fuchsia_bluetooth/detachable_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use fuchsia_sync::RwLock;
use std::borrow::Borrow;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::hash::Hash;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Weak};
// TODO(https://fxbug.dev/42154109): This would be so so much easier with Arc::new_cyclic.
/// A weak reference to an entry in a DetachableMap. This is a weak reference, if the entry is
/// detached before it is upgraded, the entry can be gone.
pub struct DetachableWeak<K, V> {
/// Weak reference to the value, upgrading this doesn't guarantee it's in the map, but usually
/// it is.
inner: Weak<V>,
parent: Arc<RwLock<HashMap<K, (Arc<V>, Arc<AtomicBool>)>>>,
/// Key reference, shared with all DetachableWeaks that reference the same entry in `parent`.
/// false if anyone detached the entry or the key was replaced in `parent`, to prevent removing
/// an entry at the same key.
key_ref: Arc<AtomicBool>,
/// A copy of `key` that can be used whenever.
key: K,
}
impl<K: Clone, V> Clone for DetachableWeak<K, V> {
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
parent: self.parent.clone(),
key_ref: self.key_ref.clone(),
key: self.key.clone(),
}
}
}
impl<K: Hash + Eq, V> DetachableWeak<K, V> {
fn new(
item: &Arc<V>,
parent: Arc<RwLock<HashMap<K, (Arc<V>, Arc<AtomicBool>)>>>,
key: K,
key_ref: Arc<AtomicBool>,
) -> Self {
Self { inner: Arc::downgrade(item), parent, key, key_ref }
}
/// Attempt to upgrade the weak pointer to an Arc, extending the lifetime of the value if
/// successful. Returns None if the item has been dropped (by another client detaching this)
pub fn upgrade(&self) -> Option<Arc<V>> {
self.inner.upgrade()
}
/// Destroys the original reference to this vended item.
/// If other references to the item exist (from `upgrade`), it will not be dropped until those
/// references are dropped.
pub fn detach(self) {
let mut lock = self.parent.write();
if self.key_ref.swap(false, Ordering::Relaxed) {
// Dropping this reference only frees the key_ref and value if no other references are
// held.
let _ = lock.remove(&self.key);
}
}
/// Get a reference to the key for this entry.
pub fn key(&self) -> &K {
&self.key
}
}
pub struct LazyEntry<K, V> {
parent: Arc<RwLock<HashMap<K, (Arc<V>, Arc<AtomicBool>)>>>,
key: K,
}
impl<K: Clone, V> Clone for LazyEntry<K, V> {
fn clone(&self) -> Self {
Self { parent: self.parent.clone(), key: self.key.clone() }
}
}
impl<K: Hash + Eq + Clone, V> LazyEntry<K, V> {
fn new(parent: Arc<RwLock<HashMap<K, (Arc<V>, Arc<AtomicBool>)>>>, key: K) -> Self {
Self { parent, key }
}
/// Get a reference to the key that this entry is built for.
pub fn key(&self) -> &K {
&self.key
}
/// Attempt to insert into the map at `key`. Returns a detachable weak entry if the value was
/// inserted, and Err(value) if the item already existed.
/// Err(value) if the value was not able to be inserted.
pub fn try_insert(&self, value: V) -> Result<DetachableWeak<K, V>, V> {
match self.parent.write().entry(self.key.clone()) {
Entry::Occupied(_) => return Err(value),
Entry::Vacant(entry) => {
let _ = entry.insert((Arc::new(value), Arc::new(AtomicBool::new(true))));
}
};
Ok(self.get().unwrap())
}
/// Attempt to resolve the entry to a weak reference, as returned by `DetachableMap::get`.
/// Returns None if the key does not exist.
pub fn get(&self) -> Option<DetachableWeak<K, V>> {
self.parent.read().get(&self.key).and_then(|(v, key_ref)| {
let map = self.parent.clone();
let key_ref = key_ref.clone();
let key = self.key.clone();
Some(DetachableWeak::new(&v, map, key, key_ref))
})
}
}
/// A Map with detachable entries. After retrieval, entries can be "detached", removing them from
/// the map, allowing any client to expire the key in the map. They are weak, and can be upgraded
/// to a strong reference to the stored object.
pub struct DetachableMap<K, V> {
/// The map. For each key, it holds a reference to the value, and a shared bool indicating if
/// the paired value is still in the map.
map: Arc<RwLock<HashMap<K, (Arc<V>, Arc<AtomicBool>)>>>,
}
impl<K: Hash + Eq + Clone, V> Default for DetachableMap<K, V> {
fn default() -> Self {
Self { map: Arc::new(RwLock::new(HashMap::new())) }
}
}
impl<K: Hash + Eq + Clone, V> DetachableMap<K, V> {
/// Creates an empty `DetachableMap`. The map is initially empty.
pub fn new() -> DetachableMap<K, V> {
Default::default()
}
/// Inserts a new item into the map at `key`
/// Returns a reference to the old item at `key` if one existed or None otherwise.
pub fn insert(&mut self, key: K, value: V) -> Option<Arc<V>> {
let mut lock = self.map.write();
let new_pair = (Arc::new(value), Arc::new(AtomicBool::new(true)));
if let Some((prev_val, old_key_ref)) = lock.insert(key, new_pair) {
old_key_ref.store(false, Ordering::Relaxed);
Some(prev_val)
} else {
None
}
}
/// True if the map contains a value for the specified key The key may be any borrowed form of
/// the key's type, with `Hash` and `Eq` matching the type.
pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
where
K: Borrow<Q>,
Q: Hash + Eq,
{
self.map.read().contains_key(key)
}
/// Returns a detachable reference to the value at the given key, if it exists.
pub fn get(&self, key: &K) -> Option<DetachableWeak<K, V>> {
self.map.read().get(key).and_then(|(v, key_ref)| {
let map = self.map.clone();
let key_ref = key_ref.clone();
let key = key.clone();
Some(DetachableWeak::new(&v, map, key, key_ref))
})
}
/// Returns a lazy entry. Lazy Entries can be used later to attempt to insert into the map if
/// the key doesn't exist.
/// They can also be resolved to a detachable reference (as returned by `DetachableMap::get`) if
/// the key already exists.
pub fn lazy_entry(&self, key: &K) -> LazyEntry<K, V> {
LazyEntry::new(self.map.clone(), key.clone())
}
}
#[cfg(test)]
mod test {
use super::*;
#[derive(Default, Debug, PartialEq)]
struct TestStruct {
data: u32,
}
#[test]
fn contains_keys() {
let mut map = DetachableMap::default();
assert!(map.insert(0, TestStruct { data: 45 }).is_none());
assert!(map.contains_key(&0));
let detached = map.get(&0);
assert!(detached.is_some());
// Detaching removes it from the map.
detached.unwrap().detach();
assert_eq!(false, map.contains_key(&0));
}
#[test]
fn upgrade_detached() {
let mut map = DetachableMap::default();
assert!(map.insert(0, TestStruct { data: 45 }).is_none());
let detached = map.get(&0);
assert!(detached.is_some());
let detached = detached.unwrap();
let detached_clone = detached.clone();
let second = map.get(&0);
assert!(second.is_some());
let second = second.unwrap();
let upgraded = detached.upgrade().expect("should be able to upgrade");
// Detaching should mean we can't get it from the map anymore (and consumes second)
second.detach();
assert!(map.get(&0).is_none());
// We can still upgrade because it's still around from the strong ref.
let second_up = detached.upgrade().expect("should be able to upgrade");
let third_up = detached_clone.upgrade().expect("should be able to upgrade");
// Dropping all the strong refs means neither can upgrade anymore though.
drop(upgraded);
drop(second_up);
drop(third_up);
assert!(detached.upgrade().is_none());
// Detaching twice doesn't do anything (and doesn't panic)
detached.detach();
}
#[test]
fn cant_detach_replaced_key() {
let mut map = DetachableMap::default();
assert!(map.insert(0, TestStruct { data: 12 }).is_none());
let detached = map.get(&0).expect("key is in");
// Replace the struct in the original map, keeping the data around.
let replaced = map.insert(0, TestStruct { data: 34 });
// Can still upgrade to the old data, since it's still alive.
assert_eq!(TestStruct { data: 12 }, *detached.upgrade().expect("data is still alive"));
// dropping the old data means upgrade fails though.
drop(replaced);
assert!(detached.upgrade().is_none());
// Trying to detach from an earlier generation will not remove the new data.
detached.detach();
let new_detached = map.get(&0).expect("key was replaced");
assert_eq!(TestStruct { data: 34 }, *new_detached.upgrade().expect("should be there"));
// Detaching from a cloned one has no effect, even if the key was re-added before we try.
let cloned = new_detached.clone();
let another = map.get(&0).expect("still there");
new_detached.detach();
assert!(map.get(&0).is_none());
// We don't replace any data, it got detached above.
let replaced = map.insert(0, TestStruct { data: 45 });
assert!(replaced.is_none());
// This doesn't remove the new data either though.
cloned.detach();
assert!(map.get(&0).is_some());
// Even if we didn't clone it from the same DetachedWeak.
another.detach();
assert!(map.get(&0).is_some());
}
#[test]
fn lazy_entry() {
let map = DetachableMap::default();
// Should be able to get an entry before the key exists.
let entry = map.lazy_entry(&1);
// Can't get a reference if the key doesn't exist.
assert!(entry.get().is_none());
// We can insert though.
let detachable =
entry.try_insert(TestStruct { data: 45 }).expect("should be able to insert");
// Can't insert if there's something there though.
let second_val = TestStruct { data: 56 };
let returned_val =
entry.try_insert(second_val).err().expect("should get an error when trying to insert");
assert_eq!(56, returned_val.data);
assert!(entry.get().is_some());
// If we detach though, the entry is empty again, and we can insert again.
detachable.detach();
assert!(entry.get().is_none());
let new = entry.try_insert(returned_val).expect("should be able to insert after removal");
// Deopping the new entry doesn't remove it from the map.
drop(new);
let still_there = map.get(&1).expect("should be there");
assert!(still_there.upgrade().is_some());
}
}