1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::private::Sealed;
use crate::stash_logger::StashInspectLogger;
use crate::storage_factory::{DefaultLoader, NoneT};
use crate::UpdateState;
use anyhow::{format_err, Context, Error};
use fidl_fuchsia_stash::{StoreAccessorProxy, Value};
use fuchsia_async::{Duration, Task, Time, Timer};
use futures::channel::mpsc::UnboundedSender;
use futures::future::OptionFuture;
use futures::lock::{Mutex, MutexGuard};
use futures::{FutureExt, StreamExt};
use serde::de::DeserializeOwned;
use serde::Serialize;
use std::any::Any;
use std::borrow::Cow;
use std::collections::HashMap;
use std::sync::Arc;

const SETTINGS_PREFIX: &str = "settings";

/// Minimum amount of time between Flush calls to Stash, in milliseconds. The Flush call triggers
/// file I/O which is slow. If we call flush too often, we can overwhelm Stash, which eventually
/// causes the kernel to crash our service due to filling up the channel.
const MIN_FLUSH_INTERVAL: Duration = Duration::from_millis(500);

/// Stores device level settings in persistent storage.
/// User level settings should not use this.
pub struct DeviceStorage {
    /// Map of [`DeviceStorageCompatible`] keys to their typed storage.
    typed_storage_map: HashMap<&'static str, TypedStorage>,

    typed_loader_map: HashMap<&'static str, Box<TypeErasedLoader>>,

    /// If true, reads will be returned from the data in memory rather than reading from storage.
    caching_enabled: bool,

    /// If true, writes to the underlying storage will only occur at most every
    /// MIN_WRITE_INTERVAL_MS.
    debounce_writes: bool,

    /// Handle used to write stash failures to inspect.
    inspect_handle: Arc<Mutex<StashInspectLogger>>,
}

/// A wrapper for managing all communication and caching for one particular type of data being
/// stored. The actual types are erased.
struct TypedStorage {
    /// Sender to communicate with task loop that handles flushes.
    flush_sender: UnboundedSender<()>,

    /// Cached storage managed through interior mutability.
    cached_storage: Mutex<CachedStorage>,
}

/// `CachedStorage` abstracts over a cached value that's read from and written
/// to some backing store.
struct CachedStorage {
    /// Cache for the most recently read or written value.
    current_data: Option<Box<TypeErasedData>>,

    /// Stash connection for this particular type's stash storage.
    stash_proxy: StoreAccessorProxy,
}

/// Structs that can be stored in device storage
///
/// Structs that can be stored in device storage should derive the Serialize, Deserialize, and
/// Clone traits, as well as provide constants.
/// KEY should be unique the struct, usually the name of the struct itself.
/// DEFAULT_VALUE will be the value returned when nothing has yet been stored.
///
/// Anything that implements this should not introduce breaking changes with the same key.
/// Clients that want to make a breaking change should create a new structure with a new key and
/// implement conversion/cleanup logic. Adding optional fields to a struct is not breaking, but
/// removing fields, renaming fields, or adding non-optional fields are.
///
/// The [`Storage`] trait has [`Send`] and [`Sync`] requirements, so they have to be carried here
/// as well. This was not necessary before because rust could determine the additional trait
/// requirements at compile-time just for when the [`Storage`] trait was used. We don't get that
/// benefit anymore once we hide the type.
///
/// [`Storage`]: super::setting_handler::persist::Storage
pub trait DeviceStorageCompatible:
    Serialize + DeserializeOwned + Clone + PartialEq + Any + Send + Sync
{
    type Loader: DefaultDispatcher<Self>;

    fn try_deserialize_from(value: &str) -> Result<Self, Error> {
        Self::extract(value)
    }

    fn extract(value: &str) -> Result<Self, Error> {
        serde_json::from_str(value).map_err(|e| format_err!("could not deserialize: {e:?}"))
    }

    fn serialize_to(&self) -> String {
        serde_json::to_string(self).expect("value should serialize")
    }

    const KEY: &'static str;
}

/// Types that can be converted into a storable type.
///
/// This trait represents types that can be converted into a storable type. It's also important
/// that the type it is transformed into can also be converted back into this type. This reverse
/// conversion is used to populate the fields of the original type with the stored values plus
/// defaulting the other fields that, e.g. might later be populated from hardware APIs.
///
/// # Example
/// ```
/// // Struct used in controllers.
/// struct SomeSettingInfo {
///     storable_field: u8,
///     hardware_backed_field: String,
/// }
///
/// // Struct only used for storage.
/// #[derive(Serialize, Deserialize, PartialEq, Clone)]
/// struct StorableSomeSettingInfo {
///     storable_field: u8,
/// }
///
/// // Impl compatible for the storable type.
/// impl DeviceStorageCompatible for StorableSomeSettingInfo {
///     const KEY: &'static str = "some_setting_info";
///
///     fn default_value() -> Self {
///         Self { storable_field: 1, }
///     }
/// }
///
/// // Impl convertible for controller type.
/// impl DeviceStorageConvertible for SomeSettingInfo {
///     type Storable = StorableSomeSettingInfo;
///     fn get_storable(&self) -> Cow<'_, Self::Storable> {
///         Cow::Owned(Self {
///             storable_field: self.storable_field,
///             hardware_backed_field: String::new()
///         })
///     }
/// }
///
/// // This impl helps us convert from the storable version to the
/// // controller version of the struct. Hardware fields should be backed
/// // by default or usable values.
/// impl Into<SomeSettingInfo> for StorableSomeSettingInfo {
///     fn into(self) -> SomeSettingInfo {
///         SomeSettingInfo {
///             storable_field: self.storable_field,
///             hardware_backed_field: String::new(),
///         }
///     }
/// }
///
/// ```
pub trait DeviceStorageConvertible: Sized {
    /// The type that will be used for storing the data.
    type Storable: DeviceStorageCompatible + Into<Self>;

    /// Convert `self` into its storable version.
    // The reason we don't take ownership here is that the setting handler uses the original value
    // to send a message on the message hub for when the change is written. Serializing also only
    // borrows the data and doesn't need to own it. When `Storable` is `Self`, we only need to keep
    // the borrow on self, but when the types differ, then we need to own the newly constructed
    // type.
    fn get_storable(&self) -> Cow<'_, Self::Storable>;
}

// Any type that is storage compatible is also storage convertible (it can convert to itself!).
impl<T> DeviceStorageConvertible for T
where
    T: DeviceStorageCompatible,
{
    type Storable = T;

    fn get_storable(&self) -> Cow<'_, Self::Storable> {
        Cow::Borrowed(self)
    }
}

type MappingFn = Box<dyn FnOnce(&(dyn Any + Send + Sync)) -> String + Send>;
type TypeErasedData = dyn Any + Send + Sync + 'static;
type TypeErasedLoader = dyn Any + Send + Sync + 'static;

impl DeviceStorage {
    /// Construct a device storage from the iteratable item, which will produce the keys for
    /// storage, and from a generator that will produce a stash proxy given a particular key.
    pub fn with_stash_proxy<I, G>(
        iter: I,
        stash_generator: G,
        inspect_handle: Arc<Mutex<StashInspectLogger>>,
    ) -> Self
    where
        I: IntoIterator<Item = (&'static str, Option<Box<TypeErasedLoader>>)>,
        G: Fn() -> StoreAccessorProxy,
    {
        let mut typed_loader_map = HashMap::new();
        let typed_storage_map = iter
            .into_iter()
            .map({
                let inspect_handle = Arc::clone(&inspect_handle);
                let typed_loader_map = &mut typed_loader_map;
                move |(key, loader)| {
                    if let Some(loader) = loader {
                        let _ = typed_loader_map.insert(key, loader);
                    }
                    // Generate a separate stash proxy for each key.
                    let (flush_sender, flush_receiver) = futures::channel::mpsc::unbounded::<()>();
                    let stash_proxy = stash_generator();

                    let storage = TypedStorage {
                        flush_sender,
                        cached_storage: Mutex::new(CachedStorage {
                            current_data: None,
                            stash_proxy: stash_proxy.clone(),
                        }),
                    };

                    let inspect_handle = Arc::clone(&inspect_handle);
                    // Each key has an independent flush queue.
                    Task::spawn(async move {
                        let mut next_allowed_flush = Time::now();
                        let mut next_flush_timer = OptionFuture::from(None).fuse();
                        let flush_requested = flush_receiver.fuse();
                        futures::pin_mut!(flush_requested);
                        loop {
                            futures::select! {
                                () = flush_requested.select_next_some() => {
                                    next_flush_timer = OptionFuture::from(Some(Timer::new(
                                        next_allowed_flush
                                    )))
                                    .fuse();
                                },
                                o = next_flush_timer => {
                                    if let Some(()) = o {
                                        DeviceStorage::stash_flush(
                                            &stash_proxy,
                                            Arc::clone(&inspect_handle),
                                            key.to_string()).await;
                                        next_allowed_flush = Time::now() + MIN_FLUSH_INTERVAL;
                                    }
                                }
                                complete => break,
                            }
                        }
                    })
                    .detach();
                    (key, storage)
                }
            })
            .collect();
        DeviceStorage {
            caching_enabled: true,
            debounce_writes: true,
            typed_storage_map,
            typed_loader_map,
            inspect_handle,
        }
    }

    /// Test-only
    pub fn set_caching_enabled(&mut self, enabled: bool) {
        self.caching_enabled = enabled;
    }

    /// Test-only
    pub fn set_debounce_writes(&mut self, debounce: bool) {
        self.debounce_writes = debounce;
    }

    /// Triggers a flush on the given stash proxy.
    async fn stash_flush(
        stash_proxy: &StoreAccessorProxy,
        inspect_handle: Arc<Mutex<StashInspectLogger>>,
        setting_key: String,
    ) {
        let flush_result = stash_proxy.flush().await;
        match flush_result {
            Ok(Err(err)) => {
                Self::handle_flush_failure(inspect_handle, setting_key, format!("{:?}", err)).await;
            }
            Err(err) => {
                Self::handle_flush_failure(inspect_handle, setting_key, format!("{:?}", err)).await;
            }
            _ => {}
        }
    }

    async fn handle_flush_failure(
        inspect_handle: Arc<Mutex<StashInspectLogger>>,
        setting_key: String,
        err: String,
    ) {
        tracing::error!("Failed to flush to stash: {:?}", err);

        // Record the write failure to inspect.
        inspect_handle.lock().await.record_flush_failure(setting_key);
    }

    async fn inner_write(
        &self,
        key: &'static str,
        new_value: String,
        data_as_any: Box<TypeErasedData>,
        mapping_fn: MappingFn,
    ) -> Result<UpdateState, Error> {
        let typed_storage = self
            .typed_storage_map
            .get(key)
            .ok_or_else(|| format_err!("Invalid data keyed by {}", key))?;
        let mut cached_storage = typed_storage.cached_storage.lock().await;
        let mut maybe_init;
        let cached_value = {
            maybe_init = cached_storage
                .current_data
                .as_deref()
                // Get the data as a shared reference so we don't move out of the option.
                .map(mapping_fn);
            if maybe_init.is_none() {
                let stash_key = prefixed(key);
                if let Some(stash_value) =
                    cached_storage.stash_proxy.get_value(&stash_key).await.unwrap_or_else(|_| {
                        panic!("failed to get value from stash for {stash_key:?}")
                    })
                {
                    if let Value::Stringval(string_value) = &*stash_value {
                        maybe_init = Some(string_value.clone());
                    } else {
                        panic!("Unexpected type for key found in stash");
                    }
                }
            }
            maybe_init.as_ref()
        };

        Ok(if cached_value != Some(&new_value) {
            let serialized = Value::Stringval(new_value);
            let key = prefixed(key);
            cached_storage.stash_proxy.set_value(&key, serialized)?;
            if !self.debounce_writes {
                // Not debouncing writes for testing, just flush immediately.
                DeviceStorage::stash_flush(
                    &cached_storage.stash_proxy,
                    Arc::clone(&self.inspect_handle),
                    key,
                )
                .await;
            } else {
                typed_storage.flush_sender.unbounded_send(()).with_context(|| {
                    format!("flush_sender failed to send flush message, associated key is {key}")
                })?;
            }
            cached_storage.current_data = Some(data_as_any);
            UpdateState::Updated
        } else {
            UpdateState::Unchanged
        })
    }

    /// Write `new_value` to storage. The write will be persisted to disk at a set interval.
    pub async fn write<T>(&self, new_value: &T) -> Result<UpdateState, Error>
    where
        T: DeviceStorageCompatible,
    {
        self.inner_write(
            T::KEY,
            new_value.serialize_to(),
            Box::new(new_value.clone()) as Box<TypeErasedData>,
            Box::new(|any: &(dyn Any + Send + Sync)| {
                // Attempt to downcast the `dyn Any` to its original type. If `T` was not its
                // original type, then we want to panic because there's a compile-time issue
                // with overlapping keys.
                let value = any.downcast_ref::<T>().expect(
                    "Type mismatch even though keys match. Two different\
                                        types have the same key value",
                );
                value.serialize_to()
            }),
        )
        .await
    }

    /// Test-only method to write directly to stash without touching the cache. This is used for
    /// setting up data as if it existed on disk before the connection to stash was made.
    pub async fn write_str(&self, key: &'static str, value: String) -> Result<(), Error> {
        let typed_storage =
            self.typed_storage_map.get(key).expect("Did not request an initialized key");
        let cached_storage = typed_storage.cached_storage.lock().await;
        cached_storage.stash_proxy.set_value(&prefixed(key), Value::Stringval(value))?;
        typed_storage.flush_sender.unbounded_send(()).unwrap();
        Ok(())
    }

    async fn get_inner(
        &self,
        key: &'static str,
    ) -> (MutexGuard<'_, CachedStorage>, Option<Option<String>>) {
        let typed_storage = self
            .typed_storage_map
            .get(key)
            // TODO(https://fxbug.dev/42064613) Replace this with an error result.
            .unwrap_or_else(|| panic!("Invalid data keyed by {key}"));
        let cached_storage = typed_storage.cached_storage.lock().await;
        let new = if cached_storage.current_data.is_none() || !self.caching_enabled {
            let stash_key = prefixed(key);
            if let Some(stash_value) = cached_storage
                .stash_proxy
                .get_value(&stash_key)
                .await
                .unwrap_or_else(|_| panic!("failed to get value from stash for {stash_key:?}"))
            {
                if let Value::Stringval(string_value) = *stash_value {
                    Some(Some(string_value))
                } else {
                    panic!("Unexpected type for key found in stash");
                }
            } else {
                Some(None)
            }
        } else {
            None
        };

        (cached_storage, new)
    }

    /// Gets the latest value cached locally, or loads the value from storage.
    /// Doesn't support multiple concurrent callers of the same struct.
    pub async fn get<T>(&self) -> T
    where
        T: DeviceStorageCompatible,
    {
        let (mut cached_storage, update) = self.get_inner(T::KEY).await;
        if let Some(update) = update {
            cached_storage.current_data = Some(update.and_then(|string_value| {
                T::try_deserialize_from(&string_value).map(|val| Box::new(val) as Box<TypeErasedData>).map_err(|e| tracing::error!(
                    "Using default. Failed to deserialize type {}: {e:?}\nSource data: {string_value:?}",
                    T::KEY
                )).ok()
            }).unwrap_or_else(|| Box::new(<T::Loader as DefaultDispatcher<T>>::get_default(self)) as Box<TypeErasedData>));
        };

        cached_storage
            .current_data
            .as_ref()
            .expect("should always have a value")
            .downcast_ref::<T>()
            .expect(
                "Type mismatch even though keys match. Two different types have the same key\
                     value",
            )
            .clone()
    }
}

pub trait DefaultDispatcher<T>: Sealed
where
    T: DeviceStorageCompatible,
{
    fn get_default(_: &DeviceStorage) -> T;
}

impl<T> DefaultDispatcher<T> for NoneT
where
    T: DeviceStorageCompatible<Loader = Self> + Default,
{
    fn get_default(_: &DeviceStorage) -> T {
        T::default()
    }
}

impl<T, L> DefaultDispatcher<T> for L
where
    T: DeviceStorageCompatible<Loader = L>,
    L: DefaultLoader<Result = T> + 'static,
{
    fn get_default(storage: &DeviceStorage) -> T {
        match storage.typed_loader_map.get(T::KEY) {
            Some(loader) => match loader.downcast_ref::<T::Loader>() {
                Some(loader) => loader.default_value(),
                None => {
                    panic!("Mismatch key and loader for key {}", T::KEY);
                }
            },
            None => panic!("Missing loader for {}", T::KEY),
        }
    }
}

fn prefixed(input_string: &str) -> String {
    format!("{SETTINGS_PREFIX}_{input_string}")
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_matches::assert_matches;
    use diagnostics_assertions::assert_data_tree;
    use fidl_fuchsia_stash::{
        FlushError, StoreAccessorMarker, StoreAccessorRequest, StoreAccessorRequestStream,
    };
    use fuchsia_async as fasync;
    use fuchsia_async::TestExecutor;
    use fuchsia_inspect::component;
    use futures::prelude::*;
    use serde::{Deserialize, Serialize};
    use std::task::Poll;

    const VALUE0: i32 = 3;
    const VALUE1: i32 = 33;
    const VALUE2: i32 = 128;

    #[derive(PartialEq, Clone, Serialize, Deserialize, Debug)]
    struct TestStruct {
        value: i32,
    }

    const STORE_KEY: &str = "settings_testkey";

    impl DeviceStorageCompatible for TestStruct {
        type Loader = NoneT;
        const KEY: &'static str = "testkey";
    }

    impl Default for TestStruct {
        fn default() -> Self {
            TestStruct { value: VALUE0 }
        }
    }

    /// Advances `future` until `executor` finishes. Panics if the end result was a stall.
    #[track_caller]
    fn advance_executor<F>(executor: &mut TestExecutor, future: &mut F)
    where
        F: Future + Unpin,
    {
        assert!(executor.run_until_stalled(future).is_ready(), "TestExecutor stalled!");
    }

    /// Verifies that a SetValue call was sent to stash with the given value.
    async fn verify_stash_set(stash_stream: &mut StoreAccessorRequestStream, expected_value: i32) {
        match stash_stream.next().await.unwrap() {
            Ok(StoreAccessorRequest::SetValue { key, val, control_handle: _ }) => {
                assert_eq!(key, STORE_KEY);
                if let Value::Stringval(string_value) = val {
                    let input_value = TestStruct::try_deserialize_from(&string_value)
                        .expect("deserialization should succeed");
                    assert_eq!(input_value.value, expected_value);
                } else {
                    panic!("Unexpected type for key found in stash");
                }
            }
            request => panic!("Unexpected request: {request:?}"),
        }
    }

    /// Verifies that a SetValue call was sent to stash with the given value.
    async fn validate_stash_get_and_respond(
        stash_stream: &mut StoreAccessorRequestStream,
        response: String,
    ) {
        match stash_stream.next().await.unwrap() {
            Ok(StoreAccessorRequest::GetValue { key, responder }) => {
                assert_eq!(key, STORE_KEY);
                responder.send(Some(Value::Stringval(response))).expect("unable to send response");
            }
            request => panic!("Unexpected request: {request:?}"),
        }
    }

    /// Verifies that a Flush call was sent to stash.
    async fn verify_stash_flush(stash_stream: &mut StoreAccessorRequestStream) {
        match stash_stream.next().await.unwrap() {
            Ok(StoreAccessorRequest::Flush { responder }) => {
                let _ = responder.send(Ok(()));
            } // expected
            request => panic!("Unexpected request: {request:?}"),
        }
    }

    /// Verifies that a Flush call was sent to stash, and send back a failure.
    async fn fail_stash_flush(stash_stream: &mut StoreAccessorRequestStream) {
        match stash_stream.next().await.unwrap() {
            Ok(StoreAccessorRequest::Flush { responder }) => {
                let _ = responder.send(Err(FlushError::CommitFailed));
            } // expected
            request => panic!("Unexpected request: {request:?}"),
        }
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn test_get() {
        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        fasync::Task::spawn(async move {
            let value_to_get = TestStruct { value: VALUE1 };

            #[allow(clippy::single_match)]
            while let Some(req) = stash_stream.try_next().await.unwrap() {
                #[allow(unreachable_patterns)]
                match req {
                    StoreAccessorRequest::GetValue { key, responder } => {
                        assert_eq!(key, STORE_KEY);
                        let response = Value::Stringval(value_to_get.serialize_to());

                        responder.send(Some(response)).unwrap();
                    }
                    _ => {}
                }
            }
        })
        .detach();

        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );
        let result = storage.get::<TestStruct>().await;

        assert_eq!(result.value, VALUE1);
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn test_get_default() {
        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        fasync::Task::spawn(async move {
            #[allow(clippy::single_match)]
            while let Some(req) = stash_stream.try_next().await.unwrap() {
                #[allow(unreachable_patterns)]
                match req {
                    StoreAccessorRequest::GetValue { key: _, responder } => {
                        responder.send(None).unwrap();
                    }
                    _ => {}
                }
            }
        })
        .detach();

        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );
        let result = storage.get::<TestStruct>().await;

        assert_eq!(result.value, VALUE0);
    }

    // For an invalid stash value, the get() method should return the default value.
    #[fuchsia::test(allow_stalls = false)]
    async fn test_invalid_stash() {
        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        fasync::Task::spawn(async move {
            #[allow(clippy::single_match)]
            while let Some(req) = stash_stream.try_next().await.unwrap() {
                #[allow(unreachable_patterns)]
                match req {
                    StoreAccessorRequest::GetValue { key: _, responder } => {
                        let response = Value::Stringval("invalid value".to_string());
                        responder.send(Some(response)).unwrap();
                    }
                    _ => {}
                }
            }
        })
        .detach();

        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );

        let result = storage.get::<TestStruct>().await;

        assert_eq!(result.value, VALUE0);
    }

    // Verifies that stash flush failures are written to inspect.
    #[fuchsia::test]
    fn test_flush_fail_writes_to_inspect() {
        let written_value = VALUE2;
        let mut executor = TestExecutor::new_with_fake_time();

        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        let inspector = component::inspector();
        let logger_handle = Arc::new(Mutex::new(StashInspectLogger::new(inspector.root())));
        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            logger_handle,
        );

        // Write to device storage.
        let value_to_write = TestStruct { value: written_value };
        let write_future = storage.write(&value_to_write);
        futures::pin_mut!(write_future);

        // Initial cache check is done if no read was ever performed.
        assert_matches!(executor.run_until_stalled(&mut write_future), Poll::Pending);

        {
            let respond_future = validate_stash_get_and_respond(
                &mut stash_stream,
                serde_json::to_string(&TestStruct::default()).unwrap(),
            );
            futures::pin_mut!(respond_future);
            advance_executor(&mut executor, &mut respond_future);
        }

        // Write request finishes immediately.
        assert_matches!(executor.run_until_stalled(&mut write_future), Poll::Ready(Ok(_)));

        // Set request is received immediately on write.
        {
            let set_value_future = verify_stash_set(&mut stash_stream, written_value);
            futures::pin_mut!(set_value_future);
            advance_executor(&mut executor, &mut set_value_future);
        }

        // Start listening for the flush request.
        let flush_future = fail_stash_flush(&mut stash_stream);
        futures::pin_mut!(flush_future);

        // Flush is received without a wait. Due to the way time works with executors, if there was
        // a delay, the test would stall since time never advances.
        advance_executor(&mut executor, &mut flush_future);

        // Queue up a second write to guarantee that CachedStorage has written the failure to
        // inspect.
        {
            let value_to_write = TestStruct { value: VALUE1 };
            let write_future = storage.write(&value_to_write);
            futures::pin_mut!(write_future);
            assert_matches!(
                executor.run_until_stalled(&mut write_future),
                Poll::Ready(Result::Ok(_))
            );
        }

        // Run all background tasks until stalled.
        let _ = executor.run_until_stalled(&mut future::pending::<()>());

        assert_data_tree!(inspector, root: {
            stash_failures: {
                testkey: {
                    count: 1u64,
                }
            }
        });
    }

    // Test that an initial write to DeviceStorage causes a SetValue and Flush to Stash
    // without any wait.
    #[fuchsia::test]
    fn test_first_write_flushes_immediately() {
        let written_value = VALUE2;
        let mut executor = TestExecutor::new_with_fake_time();

        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );

        // Write to device storage.
        let value_to_write = TestStruct { value: written_value };
        let write_future = storage.write(&value_to_write);
        futures::pin_mut!(write_future);

        // Initial cache check is done if no read was ever performed.
        assert_matches!(executor.run_until_stalled(&mut write_future), Poll::Pending);

        {
            let respond_future = validate_stash_get_and_respond(
                &mut stash_stream,
                serde_json::to_string(&TestStruct::default()).unwrap(),
            );
            futures::pin_mut!(respond_future);
            advance_executor(&mut executor, &mut respond_future);
        }

        // Write request finishes immediately.
        assert_matches!(executor.run_until_stalled(&mut write_future), Poll::Ready(Ok(_)));

        // Set request is received immediately on write.
        {
            let set_value_future = verify_stash_set(&mut stash_stream, written_value);
            futures::pin_mut!(set_value_future);
            advance_executor(&mut executor, &mut set_value_future);
        }

        // Start listening for the flush request.
        let flush_future = verify_stash_flush(&mut stash_stream);
        futures::pin_mut!(flush_future);

        // Flush is received without a wait. Due to the way time works with executors, if there was
        // a delay, the test would stall since time never advances.
        advance_executor(&mut executor, &mut flush_future);
    }

    #[derive(Default, Copy, Clone, PartialEq, Serialize, Deserialize)]
    struct WrongStruct;

    impl DeviceStorageCompatible for WrongStruct {
        type Loader = NoneT;
        const KEY: &'static str = "WRONG_STRUCT";
    }

    // Test that an initial write to DeviceStorage causes a SetValue and Flush to Stash
    // without any wait.
    #[fuchsia::test(allow_stalls = false)]
    async fn test_write_with_mismatch_type_returns_error() {
        let (stash_proxy, mut stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        let spawned = fasync::Task::spawn(async move {
            while let Some(request) = stream.next().await {
                match request {
                    Ok(StoreAccessorRequest::GetValue { key, responder }) => {
                        assert_eq!(key, STORE_KEY);
                        let _ = responder.send(Some(Value::Stringval(
                            serde_json::to_string(&TestStruct { value: VALUE2 }).unwrap(),
                        )));
                    }
                    Ok(StoreAccessorRequest::SetValue { key, .. }) => {
                        assert_eq!(key, STORE_KEY);
                    }
                    _ => panic!("Unexpected request {request:?}"),
                }
            }
        });

        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );

        // Write successfully to storage once.
        let result = storage.write(&TestStruct { value: VALUE2 }).await;
        assert!(result.is_ok());

        // Write to device storage again with a different type to validate that the type can't
        // be changed.
        let result = storage.write(&WrongStruct).await;
        assert_matches!(result, Err(e) if e.to_string() == "Invalid data keyed by WRONG_STRUCT");

        drop(storage);
        spawned.await;
    }

    // Test that multiple writes to DeviceStorage will cause a SetValue each time, but will only
    // Flush to Stash at an interval.
    #[fuchsia::test]
    fn test_multiple_write_debounce() {
        // Custom executor for this test so that we can advance the clock arbitrarily and verify the
        // state of the executor at any given point.
        let mut executor = TestExecutor::new_with_fake_time();
        let start_time = Time::from_nanos(0);
        executor.set_fake_time(start_time);

        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        let storage = DeviceStorage::with_stash_proxy(
            vec![(TestStruct::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );

        let first_value = VALUE1;
        let second_value = VALUE2;

        // First write finishes immediately.
        {
            let value_to_write = TestStruct { value: first_value };
            let write_future = storage.write(&value_to_write);
            futures::pin_mut!(write_future);

            // Initial cache check is done if no read was ever performed.
            assert_matches!(executor.run_until_stalled(&mut write_future), Poll::Pending);

            {
                let respond_future = validate_stash_get_and_respond(
                    &mut stash_stream,
                    serde_json::to_string(&TestStruct::default()).unwrap(),
                );
                futures::pin_mut!(respond_future);
                advance_executor(&mut executor, &mut respond_future);
            }

            assert_matches!(
                executor.run_until_stalled(&mut write_future),
                Poll::Ready(Result::Ok(_))
            );
        }

        // First set request is received immediately on write.
        {
            let set_value_future = verify_stash_set(&mut stash_stream, first_value);
            futures::pin_mut!(set_value_future);
            advance_executor(&mut executor, &mut set_value_future);
        }

        // First flush request is received.
        {
            let flush_future = verify_stash_flush(&mut stash_stream);
            futures::pin_mut!(flush_future);
            advance_executor(&mut executor, &mut flush_future);
        }

        // Now we repeat the process with a second write request, which will need to advance the
        // fake time due to the timer.

        // Second write finishes immediately.
        {
            let value_to_write = TestStruct { value: second_value };
            let write_future = storage.write(&value_to_write);
            futures::pin_mut!(write_future);
            assert_matches!(
                executor.run_until_stalled(&mut write_future),
                Poll::Ready(Result::Ok(_))
            );
        }

        // Second set request finishes immediately on write.
        {
            let set_value_future = verify_stash_set(&mut stash_stream, second_value);
            futures::pin_mut!(set_value_future);
            advance_executor(&mut executor, &mut set_value_future);
        }

        // Start waiting for flush request.
        let flush_future = verify_stash_flush(&mut stash_stream);
        futures::pin_mut!(flush_future);

        // TextExecutor stalls due to waiting on timer to finish.
        assert_matches!(executor.run_until_stalled(&mut flush_future), Poll::Pending);

        // Advance time to 1ms before the flush triggers.
        executor.set_fake_time(start_time + (MIN_FLUSH_INTERVAL - Duration::from_millis(1)));

        // TextExecutor is still waiting on the time to finish.
        assert_matches!(executor.run_until_stalled(&mut flush_future), Poll::Pending);

        // Advance time so that the flush will trigger.
        executor.set_fake_time(start_time + MIN_FLUSH_INTERVAL);

        // Stash receives a flush request after one timer cycle and the future terminates.
        advance_executor(&mut executor, &mut flush_future);
    }

    // This mod includes structs to only be used by
    // test_device_compatible_migration tests.
    mod test_device_compatible_migration {
        use super::*;
        use serde::{Deserialize, Serialize};

        pub(crate) const DEFAULT_V1_VALUE: i32 = 1;
        pub(crate) const DEFAULT_CURRENT_VALUE: i32 = 2;
        pub(crate) const DEFAULT_CURRENT_VALUE_2: i32 = 3;

        #[derive(PartialEq, Clone, Serialize, Deserialize, Debug)]
        pub(crate) struct V1 {
            pub value: i32,
        }

        impl DeviceStorageCompatible for V1 {
            type Loader = NoneT;
            const KEY: &'static str = "testkey";
        }

        impl Default for V1 {
            fn default() -> Self {
                Self { value: DEFAULT_V1_VALUE }
            }
        }

        #[derive(PartialEq, Clone, Serialize, Deserialize, Debug)]
        pub(crate) struct Current {
            pub value: i32,
            pub value_2: i32,
        }

        impl From<V1> for Current {
            fn from(v1: V1) -> Self {
                Current { value: v1.value, value_2: DEFAULT_CURRENT_VALUE_2 }
            }
        }

        impl DeviceStorageCompatible for Current {
            type Loader = NoneT;
            const KEY: &'static str = "testkey2";

            fn try_deserialize_from(value: &str) -> Result<Self, Error> {
                Self::extract(value).or_else(|_| V1::extract(value).map(Self::from))
            }
        }

        impl Default for Current {
            fn default() -> Self {
                Self { value: DEFAULT_CURRENT_VALUE, value_2: DEFAULT_CURRENT_VALUE_2 }
            }
        }
    }

    #[fuchsia::test]
    fn test_device_compatible_custom_migration() {
        // Create an initial struct based on the first version.
        let initial = test_device_compatible_migration::V1::default();
        // Serialize.
        let initial_serialized = initial.serialize_to();

        // Deserialize using the second version.
        let current =
            test_device_compatible_migration::Current::try_deserialize_from(&initial_serialized)
                .expect("deserialization should succeed");
        // Assert values carried over from first version and defaults are used for rest.
        assert_eq!(current.value, test_device_compatible_migration::DEFAULT_V1_VALUE);
        assert_eq!(current.value_2, test_device_compatible_migration::DEFAULT_CURRENT_VALUE_2);
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn test_corrupt_get_returns_default() {
        let (stash_proxy, mut stash_stream) =
            fidl::endpoints::create_proxy_and_stream::<StoreAccessorMarker>().unwrap();

        fasync::Task::spawn(async move {
            #[allow(clippy::single_match)]
            while let Some(req) = stash_stream.try_next().await.unwrap() {
                #[allow(unreachable_patterns)]
                match req {
                    StoreAccessorRequest::GetValue { key, responder } => {
                        assert_eq!(
                            key,
                            format!("settings_{}", test_device_compatible_migration::Current::KEY)
                        );
                        let response = Value::Stringval("bad json".to_string());
                        responder.send(Some(response)).unwrap();
                    }
                    _ => {}
                }
            }
        })
        .detach();

        let storage = DeviceStorage::with_stash_proxy(
            vec![(test_device_compatible_migration::Current::KEY, None)],
            move || stash_proxy.clone(),
            Arc::new(Mutex::new(StashInspectLogger::new(component::inspector().root()))),
        );
        let current = storage.get::<test_device_compatible_migration::Current>().await;

        assert_eq!(current.value, test_device_compatible_migration::DEFAULT_CURRENT_VALUE);
        assert_eq!(current.value_2, test_device_compatible_migration::DEFAULT_CURRENT_VALUE_2);
    }
}