fuchsia_async/runtime/task_group.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::Task;
use futures::channel::mpsc;
use futures::Future;
use super::Scope;
/// Errors that can be returned by this crate.
#[derive(Debug, thiserror::Error)]
enum Error {
/// Return when a task cannot be added to a [`TaskGroup`] or [`TaskSink`].
#[error("Failed to add Task: {0}")]
GroupDropped(#[from] mpsc::TrySendError<Task<()>>),
}
/// Allows the user to spawn multiple Tasks and await them as a unit.
///
/// Tasks can be added to this group using [`TaskGroup::add`].
/// All pending tasks in the group can be awaited using [`TaskGroup::join`].
///
/// New code should prefer to use [`Scope`] instead.
pub struct TaskGroup {
scope: Scope,
}
impl Default for TaskGroup {
fn default() -> Self {
Self::new()
}
}
impl TaskGroup {
/// Creates a new TaskGroup.
///
/// The TaskGroup can be used to await an arbitrary number of Tasks and may
/// consume an arbitrary amount of memory.
pub fn new() -> Self {
#[cfg(target_os = "fuchsia")]
return Self { scope: Scope::global().new_child() };
#[cfg(not(target_os = "fuchsia"))]
return Self { scope: Scope::new() };
}
/// Spawns a new task in this TaskGroup.
///
/// To add a future that is not [`Send`] to this TaskGroup, use [`TaskGroup::local`].
///
/// # Panics
///
/// `spawn` may panic if not called in the context of an executor (e.g.
/// within a call to `run` or `run_singlethreaded`).
pub fn spawn(&mut self, future: impl Future<Output = ()> + Send + 'static) {
self.scope.spawn(future);
}
/// Spawns a new task in this TaskGroup.
///
/// # Panics
///
/// `spawn` may panic if not called in the context of a single threaded executor
/// (e.g. within a call to `run_singlethreaded`).
pub fn local(&mut self, future: impl Future<Output = ()> + 'static) {
self.scope.spawn_local(future);
}
/// Waits for all Tasks in this TaskGroup to finish.
///
/// Call this only after all Tasks have been added.
pub async fn join(self) {
self.scope.on_no_tasks().await;
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::SendExecutor;
use futures::StreamExt;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Arc;
// Notifies a channel when dropped, signifying completion of some operation.
#[derive(Clone)]
struct DoneSignaler {
done: mpsc::UnboundedSender<()>,
}
impl Drop for DoneSignaler {
fn drop(&mut self) {
self.done.unbounded_send(()).unwrap();
self.done.disconnect();
}
}
// Waits for a group of `impl Drop` to signal completion.
// Create as many `impl Drop` objects as needed with `WaitGroup::add_one` and
// call `wait` to wait for all of them to be dropped.
struct WaitGroup {
tx: mpsc::UnboundedSender<()>,
rx: mpsc::UnboundedReceiver<()>,
}
impl WaitGroup {
fn new() -> Self {
let (tx, rx) = mpsc::unbounded();
Self { tx, rx }
}
fn add_one(&self) -> impl Drop {
DoneSignaler { done: self.tx.clone() }
}
async fn wait(self) {
drop(self.tx);
self.rx.collect::<()>().await;
}
}
#[test]
fn test_task_group_join_waits_for_tasks() {
let task_count = 20;
SendExecutor::new(task_count).run(async move {
let mut task_group = TaskGroup::new();
let value = Arc::new(AtomicU64::new(0));
for _ in 0..task_count {
let value = value.clone();
task_group.spawn(async move {
value.fetch_add(1, Ordering::Relaxed);
});
}
task_group.join().await;
assert_eq!(value.load(Ordering::Relaxed), task_count as u64);
});
}
#[test]
fn test_task_group_empty_join_completes() {
SendExecutor::new(1).run(async move {
TaskGroup::new().join().await;
});
}
#[test]
fn test_task_group_added_tasks_are_cancelled_on_drop() {
let wait_group = WaitGroup::new();
let task_count = 10;
SendExecutor::new(task_count).run(async move {
let mut task_group = TaskGroup::new();
for _ in 0..task_count {
let done_signaler = wait_group.add_one();
// Never completes but drops `done_signaler` when cancelled.
task_group.spawn(async move {
// Take ownership of done_signaler.
let _done_signaler = done_signaler;
std::future::pending::<()>().await;
});
}
drop(task_group);
wait_group.wait().await;
// If we get here, all tasks were cancelled.
});
}
#[test]
fn test_task_group_spawn() {
let task_count = 3;
SendExecutor::new(task_count).run(async move {
let mut task_group = TaskGroup::new();
// We can spawn tasks from any Future<()> implementation, including...
// ... naked futures.
task_group.spawn(std::future::ready(()));
// ... futures returned from async blocks.
task_group.spawn(async move {
std::future::ready(()).await;
});
// ... and other tasks.
task_group.spawn(Task::spawn(std::future::ready(())));
task_group.join().await;
});
}
}