arrayvec/array_string.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
use std::borrow::{Borrow, BorrowMut};
use std::cmp;
use std::convert::TryFrom;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::mem::MaybeUninit;
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::slice;
use std::str;
use std::str::FromStr;
use std::str::Utf8Error;
use crate::CapacityError;
use crate::LenUint;
use crate::char::encode_utf8;
use crate::utils::MakeMaybeUninit;
#[cfg(feature="serde")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};
/// A string with a fixed capacity.
///
/// The `ArrayString` is a string backed by a fixed size array. It keeps track
/// of its length, and is parameterized by `CAP` for the maximum capacity.
///
/// `CAP` is of type `usize` but is range limited to `u32::MAX`; attempting to create larger
/// arrayvecs with larger capacity will panic.
///
/// The string is a contiguous value that you can store directly on the stack
/// if needed.
#[derive(Copy)]
pub struct ArrayString<const CAP: usize> {
// the `len` first elements of the array are initialized
xs: [MaybeUninit<u8>; CAP],
len: LenUint,
}
impl<const CAP: usize> Default for ArrayString<CAP>
{
/// Return an empty `ArrayString`
fn default() -> ArrayString<CAP> {
ArrayString::new()
}
}
impl<const CAP: usize> ArrayString<CAP>
{
/// Create a new empty `ArrayString`.
///
/// Capacity is inferred from the type parameter.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<16>::new();
/// string.push_str("foo");
/// assert_eq!(&string[..], "foo");
/// assert_eq!(string.capacity(), 16);
/// ```
pub fn new() -> ArrayString<CAP> {
assert_capacity_limit!(CAP);
unsafe {
ArrayString { xs: MaybeUninit::uninit().assume_init(), len: 0 }
}
}
/// Create a new empty `ArrayString` (const fn).
///
/// Capacity is inferred from the type parameter.
///
/// ```
/// use arrayvec::ArrayString;
///
/// static ARRAY: ArrayString<1024> = ArrayString::new_const();
/// ```
pub const fn new_const() -> ArrayString<CAP> {
assert_capacity_limit_const!(CAP);
ArrayString { xs: MakeMaybeUninit::ARRAY, len: 0 }
}
/// Return the length of the string.
#[inline]
pub const fn len(&self) -> usize { self.len as usize }
/// Returns whether the string is empty.
#[inline]
pub const fn is_empty(&self) -> bool { self.len() == 0 }
/// Create a new `ArrayString` from a `str`.
///
/// Capacity is inferred from the type parameter.
///
/// **Errors** if the backing array is not large enough to fit the string.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<3>::from("foo").unwrap();
/// assert_eq!(&string[..], "foo");
/// assert_eq!(string.len(), 3);
/// assert_eq!(string.capacity(), 3);
/// ```
pub fn from(s: &str) -> Result<Self, CapacityError<&str>> {
let mut arraystr = Self::new();
arraystr.try_push_str(s)?;
Ok(arraystr)
}
/// Create a new `ArrayString` from a byte string literal.
///
/// **Errors** if the byte string literal is not valid UTF-8.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let string = ArrayString::from_byte_string(b"hello world").unwrap();
/// ```
pub fn from_byte_string(b: &[u8; CAP]) -> Result<Self, Utf8Error> {
let len = str::from_utf8(b)?.len();
debug_assert_eq!(len, CAP);
let mut vec = Self::new();
unsafe {
(b as *const [u8; CAP] as *const [MaybeUninit<u8>; CAP])
.copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<u8>; CAP], 1);
vec.set_len(CAP);
}
Ok(vec)
}
/// Create a new `ArrayString` value fully filled with ASCII NULL characters (`\0`). Useful
/// to be used as a buffer to collect external data or as a buffer for intermediate processing.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let string = ArrayString::<16>::zero_filled();
/// assert_eq!(string.len(), 16);
/// ```
#[inline]
pub fn zero_filled() -> Self {
assert_capacity_limit!(CAP);
// SAFETY: `assert_capacity_limit` asserts that `len` won't overflow and
// `zeroed` fully fills the array with nulls.
unsafe {
ArrayString {
xs: MaybeUninit::zeroed().assume_init(),
len: CAP as _
}
}
}
/// Return the capacity of the `ArrayString`.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let string = ArrayString::<3>::new();
/// assert_eq!(string.capacity(), 3);
/// ```
#[inline(always)]
pub const fn capacity(&self) -> usize { CAP }
/// Return if the `ArrayString` is completely filled.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<1>::new();
/// assert!(!string.is_full());
/// string.push_str("A");
/// assert!(string.is_full());
/// ```
pub const fn is_full(&self) -> bool { self.len() == self.capacity() }
/// Returns the capacity left in the `ArrayString`.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<3>::from("abc").unwrap();
/// string.pop();
/// assert_eq!(string.remaining_capacity(), 1);
/// ```
pub const fn remaining_capacity(&self) -> usize {
self.capacity() - self.len()
}
/// Adds the given char to the end of the string.
///
/// ***Panics*** if the backing array is not large enough to fit the additional char.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<2>::new();
///
/// string.push('a');
/// string.push('b');
///
/// assert_eq!(&string[..], "ab");
/// ```
#[track_caller]
pub fn push(&mut self, c: char) {
self.try_push(c).unwrap();
}
/// Adds the given char to the end of the string.
///
/// Returns `Ok` if the push succeeds.
///
/// **Errors** if the backing array is not large enough to fit the additional char.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<2>::new();
///
/// string.try_push('a').unwrap();
/// string.try_push('b').unwrap();
/// let overflow = string.try_push('c');
///
/// assert_eq!(&string[..], "ab");
/// assert_eq!(overflow.unwrap_err().element(), 'c');
/// ```
pub fn try_push(&mut self, c: char) -> Result<(), CapacityError<char>> {
let len = self.len();
unsafe {
let ptr = self.as_mut_ptr().add(len);
let remaining_cap = self.capacity() - len;
match encode_utf8(c, ptr, remaining_cap) {
Ok(n) => {
self.set_len(len + n);
Ok(())
}
Err(_) => Err(CapacityError::new(c)),
}
}
}
/// Adds the given string slice to the end of the string.
///
/// ***Panics*** if the backing array is not large enough to fit the string.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<2>::new();
///
/// string.push_str("a");
/// string.push_str("d");
///
/// assert_eq!(&string[..], "ad");
/// ```
#[track_caller]
pub fn push_str(&mut self, s: &str) {
self.try_push_str(s).unwrap()
}
/// Adds the given string slice to the end of the string.
///
/// Returns `Ok` if the push succeeds.
///
/// **Errors** if the backing array is not large enough to fit the string.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<2>::new();
///
/// string.try_push_str("a").unwrap();
/// let overflow1 = string.try_push_str("bc");
/// string.try_push_str("d").unwrap();
/// let overflow2 = string.try_push_str("ef");
///
/// assert_eq!(&string[..], "ad");
/// assert_eq!(overflow1.unwrap_err().element(), "bc");
/// assert_eq!(overflow2.unwrap_err().element(), "ef");
/// ```
pub fn try_push_str<'a>(&mut self, s: &'a str) -> Result<(), CapacityError<&'a str>> {
if s.len() > self.capacity() - self.len() {
return Err(CapacityError::new(s));
}
unsafe {
let dst = self.as_mut_ptr().add(self.len());
let src = s.as_ptr();
ptr::copy_nonoverlapping(src, dst, s.len());
let newl = self.len() + s.len();
self.set_len(newl);
}
Ok(())
}
/// Removes the last character from the string and returns it.
///
/// Returns `None` if this `ArrayString` is empty.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut s = ArrayString::<3>::from("foo").unwrap();
///
/// assert_eq!(s.pop(), Some('o'));
/// assert_eq!(s.pop(), Some('o'));
/// assert_eq!(s.pop(), Some('f'));
///
/// assert_eq!(s.pop(), None);
/// ```
pub fn pop(&mut self) -> Option<char> {
let ch = match self.chars().rev().next() {
Some(ch) => ch,
None => return None,
};
let new_len = self.len() - ch.len_utf8();
unsafe {
self.set_len(new_len);
}
Some(ch)
}
/// Shortens this `ArrayString` to the specified length.
///
/// If `new_len` is greater than the string’s current length, this has no
/// effect.
///
/// ***Panics*** if `new_len` does not lie on a `char` boundary.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut string = ArrayString::<6>::from("foobar").unwrap();
/// string.truncate(3);
/// assert_eq!(&string[..], "foo");
/// string.truncate(4);
/// assert_eq!(&string[..], "foo");
/// ```
pub fn truncate(&mut self, new_len: usize) {
if new_len <= self.len() {
assert!(self.is_char_boundary(new_len));
unsafe {
// In libstd truncate is called on the underlying vector,
// which in turns drops each element.
// As we know we don't have to worry about Drop,
// we can just set the length (a la clear.)
self.set_len(new_len);
}
}
}
/// Removes a `char` from this `ArrayString` at a byte position and returns it.
///
/// This is an `O(n)` operation, as it requires copying every element in the
/// array.
///
/// ***Panics*** if `idx` is larger than or equal to the `ArrayString`’s length,
/// or if it does not lie on a `char` boundary.
///
/// ```
/// use arrayvec::ArrayString;
///
/// let mut s = ArrayString::<3>::from("foo").unwrap();
///
/// assert_eq!(s.remove(0), 'f');
/// assert_eq!(s.remove(1), 'o');
/// assert_eq!(s.remove(0), 'o');
/// ```
pub fn remove(&mut self, idx: usize) -> char {
let ch = match self[idx..].chars().next() {
Some(ch) => ch,
None => panic!("cannot remove a char from the end of a string"),
};
let next = idx + ch.len_utf8();
let len = self.len();
let ptr = self.as_mut_ptr();
unsafe {
ptr::copy(
ptr.add(next),
ptr.add(idx),
len - next);
self.set_len(len - (next - idx));
}
ch
}
/// Make the string empty.
pub fn clear(&mut self) {
unsafe {
self.set_len(0);
}
}
/// Set the strings’s length.
///
/// This function is `unsafe` because it changes the notion of the
/// number of “valid” bytes in the string. Use with care.
///
/// This method uses *debug assertions* to check the validity of `length`
/// and may use other debug assertions.
pub unsafe fn set_len(&mut self, length: usize) {
// type invariant that capacity always fits in LenUint
debug_assert!(length <= self.capacity());
self.len = length as LenUint;
}
/// Return a string slice of the whole `ArrayString`.
pub fn as_str(&self) -> &str {
self
}
/// Return a mutable string slice of the whole `ArrayString`.
pub fn as_mut_str(&mut self) -> &mut str {
self
}
fn as_ptr(&self) -> *const u8 {
self.xs.as_ptr() as *const u8
}
fn as_mut_ptr(&mut self) -> *mut u8 {
self.xs.as_mut_ptr() as *mut u8
}
}
impl<const CAP: usize> Deref for ArrayString<CAP>
{
type Target = str;
#[inline]
fn deref(&self) -> &str {
unsafe {
let sl = slice::from_raw_parts(self.as_ptr(), self.len());
str::from_utf8_unchecked(sl)
}
}
}
impl<const CAP: usize> DerefMut for ArrayString<CAP>
{
#[inline]
fn deref_mut(&mut self) -> &mut str {
unsafe {
let len = self.len();
let sl = slice::from_raw_parts_mut(self.as_mut_ptr(), len);
str::from_utf8_unchecked_mut(sl)
}
}
}
impl<const CAP: usize> PartialEq for ArrayString<CAP>
{
fn eq(&self, rhs: &Self) -> bool {
**self == **rhs
}
}
impl<const CAP: usize> PartialEq<str> for ArrayString<CAP>
{
fn eq(&self, rhs: &str) -> bool {
&**self == rhs
}
}
impl<const CAP: usize> PartialEq<ArrayString<CAP>> for str
{
fn eq(&self, rhs: &ArrayString<CAP>) -> bool {
self == &**rhs
}
}
impl<const CAP: usize> Eq for ArrayString<CAP>
{ }
impl<const CAP: usize> Hash for ArrayString<CAP>
{
fn hash<H: Hasher>(&self, h: &mut H) {
(**self).hash(h)
}
}
impl<const CAP: usize> Borrow<str> for ArrayString<CAP>
{
fn borrow(&self) -> &str { self }
}
impl<const CAP: usize> BorrowMut<str> for ArrayString<CAP>
{
fn borrow_mut(&mut self) -> &mut str { self }
}
impl<const CAP: usize> AsRef<str> for ArrayString<CAP>
{
fn as_ref(&self) -> &str { self }
}
impl<const CAP: usize> fmt::Debug for ArrayString<CAP>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}
impl<const CAP: usize> fmt::Display for ArrayString<CAP>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}
/// `Write` appends written data to the end of the string.
impl<const CAP: usize> fmt::Write for ArrayString<CAP>
{
fn write_char(&mut self, c: char) -> fmt::Result {
self.try_push(c).map_err(|_| fmt::Error)
}
fn write_str(&mut self, s: &str) -> fmt::Result {
self.try_push_str(s).map_err(|_| fmt::Error)
}
}
impl<const CAP: usize> Clone for ArrayString<CAP>
{
fn clone(&self) -> ArrayString<CAP> {
*self
}
fn clone_from(&mut self, rhs: &Self) {
// guaranteed to fit due to types matching.
self.clear();
self.try_push_str(rhs).ok();
}
}
impl<const CAP: usize> PartialOrd for ArrayString<CAP>
{
fn partial_cmp(&self, rhs: &Self) -> Option<cmp::Ordering> {
(**self).partial_cmp(&**rhs)
}
fn lt(&self, rhs: &Self) -> bool { **self < **rhs }
fn le(&self, rhs: &Self) -> bool { **self <= **rhs }
fn gt(&self, rhs: &Self) -> bool { **self > **rhs }
fn ge(&self, rhs: &Self) -> bool { **self >= **rhs }
}
impl<const CAP: usize> PartialOrd<str> for ArrayString<CAP>
{
fn partial_cmp(&self, rhs: &str) -> Option<cmp::Ordering> {
(**self).partial_cmp(rhs)
}
fn lt(&self, rhs: &str) -> bool { &**self < rhs }
fn le(&self, rhs: &str) -> bool { &**self <= rhs }
fn gt(&self, rhs: &str) -> bool { &**self > rhs }
fn ge(&self, rhs: &str) -> bool { &**self >= rhs }
}
impl<const CAP: usize> PartialOrd<ArrayString<CAP>> for str
{
fn partial_cmp(&self, rhs: &ArrayString<CAP>) -> Option<cmp::Ordering> {
self.partial_cmp(&**rhs)
}
fn lt(&self, rhs: &ArrayString<CAP>) -> bool { self < &**rhs }
fn le(&self, rhs: &ArrayString<CAP>) -> bool { self <= &**rhs }
fn gt(&self, rhs: &ArrayString<CAP>) -> bool { self > &**rhs }
fn ge(&self, rhs: &ArrayString<CAP>) -> bool { self >= &**rhs }
}
impl<const CAP: usize> Ord for ArrayString<CAP>
{
fn cmp(&self, rhs: &Self) -> cmp::Ordering {
(**self).cmp(&**rhs)
}
}
impl<const CAP: usize> FromStr for ArrayString<CAP>
{
type Err = CapacityError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::from(s).map_err(CapacityError::simplify)
}
}
#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<const CAP: usize> Serialize for ArrayString<CAP>
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer
{
serializer.serialize_str(&*self)
}
}
#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<'de, const CAP: usize> Deserialize<'de> for ArrayString<CAP>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de>
{
use serde::de::{self, Visitor};
use std::marker::PhantomData;
struct ArrayStringVisitor<const CAP: usize>(PhantomData<[u8; CAP]>);
impl<'de, const CAP: usize> Visitor<'de> for ArrayStringVisitor<CAP> {
type Value = ArrayString<CAP>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "a string no more than {} bytes long", CAP)
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where E: de::Error,
{
ArrayString::from(v).map_err(|_| E::invalid_length(v.len(), &self))
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where E: de::Error,
{
let s = str::from_utf8(v).map_err(|_| E::invalid_value(de::Unexpected::Bytes(v), &self))?;
ArrayString::from(s).map_err(|_| E::invalid_length(s.len(), &self))
}
}
deserializer.deserialize_str(ArrayStringVisitor(PhantomData))
}
}
impl<'a, const CAP: usize> TryFrom<&'a str> for ArrayString<CAP>
{
type Error = CapacityError<&'a str>;
fn try_from(f: &'a str) -> Result<Self, Self::Error> {
let mut v = Self::new();
v.try_push_str(f)?;
Ok(v)
}
}
impl<'a, const CAP: usize> TryFrom<fmt::Arguments<'a>> for ArrayString<CAP>
{
type Error = CapacityError<fmt::Error>;
fn try_from(f: fmt::Arguments<'a>) -> Result<Self, Self::Error> {
use fmt::Write;
let mut v = Self::new();
v.write_fmt(f).map_err(|e| CapacityError::new(e))?;
Ok(v)
}
}
#[cfg(feature = "zeroize")]
/// "Best efforts" zeroing of the `ArrayString`'s buffer when the `zeroize` feature is enabled.
///
/// The length is set to 0, and the buffer is dropped and zeroized.
/// Cannot ensure that previous moves of the `ArrayString` did not leave values on the stack.
///
/// ```
/// use arrayvec::ArrayString;
/// use zeroize::Zeroize;
/// let mut string = ArrayString::<6>::from("foobar").unwrap();
/// string.zeroize();
/// assert_eq!(string.len(), 0);
/// unsafe { string.set_len(string.capacity()) };
/// assert_eq!(&*string, "\0\0\0\0\0\0");
/// ```
impl<const CAP: usize> zeroize::Zeroize for ArrayString<CAP> {
fn zeroize(&mut self) {
// There are no elements to drop
self.clear();
// Zeroize the backing array.
self.xs.zeroize();
}
}