bt_rfcomm/frame/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use packet_encoding::{decodable_enum, Decodable, Encodable};

/// The command or response classification used when parsing an RFCOMM frame.
mod command_response;
pub use command_response::CommandResponse;
/// Errors associated with parsing an RFCOMM frame.
mod error;
pub use error::FrameParseError;
/// Frame Check Sequence calculations.
mod fcs;
/// Field definitions for an RFCOMM frame.
mod field;
/// Definitions for multiplexer command frames.
pub mod mux_commands;

use self::fcs::{calculate_fcs, verify_fcs};
use self::field::*;
use self::mux_commands::MuxCommand;
use crate::{Role, DLCI};

decodable_enum! {
    /// The type of frame provided in the Control field.
    /// The P/F bit is set to 0 for all frame types.
    /// See table 2, GSM 07.10 Section 5.2.1.3 and RFCOMM 4.2.
    pub enum FrameTypeMarker<u8, FrameParseError, UnsupportedFrameType> {
        SetAsynchronousBalancedMode = 0b00101111,
        UnnumberedAcknowledgement = 0b01100011,
        DisconnectedMode = 0b00001111,
        Disconnect = 0b01000011,
        UnnumberedInfoHeaderCheck = 0b11101111,
    }
}

impl FrameTypeMarker {
    /// Returns true if the frame type is a valid multiplexer start-up frame.
    //
    /// These are the only frames which are allowed to be sent before the multiplexer starts, and
    /// must be sent over the Mux Control Channel.
    fn is_mux_startup(&self, dlci: &DLCI) -> bool {
        dlci.is_mux_control()
            && (*self == FrameTypeMarker::SetAsynchronousBalancedMode
                || *self == FrameTypeMarker::UnnumberedAcknowledgement
                || *self == FrameTypeMarker::DisconnectedMode)
    }

    /// Returns the number of octets needed when calculating the FCS.
    fn fcs_octets(&self) -> usize {
        // For UIH frames, the first 2 bytes of the buffer are used to calculate the FCS.
        // Otherwise, the first 3. Defined in RFCOMM 5.1.1.
        if *self == FrameTypeMarker::UnnumberedInfoHeaderCheck {
            2
        } else {
            3
        }
    }

    /// Returns true if the `frame_type` is expected to contain a credit octet.
    ///
    /// `credit_based_flow` indicates whether credit flow control is enabled for the session.
    /// `poll_final` is the P/F bit associated with the Control Field of the frame.
    /// `dlci` is the DLCI associated with the frame.
    ///
    /// RFCOMM 6.5.2 describes the RFCOMM specifics for credit-based flow control. Namely,
    /// "...It does not apply to DLCI 0 or to non-UIH frames."
    fn has_credit_octet(&self, credit_based_flow: bool, poll_final: bool, dlci: DLCI) -> bool {
        *self == FrameTypeMarker::UnnumberedInfoHeaderCheck
            && !dlci.is_mux_control()
            && credit_based_flow
            && poll_final
    }
}

/// A UIH Frame that contains user data.
#[derive(Clone, Debug, PartialEq)]
pub struct UserData {
    pub information: Vec<u8>,
}

impl UserData {
    pub fn is_empty(&self) -> bool {
        self.information.is_empty()
    }
}

impl Decodable for UserData {
    type Error = FrameParseError;

    fn decode(buf: &[u8]) -> Result<Self, FrameParseError> {
        Ok(Self { information: buf.to_vec() })
    }
}

impl Encodable for UserData {
    type Error = FrameParseError;

    fn encoded_len(&self) -> usize {
        self.information.len()
    }

    fn encode(&self, buf: &mut [u8]) -> Result<(), FrameParseError> {
        if buf.len() < self.encoded_len() {
            return Err(FrameParseError::BufferTooSmall);
        }
        buf.copy_from_slice(&self.information);
        Ok(())
    }
}

/// The data associated with a UIH Frame.
#[derive(Clone, Debug, PartialEq)]
pub enum UIHData {
    /// A UIH Frame with user data.
    User(UserData),
    /// A UIH Frame with a Mux Command.
    Mux(MuxCommand),
}

impl Encodable for UIHData {
    type Error = FrameParseError;

    fn encoded_len(&self) -> usize {
        match self {
            UIHData::User(data) => data.encoded_len(),
            UIHData::Mux(command) => command.encoded_len(),
        }
    }

    fn encode(&self, buf: &mut [u8]) -> Result<(), FrameParseError> {
        if buf.len() < self.encoded_len() {
            return Err(FrameParseError::BufferTooSmall);
        }

        match self {
            UIHData::User(data) => data.encode(buf),
            UIHData::Mux(command) => command.encode(buf),
        }
    }
}

/// The types of frames supported in RFCOMM.
/// See RFCOMM 4.2 for the supported frame types.
#[derive(Clone, Debug, PartialEq)]
pub enum FrameData {
    SetAsynchronousBalancedMode,
    UnnumberedAcknowledgement,
    DisconnectedMode,
    Disconnect,
    UnnumberedInfoHeaderCheck(UIHData),
}

impl FrameData {
    pub fn marker(&self) -> FrameTypeMarker {
        match self {
            FrameData::SetAsynchronousBalancedMode => FrameTypeMarker::SetAsynchronousBalancedMode,
            FrameData::UnnumberedAcknowledgement => FrameTypeMarker::UnnumberedAcknowledgement,
            FrameData::DisconnectedMode => FrameTypeMarker::DisconnectedMode,
            FrameData::Disconnect => FrameTypeMarker::Disconnect,
            FrameData::UnnumberedInfoHeaderCheck(_) => FrameTypeMarker::UnnumberedInfoHeaderCheck,
        }
    }

    fn decode(
        frame_type: &FrameTypeMarker,
        dlci: &DLCI,
        buf: &[u8],
    ) -> Result<Self, FrameParseError> {
        let data = match frame_type {
            FrameTypeMarker::SetAsynchronousBalancedMode => FrameData::SetAsynchronousBalancedMode,
            FrameTypeMarker::UnnumberedAcknowledgement => FrameData::UnnumberedAcknowledgement,
            FrameTypeMarker::DisconnectedMode => FrameData::DisconnectedMode,
            FrameTypeMarker::Disconnect => FrameData::Disconnect,
            FrameTypeMarker::UnnumberedInfoHeaderCheck => {
                let uih_data = if dlci.is_mux_control() {
                    UIHData::Mux(MuxCommand::decode(buf)?)
                } else {
                    UIHData::User(UserData::decode(buf)?)
                };
                FrameData::UnnumberedInfoHeaderCheck(uih_data)
            }
        };
        Ok(data)
    }
}

impl Encodable for FrameData {
    type Error = FrameParseError;

    fn encoded_len(&self) -> usize {
        match self {
            FrameData::SetAsynchronousBalancedMode
            | FrameData::UnnumberedAcknowledgement
            | FrameData::DisconnectedMode
            | FrameData::Disconnect => 0,
            FrameData::UnnumberedInfoHeaderCheck(data) => data.encoded_len(),
        }
    }

    fn encode(&self, buf: &mut [u8]) -> Result<(), FrameParseError> {
        if buf.len() < self.encoded_len() {
            return Err(FrameParseError::BufferTooSmall);
        }

        match self {
            FrameData::SetAsynchronousBalancedMode
            | FrameData::UnnumberedAcknowledgement
            | FrameData::DisconnectedMode
            | FrameData::Disconnect => Ok(()),
            FrameData::UnnumberedInfoHeaderCheck(data) => data.encode(buf),
        }
    }
}

/// The minimum frame size (bytes) for an RFCOMM Frame - Address, Control, Length, FCS.
/// See RFCOMM 5.1.
const MIN_FRAME_SIZE: usize = 4;

/// The maximum size (bytes) of an RFCOMM header in a packet.
/// Address (1 byte), Control (1 byte), Length (2 bytes), Credits (1 byte), FCS (1 byte)
/// See RFCOMM 5.1.
pub const MAX_RFCOMM_HEADER_SIZE: usize = 6;

/// The maximum length that can be represented in a single E/A padded octet.
const MAX_SINGLE_OCTET_LENGTH: usize = 127;

/// Returns true if the provided `length` needs to be represented as 2 octets.
fn is_two_octet_length(length: usize) -> bool {
    length > MAX_SINGLE_OCTET_LENGTH
}

/// Returns the C/R bit for a non-UIH frame.
fn cr_bit_for_non_uih_frame(role: Role, command_response: CommandResponse) -> bool {
    // Defined in GSM Section 5.2.1.2 Table 1.
    match (role, command_response) {
        (Role::Initiator, CommandResponse::Command)
        | (Role::Responder, CommandResponse::Response) => true,
        _ => false,
    }
}

/// Returns the C/R bit for a UIH frame.
/// This must only be used on frames sent after multiplexer startup.
fn cr_bit_for_uih_frame(role: Role) -> bool {
    // The C/R bit is based on subclause 5.4.3.1 and matches the role of the device.
    match role {
        Role::Initiator => true,
        _ => false,
    }
}

/// The highest-level unit of data that is passed around in RFCOMM.
#[derive(Clone, Debug, PartialEq)]
pub struct Frame {
    /// The role of the device associated with this frame.
    pub role: Role,
    /// The DLCI associated with this frame.
    pub dlci: DLCI,
    /// The data associated with this frame.
    pub data: FrameData,
    /// The P/F bit for this frame. See RFCOMM 5.2.1 which describes the usages
    /// of the P/F bit in RFCOMM.
    pub poll_final: bool,
    /// Whether this frame is a Command or Response frame.
    pub command_response: CommandResponse,
    /// The credits associated with this frame. Credits are only applicable to UIH frames
    /// when credit-based flow control is enabled. See RFCOMM 6.5.
    pub credits: Option<u8>,
}

impl Frame {
    /// Attempts to parse the provided `buf` into a Frame.
    ///
    /// `role` is the current Role of the RFCOMM Session.
    /// `credit_based_flow` indicates whether credit-based flow control is turned on for this
    /// Session.
    pub fn parse(role: Role, credit_based_flow: bool, buf: &[u8]) -> Result<Self, FrameParseError> {
        if buf.len() < MIN_FRAME_SIZE {
            return Err(FrameParseError::BufferTooSmall);
        }

        // Parse the Address Field of the frame.
        let address_field = AddressField(buf[FRAME_ADDRESS_IDX]);
        let dlci: DLCI = address_field.dlci()?;
        let cr_bit: bool = address_field.cr_bit();

        // Parse the Control Field of the frame.
        let control_field = ControlField(buf[FRAME_CONTROL_IDX]);
        let frame_type: FrameTypeMarker = control_field.frame_type()?;
        let poll_final = control_field.poll_final();

        // If the Session multiplexer hasn't started, then the `frame_type` must be a
        // multiplexer startup frame.
        if !role.is_multiplexer_started() && !frame_type.is_mux_startup(&dlci) {
            return Err(FrameParseError::InvalidFrame);
        }

        // Classify the frame as either a Command or Response depending on the role, type of frame,
        // and the C/R bit of the Address Field.
        let command_response = CommandResponse::classify(role, frame_type, cr_bit)?;

        // Parse the Information field of the Frame. If the EA bit is 0, then we need to construct
        // the InformationLength using two bytes.
        let information_field = InformationField(buf[FRAME_INFORMATION_IDX]);
        let is_two_octet_length = !information_field.ea_bit();
        let mut length = information_field.length() as u16;
        if is_two_octet_length {
            length |= (buf[FRAME_INFORMATION_IDX + 1] as u16) << INFORMATION_SECOND_OCTET_SHIFT;
        }

        // The header size depends on the Information Length size and the (optional) credits octet.
        // Address (1) + Control (1) + Length (1 or 2)
        let mut header_size = 2 + if is_two_octet_length { 2 } else { 1 };
        let mut credits = None;
        if frame_type.has_credit_octet(credit_based_flow, poll_final, dlci) {
            if buf.len() < header_size {
                return Err(FrameParseError::BufferTooSmall);
            }
            credits = Some(buf[header_size]);
            header_size += 1;
        }

        // Check the FCS before parsing the body of the packet.
        let fcs_index = header_size + usize::from(length);
        if buf.len() <= fcs_index {
            return Err(FrameParseError::BufferTooSmall);
        }
        let fcs = buf[fcs_index];
        if !verify_fcs(fcs, &buf[..frame_type.fcs_octets()]) {
            return Err(FrameParseError::FCSCheckFailed);
        }

        let data = &buf[header_size..fcs_index];
        let data = FrameData::decode(&frame_type, &dlci, data)?;

        Ok(Self { role, dlci, data, poll_final, command_response, credits })
    }

    pub fn make_sabm_command(role: Role, dlci: DLCI) -> Self {
        Self {
            role,
            dlci,
            data: FrameData::SetAsynchronousBalancedMode,
            poll_final: true, // Always set for SABM.
            command_response: CommandResponse::Command,
            credits: None,
        }
    }

    pub fn make_dm_response(role: Role, dlci: DLCI) -> Self {
        Self {
            role,
            dlci,
            data: FrameData::DisconnectedMode,
            poll_final: true, // Always set for DM response.
            command_response: CommandResponse::Response,
            credits: None,
        }
    }

    pub fn make_ua_response(role: Role, dlci: DLCI) -> Self {
        Self {
            role,
            dlci,
            data: FrameData::UnnumberedAcknowledgement,
            poll_final: true, // Always set for UA response.
            command_response: CommandResponse::Response,
            credits: None,
        }
    }

    pub fn make_mux_command(role: Role, data: MuxCommand) -> Self {
        let command_response = data.command_response;
        Self {
            role,
            dlci: DLCI::MUX_CONTROL_DLCI,
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::Mux(data)),
            poll_final: false, // Always unset for UIH frames, GSM 5.4.3.1.
            command_response,
            credits: None,
        }
    }

    pub fn make_user_data_frame(
        role: Role,
        dlci: DLCI,
        user_data: UserData,
        credits: Option<u8>,
    ) -> Self {
        // When credit based flow control is supported, the `poll_final` bit is redefined
        // for UIH frames. See RFCOMM 6.5.2. If credits are provided, then the `poll_final` bit
        // should be set.
        Self {
            role,
            dlci,
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::User(user_data)),
            poll_final: credits.is_some(),
            command_response: CommandResponse::Command,
            credits,
        }
    }

    pub fn make_disc_command(role: Role, dlci: DLCI) -> Self {
        Self {
            role,
            dlci,
            data: FrameData::Disconnect,
            poll_final: true, // Always set for Disconnect.
            command_response: CommandResponse::Command,
            credits: None,
        }
    }
}

impl Encodable for Frame {
    type Error = FrameParseError;

    fn encoded_len(&self) -> usize {
        // Address + Control + FCS + (optional) Credits + 1 or 2 octets for Length + Frame data.
        3 + self.credits.map_or(0, |_| 1)
            + if is_two_octet_length(self.data.encoded_len()) { 2 } else { 1 }
            + self.data.encoded_len()
    }

    fn encode(&self, buf: &mut [u8]) -> Result<(), FrameParseError> {
        if buf.len() != self.encoded_len() {
            return Err(FrameParseError::BufferTooSmall);
        }

        let assumed_role = if !self.role.is_multiplexer_started() {
            if !self.data.marker().is_mux_startup(&self.dlci) {
                return Err(FrameParseError::InvalidFrame);
            }
            // The role is only determined after the multiplexer starts. Per GSM 5.2.1.2, the
            // initiating side always sends the first SABM.
            if self.data.marker() == FrameTypeMarker::SetAsynchronousBalancedMode {
                Role::Initiator
            } else {
                Role::Responder
            }
        } else {
            self.role
        };
        // The C/R bit of the Address Field depends on the frame type:
        //   - For UIH frames, the C/R bit is based on GSM Section 5.4.3.1.
        //   - For other frames, the C/R bit is determined by Table 1 in GSM Section 5.2.1.2.
        let cr_bit = if self.data.marker() == FrameTypeMarker::UnnumberedInfoHeaderCheck {
            cr_bit_for_uih_frame(assumed_role)
        } else {
            cr_bit_for_non_uih_frame(assumed_role, self.command_response)
        };

        // Set the Address Field, E/A = 1 since there is only one octet.
        let mut address_field = AddressField(0);
        address_field.set_ea_bit(true);
        address_field.set_cr_bit(cr_bit);
        address_field.set_dlci(u8::from(self.dlci));
        buf[FRAME_ADDRESS_IDX] = address_field.0;

        // Control Field.
        let mut control_field = ControlField(0);
        control_field.set_frame_type(u8::from(&self.data.marker()));
        control_field.set_poll_final(self.poll_final);
        buf[FRAME_CONTROL_IDX] = control_field.0;

        // Information Field.
        let data_length = self.data.encoded_len();
        let is_two_octet_length = is_two_octet_length(data_length);
        let mut first_octet_length = InformationField(0);
        first_octet_length.set_length(data_length as u8);
        first_octet_length.set_ea_bit(!is_two_octet_length);
        buf[FRAME_INFORMATION_IDX] = first_octet_length.0;
        // If the length is two octets, get the upper 8 bits and set the second octet.
        if is_two_octet_length {
            let second_octet_length = (data_length >> INFORMATION_SECOND_OCTET_SHIFT) as u8;
            buf[FRAME_INFORMATION_IDX + 1] = second_octet_length;
        }

        // Address + Control + Information.
        let mut header_size = 2 + if is_two_octet_length { 2 } else { 1 };

        // Encode the credits for this frame, if applicable.
        let credit_based_flow = self.credits.is_some();
        if self.data.marker().has_credit_octet(credit_based_flow, self.poll_final, self.dlci) {
            buf[header_size] = self.credits.unwrap();
            header_size += 1;
        }

        let fcs_idx = header_size + data_length as usize;

        // Frame data.
        self.data.encode(&mut buf[header_size..fcs_idx])?;

        // FCS that is computed based on `frame_type`.
        buf[fcs_idx] = calculate_fcs(&buf[..self.data.marker().fcs_octets()]);

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use crate::frame::mux_commands::ModemStatusParams;

    use super::*;

    use assert_matches::assert_matches;
    use mux_commands::{MuxCommandParams, RemotePortNegotiationParams};

    #[test]
    fn test_is_mux_startup_frame() {
        let control_dlci = DLCI::try_from(0).unwrap();
        let user_dlci = DLCI::try_from(5).unwrap();

        let frame_type = FrameTypeMarker::SetAsynchronousBalancedMode;
        assert!(frame_type.is_mux_startup(&control_dlci));
        assert!(!frame_type.is_mux_startup(&user_dlci));

        let frame_type = FrameTypeMarker::UnnumberedAcknowledgement;
        assert!(frame_type.is_mux_startup(&control_dlci));
        assert!(!frame_type.is_mux_startup(&user_dlci));

        let frame_type = FrameTypeMarker::DisconnectedMode;
        assert!(frame_type.is_mux_startup(&control_dlci));
        assert!(!frame_type.is_mux_startup(&user_dlci));

        let frame_type = FrameTypeMarker::Disconnect;
        assert!(!frame_type.is_mux_startup(&control_dlci));
        assert!(!frame_type.is_mux_startup(&user_dlci));
    }

    #[test]
    fn test_has_credit_octet() {
        let frame_type = FrameTypeMarker::UnnumberedInfoHeaderCheck;
        let pf = true;
        let credit_based_flow = true;
        let dlci = DLCI::try_from(3).unwrap();
        assert!(frame_type.has_credit_octet(credit_based_flow, pf, dlci));

        let pf = false;
        let credit_based_flow = true;
        assert!(!frame_type.has_credit_octet(credit_based_flow, pf, dlci));

        let pf = true;
        let credit_based_flow = false;
        assert!(!frame_type.has_credit_octet(credit_based_flow, pf, dlci));

        let pf = true;
        let credit_based_flow = true;
        let dlci = DLCI::try_from(0).unwrap(); // Mux DLCI.
        assert!(!frame_type.has_credit_octet(credit_based_flow, pf, dlci));

        let pf = false;
        let credit_based_flow = false;
        assert!(!frame_type.has_credit_octet(credit_based_flow, pf, dlci));

        let frame_type = FrameTypeMarker::SetAsynchronousBalancedMode;
        let pf = true;
        let credit_based_flow = true;
        let dlci = DLCI::try_from(5).unwrap();
        assert!(!frame_type.has_credit_octet(credit_based_flow, pf, dlci));
    }

    #[test]
    fn test_parse_too_small_frame() {
        let role = Role::Unassigned;
        let buf: &[u8] = &[0x00];
        assert_matches!(Frame::parse(role, false, buf), Err(FrameParseError::BufferTooSmall));
    }

    #[test]
    fn test_parse_invalid_dlci() {
        let role = Role::Unassigned;
        let buf: &[u8] = &[
            0b00000101, // Address Field - EA = 1, C/R = 0, DLCI = 1.
            0b00101111, // Control Field - SABM command with P/F = 0.
            0b00000001, // Length Field - Bit0 = 1: Indicates one octet length.
            0x00,       // Random FCS.
        ];
        assert_matches!(Frame::parse(role, false, buf), Err(FrameParseError::InvalidDLCI(1)));
    }

    /// It's possible that a remote device sends a packet with an invalid frame.
    /// In this case, we should error gracefully.
    #[test]
    fn test_parse_invalid_frame_type() {
        let role = Role::Unassigned;
        let buf: &[u8] = &[
            0b00000001, // Address Field - EA = 1, C/R = 0, DLCI = 0.
            0b10101010, // Control Field - Invalid command with P/F = 0.
            0b00000001, // Length Field - Bit1 = 0 indicates 1 octet length.
            0x00,       // Random FCS.
        ];
        assert_matches!(Frame::parse(role, false, buf), Err(FrameParseError::UnsupportedFrameType));
    }

    /// It's possible that the remote peer sends a packet for a valid frame, but the session
    /// multiplexer has not started. In this case, we should error gracefully.
    #[test]
    fn test_parse_invalid_frame_type_sent_before_mux_startup() {
        let role = Role::Unassigned;
        let buf: &[u8] = &[
            0b00000001, // Address Field - EA = 1, C/R = 0, DLCI = 0.
            0b11101111, // Control Field - UnnumberedInfoHeaderCheck with P/F = 0.
            0b00000001, // Length Field - Bit1 = 0 indicates 1 octet length.
            0x00,       // Random FCS.
        ];
        assert_matches!(Frame::parse(role, false, buf), Err(FrameParseError::InvalidFrame));
    }

    #[test]
    fn test_parse_invalid_frame_missing_fcs() {
        let role = Role::Unassigned;
        let buf: &[u8] = &[
            0b00000011, // Address Field - EA = 1, C/R = 1, DLCI = 0.
            0b00101111, // Control Field - SABM command with P/F = 0.
            0b00000000, // Length Field - Bit1 = 0 Indicates two octet length.
            0b00000001, // Second octet of length.
                        // Missing FCS.
        ];
        assert_matches!(Frame::parse(role, false, buf), Err(FrameParseError::BufferTooSmall));
    }

    #[test]
    fn test_parse_valid_frame_over_mux_dlci() {
        let role = Role::Unassigned;
        let frame_type = FrameTypeMarker::SetAsynchronousBalancedMode;
        let mut buf = vec![
            0b00000011, // Address Field - EA = 1, C/R = 1, DLCI = 0.
            0b00101111, // Control Field - SABM command with P/F = 0.
            0b00000001, // Length Field - Bit1 = 1 Indicates one octet length - no info.
        ];
        // Calculate the FCS and tack it on to the end.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        buf.push(fcs);

        let res = Frame::parse(role, false, &buf[..]).unwrap();
        let expected_frame = Frame {
            role,
            dlci: DLCI::try_from(0).unwrap(),
            data: FrameData::SetAsynchronousBalancedMode,
            poll_final: false,
            command_response: CommandResponse::Command,
            credits: None,
        };
        assert_eq!(res, expected_frame);
    }

    #[test]
    fn test_parse_valid_frame_over_user_dlci() {
        let role = Role::Responder;
        let frame_type = FrameTypeMarker::SetAsynchronousBalancedMode;
        let mut buf = vec![
            0b00001111, // Address Field - EA = 1, C/R = 1, User DLCI = 3.
            0b00101111, // Control Field - SABM command with P/F = 0.
            0b00000001, // Length Field - Bit1 = 1 Indicates one octet length - no info.
        ];
        // Calculate the FCS for the first three bytes, since non-UIH frame.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        buf.push(fcs);

        let res = Frame::parse(role, false, &buf[..]).unwrap();
        let expected_frame = Frame {
            role,
            dlci: DLCI::try_from(3).unwrap(),
            data: FrameData::SetAsynchronousBalancedMode,
            poll_final: false,
            command_response: CommandResponse::Response,
            credits: None,
        };
        assert_eq!(res, expected_frame);
    }

    #[test]
    fn test_parse_frame_with_information_length_invalid_buf_size() {
        let role = Role::Responder;
        let frame_type = FrameTypeMarker::UnnumberedInfoHeaderCheck;
        let mut buf = vec![
            0b00001111, // Address Field - EA = 1, C/R = 1, User DLCI = 3.
            0b11101111, // Control Field - UIH command with P/F = 0.
            0b00000111, // Length Field - Bit1 = 1 Indicates one octet length = 3.
            0b00000000, // Data octet #1 - missing octets 2,3.
        ];
        // Calculate the FCS for the first two bytes, since UIH frame.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        buf.push(fcs);

        assert_matches!(Frame::parse(role, false, &buf[..]), Err(FrameParseError::BufferTooSmall));
    }

    #[test]
    fn test_parse_valid_frame_with_information_length() {
        let role = Role::Responder;
        let frame_type = FrameTypeMarker::UnnumberedInfoHeaderCheck;
        let mut buf = vec![
            0b00001101, // Address Field - EA = 1, C/R = 0, User DLCI = 3.
            0b11101111, // Control Field - UIH command with P/F = 0.
            0b00000101, // Length Field - Bit1 = 1 Indicates one octet length = 2.
            0b00000000, // Data octet #1,
            0b00000000, // Data octet #2,
        ];
        // Calculate the FCS for the first two bytes, since UIH frame.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        buf.push(fcs);

        let res = Frame::parse(role, false, &buf[..]).unwrap();
        let expected_frame = Frame {
            role,
            dlci: DLCI::try_from(3).unwrap(),
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::User(UserData {
                information: vec![
                    0b00000000, // Data octet #1.
                    0b00000000, // Data octet #2.
                ],
            })),
            poll_final: false,
            command_response: CommandResponse::Response,
            credits: None,
        };
        assert_eq!(res, expected_frame);
    }

    #[test]
    fn test_parse_valid_frame_with_two_octet_information_length() {
        let role = Role::Responder;
        let frame_type = FrameTypeMarker::UnnumberedInfoHeaderCheck;
        let length = 129;
        let length_data = vec![0; length];

        // Concatenate the header, `length_data` payload, and FCS.
        let buf = vec![
            0b00001101, // Address Field - EA = 1, C/R = 0, User DLCI = 3.
            0b11101111, // Control Field - UIH command with P/F = 0.
            0b00000010, // Length Field0 - E/A = 0. Length = 1.
            0b00000001, // Length Field1 - No E/A. Length = 128.
        ];
        // Calculate the FCS for the first two bytes, since UIH frame.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        let buf = [buf, length_data.clone(), vec![fcs]].concat();

        let res = Frame::parse(role, false, &buf[..]).unwrap();
        let expected_frame = Frame {
            role,
            dlci: DLCI::try_from(3).unwrap(),
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::User(UserData {
                information: length_data,
            })),
            poll_final: false,
            command_response: CommandResponse::Response,
            credits: None,
        };
        assert_eq!(res, expected_frame);
    }

    #[test]
    fn test_parse_uih_frame_with_mux_command() {
        let role = Role::Responder;
        let frame_type = FrameTypeMarker::UnnumberedInfoHeaderCheck;
        let mut buf = vec![
            0b00000001, // Address Field - EA = 1, C/R = 0, Mux DLCI = 0.
            0b11111111, // Control Field - UIH command with P/F = 1.
            0b00000111, // Length Field - Bit1 = 1 Indicates one octet length = 3.
            0b10010001, // Data octet #1 - RPN command.
            0b00000011, // Data octet #2 - RPN Command length = 1.
            0b00011111, // Data octet #3 - RPN Data, DLCI = 7.
        ];
        // Calculate the FCS for the first two bytes, since UIH frame.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        buf.push(fcs);

        let res = Frame::parse(role, false, &buf[..]).unwrap();
        let expected_mux_command = MuxCommand {
            params: MuxCommandParams::RemotePortNegotiation(RemotePortNegotiationParams {
                dlci: DLCI::try_from(7).unwrap(),
                port_values: None,
            }),
            command_response: CommandResponse::Response,
        };
        let expected_frame = Frame {
            role,
            dlci: DLCI::try_from(0).unwrap(),
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::Mux(expected_mux_command)),
            poll_final: true,
            command_response: CommandResponse::Response,
            credits: None,
        };
        assert_eq!(res, expected_frame);
    }

    #[test]
    fn test_parse_uih_frame_with_credits() {
        let role = Role::Initiator;
        let frame_type = FrameTypeMarker::UnnumberedInfoHeaderCheck;
        let credit_based_flow = true;
        let mut buf = vec![
            0b00011111, // Address Field - EA = 1, C/R = 1, User DLCI = 7.
            0b11111111, // Control Field - UIH command with P/F = 1.
            0b00000111, // Length Field - Bit1 = 1 Indicates one octet length = 3.
            0b00000101, // Credits Field = 5.
            0b00000000, // UserData octet #1.
            0b00000001, // UserData octet #2.
            0b00000010, // UserData octet #3.
        ];
        // Calculate the FCS for the first two bytes, since UIH frame.
        let fcs = calculate_fcs(&buf[..frame_type.fcs_octets()]);
        buf.push(fcs);

        let res = Frame::parse(role, credit_based_flow, &buf[..]).unwrap();
        let expected_user_data = UserData { information: vec![0x00, 0x01, 0x02] };
        let expected_frame = Frame {
            role,
            dlci: DLCI::try_from(7).unwrap(),
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::User(expected_user_data)),
            poll_final: true,
            command_response: CommandResponse::Command,
            credits: Some(5),
        };
        assert_eq!(res, expected_frame);
    }

    #[test]
    fn test_encode_frame_invalid_buf() {
        let frame = Frame {
            role: Role::Unassigned,
            dlci: DLCI::try_from(0).unwrap(),
            data: FrameData::SetAsynchronousBalancedMode,
            poll_final: false,
            command_response: CommandResponse::Command,
            credits: None,
        };
        let mut buf = [];
        assert_matches!(frame.encode(&mut buf[..]), Err(FrameParseError::BufferTooSmall));
    }

    /// Tests that attempting to encode a Mux Startup frame over a user DLCI is rejected.
    #[test]
    fn test_encode_mux_startup_frame_over_user_dlci_fails() {
        let frame = Frame {
            role: Role::Unassigned,
            dlci: DLCI::try_from(3).unwrap(),
            data: FrameData::SetAsynchronousBalancedMode,
            poll_final: false,
            command_response: CommandResponse::Command,
            credits: None,
        };
        let mut buf = vec![0; frame.encoded_len()];
        assert_matches!(frame.encode(&mut buf[..]), Err(FrameParseError::InvalidFrame));
    }

    #[test]
    fn encode_mux_startup_command_succeeds() {
        let frame = Frame {
            role: Role::Unassigned,
            dlci: DLCI::try_from(0).unwrap(),
            data: FrameData::SetAsynchronousBalancedMode,
            poll_final: true,
            command_response: CommandResponse::Command,
            credits: None,
        };
        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00000011, // Address Field: DLCI = 0, C/R = 1, E/A = 1.
            0b00111111, // Control Field: SABM, P/F = 1.
            0b00000001, // Length Field: Length = 0, E/A = 1.
            0b00011100, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn encode_mux_startup_response_succeeds() {
        let frame = Frame::make_ua_response(Role::Unassigned, DLCI::try_from(0).unwrap());
        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00000011, // Address Field: DLCI = 0, C/R = 1, E/A = 1.
            0b01110011, // Control Field: UA, P/F = 1.
            0b00000001, // Length Field: Length = 0, E/A = 1.
            0b11010111, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn encode_user_data_as_initiator_succeeds() {
        let frame = Frame::make_user_data_frame(
            Role::Initiator,
            DLCI::try_from(3).unwrap(),
            UserData {
                information: vec![
                    0b00000001, // Data octet #1.
                    0b00000010, // Data octet #2.
                ],
            },
            Some(8),
        );
        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00001111, // Address Field: DLCI = 3, C/R = 1, E/A = 1.
            0b11111111, // Control Field - UIH command with P/F = 1.
            0b00000101, // Length Field - Bit1 = 1 Indicates one octet, length = 2.
            0b00001000, // Credit Field - Credits = 8.
            0b00000001, // Data octet #1.
            0b00000010, // Data octet #2.
            0b11110011, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn test_encode_user_data_as_responder_succeeds() {
        let frame = Frame::make_user_data_frame(
            Role::Responder,
            DLCI::try_from(9).unwrap(),
            UserData {
                information: vec![
                    0b00000001, // Data octet #1.
                ],
            },
            Some(10),
        );
        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00100101, // Address Field: DLCI = 3, C/R = 0, E/A = 1.
            0b11111111, // Control Field - UIH command with P/F = 1.
            0b00000011, // Length Field - Bit1 = 1 Indicates one octet, length = 1.
            0b00001010, // Credit Field - Credits = 10.
            0b00000001, // Data octet #1.
            0b11101001, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn encode_mux_command_as_initiator() {
        let mux_command = MuxCommand {
            params: MuxCommandParams::ModemStatus(ModemStatusParams::default(
                DLCI::try_from(5).unwrap(),
            )),
            command_response: CommandResponse::Command,
        };
        let frame = Frame::make_mux_command(Role::Initiator, mux_command);

        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00000011, // Address Field: DLCI = 0, C/R = 1, E/A = 1.
            0b11101111, // Control Field - UIH command with P/F = 1.
            0b00001001, // Length Field - Bit1 = 1 Indicates one octet, length = 4.
            0b11100011, // Data octet #1 - MSC response, C/R = 1, E/A = 1.
            0b00000101, // Data octet #2 - Length = 2, E/A = 1.
            0b00010111, // Data octet #3 DLCI = 5, E/A = 1, Bit2 = 1 always.
            0b10001101, // Data octet #4 Signals = default, E/A = 1.
            0b01110000, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn encode_mux_command_as_responder() {
        let mux_command = MuxCommand {
            params: MuxCommandParams::RemotePortNegotiation(RemotePortNegotiationParams {
                dlci: DLCI::try_from(7).unwrap(),
                port_values: None,
            }),
            command_response: CommandResponse::Command,
        };
        let frame = Frame::make_mux_command(Role::Responder, mux_command);

        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00000001, // Address Field: DLCI = 0, C/R = 0, E/A = 1.
            0b11101111, // Control Field - UIH command with P/F = 1.
            0b00000111, // Length Field - Bit1 = 1 Indicates one octet, length = 3.
            0b10010011, // Data octet #1 - RPN command, C/R = 1, E/A = 1.
            0b00000011, // Data octet #2 - RPN Command length = 1.
            0b00011111, // Data octet #3 - RPN Data, DLCI = 7.
            0b10101010, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn encode_mux_response_as_initiator() {
        let mux_command = MuxCommand {
            params: MuxCommandParams::RemotePortNegotiation(RemotePortNegotiationParams {
                dlci: DLCI::try_from(13).unwrap(),
                port_values: None,
            }),
            command_response: CommandResponse::Response,
        };
        let frame = Frame::make_mux_command(Role::Initiator, mux_command);

        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00000011, // Address Field: DLCI = 0, C/R = 1, E/A = 1.
            0b11101111, // Control Field - UIH command with P/F = 1.
            0b00000111, // Length Field - Bit1 = 1 Indicates one octet, length = 3.
            0b10010001, // Data octet #1 - RPN command, C/R = 0, E/A = 1.
            0b00000011, // Data octet #2 - RPN Command length = 1.
            0b00110111, // Data octet #3 - RPN Data, DLCI = 7.
            0b01110000, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn encode_mux_response_as_responder() {
        let mux_command = MuxCommand {
            params: MuxCommandParams::ModemStatus(ModemStatusParams::default(
                DLCI::try_from(11).unwrap(),
            )),
            command_response: CommandResponse::Response,
        };
        let frame = Frame::make_mux_command(Role::Responder, mux_command);

        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let expected = vec![
            0b00000001, // Address Field: DLCI = 0, C/R = 0, E/A = 1.
            0b11101111, // Control Field - UIH command with P/F = 1.
            0b00001001, // Length Field - Bit1 = 1 Indicates one octet, length = 4.
            0b11100001, // Data octet #1 - MSC response, C/R = 0, E/A = 1.
            0b00000101, // Data octet #2 - Length = 2, E/A = 1.
            0b00101111, // Data octet #3 DLCI = 11, E/A = 1, Bit2 = 1 always.
            0b10001101, // Data octet #4 Signals = default, E/A = 1.
            0b10101010, // FCS - precomputed.
        ];
        assert_eq!(buf, expected);
    }

    #[test]
    fn test_encode_user_data_with_two_octet_length_succeeds() {
        let length = 130;
        let mut information = vec![0; length];
        let frame = Frame {
            role: Role::Initiator,
            dlci: DLCI::try_from(5).unwrap(),
            data: FrameData::UnnumberedInfoHeaderCheck(UIHData::User(UserData {
                information: information.clone(),
            })),
            poll_final: true,
            command_response: CommandResponse::Command,
            credits: Some(8),
        };
        let mut buf = vec![0; frame.encoded_len()];
        assert!(frame.encode(&mut buf[..]).is_ok());
        let mut expected = vec![
            0b00010111, // Address Field: DLCI = 5, C/R = 1, E/A = 1.
            0b11111111, // Control Field - UIH command with P/F = 1.
            0b00000100, // Length Field - E/A = 0. Length = 2.
            0b00000001, // Length Field2 - 128.
            0b00001000, // Credit Field - Credits = 8.
        ];
        // Add the information.
        expected.append(&mut information);
        // Add the precomputed FCS.
        expected.push(0b0000_1100);
        assert_eq!(buf, expected);
    }
}