vfs/
temp_clone.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use fidl::HandleBased;
use std::cell::UnsafeCell;
use std::collections::hash_map::Entry;
use std::collections::{HashMap, VecDeque};
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::ops::Deref;
use std::sync::{Arc, Condvar, Mutex, OnceLock, Weak};

#[cfg(not(target_os = "fuchsia"))]
use fuchsia_async::emulated_handle::zx_handle_t;
#[cfg(target_os = "fuchsia")]
use zx::sys::zx_handle_t;

/// A wrapper around zircon handles that allows them to be temporarily cloned. These temporary
/// clones can be used with `unblock` below which requires callbacks with static lifetime.  This is
/// similar to Arc<T>, except that whilst there are no clones, there is no memory overhead, and
/// there's no performance overhead to use them just as you would without the wrapper, except for a
/// small overhead when they are dropped. The wrapper ensures that the handle is only dropped when
/// there are no references.
pub struct TempClonable<T: HandleBased>(ManuallyDrop<T>);

impl<T: HandleBased> TempClonable<T> {
    /// Returns a new handle that can be temporarily cloned.
    pub fn new(handle: T) -> Self {
        Self(ManuallyDrop::new(handle))
    }
}

impl<T: HandleBased> Deref for TempClonable<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.0
    }
}

impl<T: HandleBased> TempClonable<T> {
    /// Creates a temporary clone of the handle. The clone should only exist temporarily.
    ///
    /// # Panics
    ///
    /// Panics if the handle is invalid.
    pub fn temp_clone(&self) -> TempClone<T> {
        assert!(!self.is_invalid_handle());
        let mut clones = clones().lock().unwrap();
        let raw_handle = self.0.raw_handle();
        TempClone {
            handle: match clones.entry(raw_handle) {
                Entry::Occupied(mut o) => {
                    if let Some(clone) = o.get().upgrade() {
                        clone
                    } else {
                        // The last strong reference was dropped but the entry hasn't been removed
                        // yet. This must be racing with `TempHandle::drop`. Replace the
                        // `TempHandle`.
                        let clone =
                            Arc::new(TempHandle { raw_handle, tombstone: UnsafeCell::new(false) });
                        *o.get_mut() = Arc::downgrade(&clone);
                        clone
                    }
                }
                Entry::Vacant(v) => {
                    let clone =
                        Arc::new(TempHandle { raw_handle, tombstone: UnsafeCell::new(false) });
                    v.insert(Arc::downgrade(&clone));
                    clone
                }
            },
            marker: PhantomData,
        }
    }
}

impl<T: HandleBased> Drop for TempClonable<T> {
    fn drop(&mut self) {
        if let Some(handle) =
            clones().lock().unwrap().remove(&self.0.raw_handle()).and_then(|c| c.upgrade())
        {
            // There are still some temporary clones alive, so mark the handle with a tombstone.

            // SAFETY: This is the only unsafe place where we access `tombstone`. We're are holding
            // the clones lock which ensures no other thread is concurrently accessing it, but it
            // wouldn't normally happen anyway because it would mean there were multiple
            // TempClonable instances wrapping the same handle, which shouldn't happen.
            unsafe { *handle.tombstone.get() = true };
            return;
        }

        // SAFETY: There are no temporary clones, so we can drop the handle now. No more clones can
        // be made and it should be clear we meet the safety requirements of ManuallyDrop.
        unsafe { ManuallyDrop::drop(&mut self.0) }
    }
}

type Clones = Mutex<HashMap<zx_handle_t, Weak<TempHandle>>>;

/// Returns the global instance which keeps track of temporary clones.
fn clones() -> &'static Clones {
    static CLONES: OnceLock<Clones> = OnceLock::new();
    CLONES.get_or_init(|| Mutex::new(HashMap::new()))
}

pub struct TempClone<T> {
    handle: Arc<TempHandle>,
    marker: PhantomData<T>,
}

impl<T> Deref for TempClone<T> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: T is repr(transparent) and stores zx_handle_t.
        unsafe { std::mem::transmute::<&zx_handle_t, &T>(&self.handle.raw_handle) }
    }
}

struct TempHandle {
    raw_handle: zx_handle_t,
    tombstone: UnsafeCell<bool>,
}

unsafe impl Send for TempHandle {}
unsafe impl Sync for TempHandle {}

impl Drop for TempHandle {
    fn drop(&mut self) {
        if *self.tombstone.get_mut() {
            // SAFETY: The primary handle has been dropped and it is our job to clean up the
            // handle. There are no memory safety issues here.
            unsafe { fidl::Handle::from_raw(self.raw_handle) };
        } else {
            if let Entry::Occupied(o) = clones().lock().unwrap().entry(self.raw_handle) {
                // There's a small window where another TempHandle could have been inserted, so
                // before removing this entry, check for a match.
                if std::ptr::eq(o.get().as_ptr(), self) {
                    o.remove_entry();
                }
            }
        }
    }
}

/// This is similar to fuchsia-async's unblock except that it used a fixed size thread pool which
/// has the advantage of not making traces difficult to decipher because of many threads being
/// spawned.
pub async fn unblock<T: 'static + Send>(f: impl FnOnce() -> T + Send + 'static) -> T {
    const NUM_THREADS: u8 = 2;

    struct State {
        queue: Mutex<VecDeque<Box<dyn FnOnce() + Send + 'static>>>,
        cvar: Condvar,
    }

    static STATE: OnceLock<State> = OnceLock::new();

    let mut start_threads = false;
    let state = STATE.get_or_init(|| {
        start_threads = true;
        State { queue: Mutex::new(VecDeque::new()), cvar: Condvar::new() }
    });

    if start_threads {
        for _ in 0..NUM_THREADS {
            std::thread::spawn(|| loop {
                let item = {
                    let mut queue = state.queue.lock().unwrap();
                    loop {
                        if let Some(item) = queue.pop_front() {
                            break item;
                        }
                        queue = state.cvar.wait(queue).unwrap();
                    }
                };
                item();
            });
        }
    }

    let (tx, rx) = futures::channel::oneshot::channel();
    state.queue.lock().unwrap().push_back(Box::new(move || {
        let _ = tx.send(f());
    }));
    state.cvar.notify_one();

    rx.await.unwrap()
}

#[cfg(target_os = "fuchsia")]
#[cfg(test)]
mod tests {
    use super::{clones, TempClonable};

    use std::sync::Arc;

    #[test]
    fn test_temp_clone() {
        let parent_vmo = zx::Vmo::create(100).expect("create failed");

        {
            let temp_clone = {
                let vmo = TempClonable::new(
                    parent_vmo
                        .create_child(zx::VmoChildOptions::REFERENCE, 0, 0)
                        .expect("create_child failed"),
                );

                vmo.write(b"foo", 0).expect("write failed");
                {
                    // Create and read from a temporary clone.
                    let temp_clone2 = vmo.temp_clone();
                    assert_eq!(&temp_clone2.read_to_vec(0, 3).expect("read_to_vec failed"), b"foo");
                }

                // We should still be able to read from the primary handle.
                assert_eq!(&vmo.read_to_vec(0, 3).expect("read_to_vec failed"), b"foo");

                // Create another vmo which should get cleaned up when the primary handle is
                // dropped.
                let vmo2 = TempClonable::new(
                    parent_vmo
                        .create_child(zx::VmoChildOptions::REFERENCE, 0, 0)
                        .expect("create_child failed"),
                );
                // Create and immediately drop a temporary clone.
                vmo2.temp_clone();

                // Take another clone that will get dropped after we take the clone below.
                let _clone1 = vmo.temp_clone();

                // And return another clone.
                vmo.temp_clone()
            };

            // The primary handle has been dropped, but we should still be able to
            // read via temp_clone.
            assert_eq!(&temp_clone.read_to_vec(0, 3).expect("read_to_vec failed"), b"foo");
        }

        // Make sure that all the VMOs got properly cleaned up.
        assert_eq!(parent_vmo.info().expect("info failed").num_children, 0);
        assert!(clones().lock().unwrap().is_empty());
    }

    #[test]
    fn test_race() {
        let parent_vmo = zx::Vmo::create(100).expect("create failed");

        {
            let vmo = Arc::new(TempClonable::new(
                parent_vmo
                    .create_child(zx::VmoChildOptions::REFERENCE, 0, 0)
                    .expect("create_child failed"),
            ));
            vmo.write(b"foo", 0).expect("write failed");

            let vmo_clone = vmo.clone();

            let t1 = std::thread::spawn(move || {
                for _ in 0..1000 {
                    assert_eq!(
                        &vmo.temp_clone().read_to_vec(0, 3).expect("read_to_vec failed"),
                        b"foo"
                    );
                }
            });

            let t2 = std::thread::spawn(move || {
                for _ in 0..1000 {
                    assert_eq!(
                        &vmo_clone.temp_clone().read_to_vec(0, 3).expect("read_to_vec failed"),
                        b"foo"
                    );
                }
            });

            let _ = t1.join();
            let _ = t2.join();
        }

        // Make sure that all the VMOs got properly cleaned up.
        assert_eq!(parent_vmo.info().expect("info failed").num_children, 0);
        assert!(clones().lock().unwrap().is_empty());
    }
}