have dropped.
1171 ///
1172 /// # Examples
1173 ///
1174 /// ```
1175 /// let (tx, rx) = tokio::sync::watch::channel(());
1176 /// assert!(!tx.is_closed());
1177 ///
1178 /// drop(rx);
1179 /// assert!(tx.is_closed());
1180 /// ```
1181 pub fn is_closed(&self) -> bool {
1182 self.receiver_count() == 0
1183 }
1184
1185 /// Completes when all receivers have dropped.
1186 ///
1187 /// This allows the producer to get notified when interest in the produced
1188 /// values is canceled and immediately stop doing work. Once a channel is
1189 /// closed, the only way to reopen it is to call [`Sender::subscribe`] to
1190 /// get a new receiver.
1191 ///
1192 /// If the channel becomes closed for a brief amount of time (e.g., the last
1193 /// receiver is dropped and then `subscribe` is called), then this call to
1194 /// `closed` might return, but it is also possible that it does not "notice"
1195 /// that the channel was closed for a brief amount of time.
1196 ///
1197 /// # Cancel safety
1198 ///
1199 /// This method is cancel safe.
1200 ///
1201 /// # Examples
1202 ///
1203 /// ```
1204 /// use tokio::sync::watch;
1205 ///
1206 /// #[tokio::main]
1207 /// async fn main() {
1208 /// let (tx, rx) = watch::channel("hello");
1209 ///
1210 /// tokio::spawn(async move {
1211 /// // use `rx`
1212 /// drop(rx);
1213 /// });
1214 ///
1215 /// // Waits for `rx` to drop
1216 /// tx.closed().await;
1217 /// println!("the `rx` handles dropped")
1218 /// }
1219 /// ```
1220 pub async fn closed(&self) {
1221 crate::trace::async_trace_leaf().await;
1222
1223 while self.receiver_count() > 0 {
1224 let notified = self.shared.notify_tx.notified();
1225
1226 if self.receiver_count() == 0 {
1227 return;
1228 }
1229
1230 notified.await;
1231 // The channel could have been reopened in the meantime by calling
1232 // `subscribe`, so we loop again.
1233 }
1234 }
1235
1236 /// Creates a new [`Receiver`] connected to this `Sender`.
1237 ///
1238 /// All messages sent before this call to `subscribe` are initially marked
1239 /// as seen by the new `Receiver`.
1240 ///
1241 /// This method can be called even if there are no other receivers. In this
1242 /// case, the channel is reopened.
1243 ///
1244 /// # Examples
1245 ///
1246 /// The new channel will receive messages sent on this `Sender`.
1247 ///
1248 /// ```
1249 /// use tokio::sync::watch;
1250 ///
1251 /// #[tokio::main]
1252 /// async fn main() {
1253 /// let (tx, _rx) = watch::channel(0u64);
1254 ///
1255 /// tx.send(5).unwrap();
1256 ///
1257 /// let rx = tx.subscribe();
1258 /// assert_eq!(5, *rx.borrow());
1259 ///
1260 /// tx.send(10).unwrap();
1261 /// assert_eq!(10, *rx.borrow());
1262 /// }
1263 /// ```
1264 ///
1265 /// The most recent message is considered seen by the channel, so this test
1266 /// is guaranteed to pass.
1267 ///
1268 /// ```
1269 /// use tokio::sync::watch;
1270 /// use tokio::time::Duration;
1271 ///
1272 /// #[tokio::main]
1273 /// async fn main() {
1274 /// let (tx, _rx) = watch::channel(0u64);
1275 /// tx.send(5).unwrap();
1276 /// let mut rx = tx.subscribe();
1277 ///
1278 /// tokio::spawn(async move {
1279 /// // by spawning and sleeping, the message is sent after `main`
1280 /// // hits the call to `changed`.
1281 /// # if false {
1282 /// tokio::time::sleep(Duration::from_millis(10)).await;
1283 /// # }
1284 /// tx.send(100).unwrap();
1285 /// });
1286 ///
1287 /// rx.changed().await.unwrap();
1288 /// assert_eq!(100, *rx.borrow());
1289 /// }
1290 /// ```
1291 pub fn subscribe(&self) -> Receiver<T> {
1292 let shared = self.shared.clone();
1293 let version = shared.state.load().version();
1294
1295 // The CLOSED bit in the state tracks only whether the sender is
1296 // dropped, so we do not need to unset it if this reopens the channel.
1297 Receiver::from_shared(version, shared)
1298 }
1299
1300 /// Returns the number of receivers that currently exist.
1301 ///
1302 /// # Examples
1303 ///
1304 /// ```
1305 /// use tokio::sync::watch;
1306 ///
1307 /// #[tokio::main]
1308 /// async fn main() {
1309 /// let (tx, rx1) = watch::channel("hello");
1310 ///
1311 /// assert_eq!(1, tx.receiver_count());
1312 ///
1313 /// let mut _rx2 = rx1.clone();
1314 ///
1315 /// assert_eq!(2, tx.receiver_count());
1316 /// }
1317 /// ```
1318 pub fn receiver_count(&self) -> usize {
1319 self.shared.ref_count_rx.load(Relaxed)
1320 }
1321}
1322
1323impl<T> Drop for Sender<T> {
1324 fn drop(&mut self) {
1325 if self.shared.ref_count_tx.fetch_sub(1, AcqRel) == 1 {
1326 self.shared.state.set_closed();
1327 self.shared.notify_rx.notify_waiters();
1328 }
1329 }
1330}
1331
1332// ===== impl Ref =====
1333
1334impl<T> ops::Deref for Ref<'_, T> {
1335 type Target = T;
1336
1337 fn deref(&self) -> &T {
1338 self.inner.deref()
1339 }
1340}
1341
1342#[cfg(all(test, loom))]
1343mod tests {
1344 use futures::future::FutureExt;
1345 use loom::thread;
1346
1347 // test for https://github.com/tokio-rs/tokio/issues/3168
1348 #[test]
1349 fn watch_spurious_wakeup() {
1350 loom::model(|| {
1351 let (send, mut recv) = crate::sync::watch::channel(0i32);
1352
1353 send.send(1).unwrap();
1354
1355 let send_thread = thread::spawn(move || {
1356 send.send(2).unwrap();
1357 send
1358 });
1359
1360 recv.changed().now_or_never();
1361
1362 let send = send_thread.join().unwrap();
1363 let recv_thread = thread::spawn(move || {
1364 recv.changed().now_or_never();
1365 recv.changed().now_or_never();
1366 recv
1367 });
1368
1369 send.send(3).unwrap();
1370
1371 let mut recv = recv_thread.join().unwrap();
1372 let send_thread = thread::spawn(move || {
1373 send.send(2).unwrap();
1374 });
1375
1376 recv.changed().now_or_never();
1377
1378 send_thread.join().unwrap();
1379 });
1380 }
1381
1382 #[test]
1383 fn watch_borrow() {
1384 loom::model(|| {
1385 let (send, mut recv) = crate::sync::watch::channel(0i32);
1386
1387 assert!(send.borrow().eq(&0));
1388 assert!(recv.borrow().eq(&0));
1389
1390 send.send(1).unwrap();
1391 assert!(send.borrow().eq(&1));
1392
1393 let send_thread = thread::spawn(move || {
1394 send.send(2).unwrap();
1395 send
1396 });
1397
1398 recv.changed().now_or_never();
1399
1400 let send = send_thread.join().unwrap();
1401 let recv_thread = thread::spawn(move || {
1402 recv.changed().now_or_never();
1403 recv.changed().now_or_never();
1404 recv
1405 });
1406
1407 send.send(3).unwrap();
1408
1409 let recv = recv_thread.join().unwrap();
1410 assert!(recv.borrow().eq(&3));
1411 assert!(send.borrow().eq(&3));
1412
1413 send.send(2).unwrap();
1414
1415 thread::spawn(move || {
1416 assert!(recv.borrow().eq(&2));
1417 });
1418 assert!(send.borrow().eq(&2));
1419 });
1420 }
1421}