dense_map/collection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! A collection of [`DenseMap`]s.
//!
//! Defines [`DenseMapCollection`], which is a generic map collection that can be
//! keyed on [`DenseMapCollectionKey`], which is a two-level key structure.
use alloc::vec::Vec;
use core::num::NonZeroUsize;
use crate::{DenseMap, EntryKey};
/// A key that can index items in [`DenseMapCollection`].
///
/// A `DenseMapCollectionKey` is a key with two levels: `variant` and `id`. The
/// number of `variant`s must be fixed and known at compile time, and is
/// typically mapped to a number of `enum` variants (nested or not).
pub trait DenseMapCollectionKey {
/// The number of variants this key supports.
const VARIANT_COUNT: NonZeroUsize;
/// Get the variant index for this key.
///
/// # Panics
///
/// Callers may assume that `get_variant` returns a value in the range `[0,
/// VARIANT_COUNT)`, and may panic if that assumption is violated.
fn get_variant(&self) -> usize;
/// Get the id index for this key.
fn get_id(&self) -> usize;
}
impl<O> EntryKey for O
where
O: DenseMapCollectionKey,
{
fn get_key_index(&self) -> usize {
<O as DenseMapCollectionKey>::get_id(self)
}
}
/// A vacant entry from a [`DenseMapCollection`].
pub struct VacantEntry<'a, K, T> {
entry: crate::VacantEntry<'a, K, T>,
count: &'a mut usize,
}
impl<'a, K, T> VacantEntry<'a, K, T> {
/// Sets the value of the entry with the VacantEntry's key, and returns a
/// mutable reference to it.
pub fn insert(self, value: T) -> &'a mut T
where
K: EntryKey,
{
let Self { entry, count } = self;
*count += 1;
entry.insert(value)
}
/// Gets a reference to the key that would be used when inserting a value
/// through the `VacantEntry`.
pub fn key(&self) -> &K {
self.entry.key()
}
/// Take ownership of the key.
pub fn into_key(self) -> K {
self.entry.into_key()
}
/// Changes the key type of this `VacantEntry` to another key `X` that still
/// maps to the same index in a `DenseMap`.
///
/// # Panics
///
/// Panics if the resulting mapped key from `f` does not return the same
/// value for [`EntryKey::get_key_index`] as the old key did.
pub(crate) fn map_key<X, F>(self, f: F) -> VacantEntry<'a, X, T>
where
K: EntryKey,
X: EntryKey,
F: FnOnce(K) -> X,
{
let Self { entry, count } = self;
VacantEntry { entry: entry.map_key(f), count }
}
}
/// An occupied entry from a [`DenseMapCollection`].
#[derive(Debug)]
pub struct OccupiedEntry<'a, K, T> {
entry: crate::OccupiedEntry<'a, K, T>,
count: &'a mut usize,
}
impl<'a, K: EntryKey, T> OccupiedEntry<'a, K, T> {
/// Gets a reference to the key in the entry.
pub fn key(&self) -> &K {
self.entry.key()
}
/// Leaves the value in the map and produces the key.
pub fn into_key(self) -> K {
self.entry.into_key()
}
/// Gets a reference to the value in the entry.
pub fn get(&self) -> &T {
self.entry.get()
}
/// Gets a mutable reference to the value in the entry.
///
/// If you need a reference to the `OccupiedEntry` which may outlive the
/// destruction of the entry value, see [`OccupiedEntry::into_mut`].
pub fn get_mut(&mut self) -> &mut T {
self.entry.get_mut()
}
/// Converts the `OccupiedEntry` into a mutable reference to the value in
/// the entry with a lifetime bound to the map itself.
///
/// If you need multiple references to the `OccupiedEntry`, see
/// [`OccupiedEntry::get_mut`].
pub fn into_mut(self) -> &'a mut T {
self.entry.into_mut()
}
/// Sets the value of the entry, and returns the entry's old value.
pub fn insert(&mut self, value: T) -> T {
self.entry.insert(value)
}
/// Takes the value out of the entry, and returns it.
pub fn remove(self) -> T {
let Self { entry, count } = self;
*count -= 1;
entry.remove()
}
/// Changes the key type of this `OccupiedEntry` to another key `X` that
/// still maps to the same value.
///
/// # Panics
///
/// Panics if the resulting mapped key from `f` does not return the same
/// value for [`EntryKey::get_key_index`] as the old key did.
pub(crate) fn map_key<X, F>(self, f: F) -> OccupiedEntry<'a, X, T>
where
K: EntryKey,
X: EntryKey,
F: FnOnce(K) -> X,
{
let Self { entry, count } = self;
OccupiedEntry { entry: entry.map_key(f), count }
}
}
/// A view into an in-place entry in a map that can be vacant or occupied.
pub enum Entry<'a, K, T> {
/// A vacant entry.
Vacant(VacantEntry<'a, K, T>),
/// An occupied entry.
Occupied(OccupiedEntry<'a, K, T>),
}
impl<'a, K: EntryKey, T> Entry<'a, K, T> {
/// Returns a reference to this entry's key.
pub fn key(&self) -> &K {
match self {
Entry::Occupied(e) => e.key(),
Entry::Vacant(e) => e.key(),
}
}
/// Ensures a value is in the entry by inserting `default` if empty, and
/// returns a mutable reference to the value in the entry.
pub fn or_insert(self, default: T) -> &'a mut T
where
K: EntryKey,
{
self.or_insert_with(|| default)
}
/// Ensures a value is in the entry by inserting the result of the function
/// `f` if empty, and returns a mutable reference to the value in the entry.
pub fn or_insert_with<F: FnOnce() -> T>(self, f: F) -> &'a mut T {
match self {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => e.insert(f()),
}
}
/// Ensures a value is in the entry by inserting the default value if empty,
/// and returns a mutable reference to the value in the entry.
pub fn or_default(self) -> &'a mut T
where
T: Default,
K: EntryKey,
{
self.or_insert_with(<T as Default>::default)
}
/// Provides in-place mutable access to an occupied entry before any
/// potential inserts into the map.
pub fn and_modify<F: FnOnce(&mut T)>(self, f: F) -> Self {
match self {
Entry::Occupied(mut e) => {
f(e.get_mut());
Entry::Occupied(e)
}
Entry::Vacant(e) => Entry::Vacant(e),
}
}
/// Removes the entry from the [`DenseMapCollection`].
///
/// Returns [`Some`] if the entry was occupied, otherwise [`None`].
pub fn remove(self) -> Option<T> {
match self {
Entry::Vacant(_) => None,
Entry::Occupied(e) => Some(e.remove()),
}
}
}
/// An iterator wrapper used to implement ExactSizeIterator.
///
/// Wraps an iterator of type `I`, keeping track of the number of elements it
/// is expected to produce.
struct SizeAugmentedIterator<I> {
wrapped: I,
remaining: usize,
}
impl<I: Iterator> Iterator for SizeAugmentedIterator<I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let Self { wrapped, remaining } = self;
match wrapped.next() {
Some(v) => {
*remaining -= 1;
Some(v)
}
None => {
assert_eq!(remaining, &0);
None
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<I: Iterator> ExactSizeIterator for SizeAugmentedIterator<I> {}
/// A generic collection indexed by a [`DenseMapCollectionKey`].
///
/// `DenseMapCollection` provides the same performance guarantees as [`DenseMap`], but
/// provides a two-level keying scheme that matches the pattern used in
/// [`crate::DeviceDense`].
pub struct DenseMapCollection<K: DenseMapCollectionKey, T> {
// TODO(brunodalbo): we define a vector container here because we can't just
// define a fixed array length based on an associated const in
// DenseMapCollectionKey. When rust issue #43408 gets resolved we can switch
// this to use the associated const and just have a fixed length array.
data: Vec<DenseMap<T>>,
count: usize,
_marker: core::marker::PhantomData<K>,
}
impl<K: DenseMapCollectionKey, T> DenseMapCollection<K, T> {
/// Creates a new empty `DenseMapCollection`.
pub fn new() -> Self {
let mut data = Vec::new();
data.resize_with(K::VARIANT_COUNT.get(), DenseMap::default);
Self { data, count: 0, _marker: core::marker::PhantomData }
}
fn get_map(&self, key: &K) -> &DenseMap<T> {
&self.data[key.get_variant()]
}
fn get_entry(&mut self, key: &K) -> Entry<'_, usize, T> {
let Self { data, count, _marker } = self;
match data[key.get_variant()].entry(key.get_id()) {
crate::Entry::Occupied(entry) => Entry::Occupied(OccupiedEntry { entry, count }),
crate::Entry::Vacant(entry) => Entry::Vacant(VacantEntry { entry, count }),
}
}
/// Returns `true` if the `DenseMapCollection` holds no items.
pub fn is_empty(&self) -> bool {
let Self { count, data: _, _marker } = self;
*count == 0
}
/// Returns a reference to the item indexed by `key`, or `None` if the `key`
/// doesn't exist.
pub fn get(&self, key: &K) -> Option<&T> {
self.get_map(key).get(key.get_id())
}
/// Returns a mutable reference to the item indexed by `key`, or `None` if
/// the `key` doesn't exist.
pub fn get_mut(&mut self, key: &K) -> Option<&mut T> {
match self.get_entry(key) {
Entry::Occupied(e) => Some(e.into_mut()),
Entry::Vacant(_) => None,
}
}
/// Removes item indexed by `key` from the container.
///
/// Returns the removed item if it exists, or `None` otherwise.
pub fn remove(&mut self, key: &K) -> Option<T> {
match self.get_entry(key) {
Entry::Occupied(e) => Some(e.remove()),
Entry::Vacant(_) => None,
}
}
/// Inserts `item` at `key`.
///
/// If the [`DenseMapCollection`] already contained an item indexed by `key`,
/// `insert` returns it, or `None` otherwise.
pub fn insert(&mut self, key: &K, item: T) -> Option<T> {
match self.get_entry(key) {
Entry::Occupied(mut e) => Some(e.insert(item)),
Entry::Vacant(e) => {
let _: &mut T = e.insert(item);
None
}
}
}
/// Creates an iterator over the containing items.
pub fn iter(&self) -> impl ExactSizeIterator<Item = &T> {
let Self { data, count, _marker } = self;
SizeAugmentedIterator {
wrapped: data.iter().flat_map(|m| m.key_ordered_iter()).map(|(_, v)| v),
remaining: *count,
}
}
/// Creates a mutable iterator over the containing items.
pub fn iter_mut(&mut self) -> impl ExactSizeIterator<Item = &mut T> {
let Self { data, count, _marker } = self;
SizeAugmentedIterator {
wrapped: data.iter_mut().flat_map(|m| m.key_ordered_iter_mut()).map(|(_, v)| v),
remaining: *count,
}
}
/// Creates an iterator over the maps in variant order.
pub fn iter_maps(&self) -> impl Iterator<Item = &DenseMap<T>> {
let Self { data, count: _, _marker } = self;
data.iter()
}
/// Gets the given key's corresponding entry in the map for in-place
/// manipulation.
pub fn entry(&mut self, key: K) -> Entry<'_, K, T> {
match self.get_entry(&key) {
Entry::Occupied(e) => Entry::Occupied(e.map_key(|_| key)),
Entry::Vacant(e) => Entry::Vacant(e.map_key(|_| key)),
}
}
/// Inserts a new entry, constructing a key with the provided function.
///
/// # Panics
///
/// The `make_key` function _must_ always construct keys of the same
/// variant, otherwise this method will panic.
pub fn push_entry(&mut self, make_key: fn(usize) -> K, value: T) -> OccupiedEntry<'_, K, T> {
let Self { count, data, _marker } = self;
let variant = make_key(0).get_variant();
let entry = data[variant].push_entry(value);
*count += 1;
let entry = entry.map_key(make_key);
let entry_variant = entry.key().get_variant();
assert_eq!(
entry_variant, variant,
"key variant is inconsistent; got both {variant} and {entry_variant}"
);
OccupiedEntry { entry, count }
}
}
impl<K: DenseMapCollectionKey, T> Default for DenseMapCollection<K, T> {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod tests {
use alloc::collections::HashSet;
use super::*;
use crate::testutil::assert_empty;
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
enum FakeVariants {
A,
B,
C,
}
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
struct FakeKey {
id: usize,
var: FakeVariants,
}
impl FakeKey {
const fn new(id: usize, var: FakeVariants) -> Self {
Self { id, var }
}
}
impl DenseMapCollectionKey for FakeKey {
const VARIANT_COUNT: NonZeroUsize = NonZeroUsize::new(3).unwrap();
fn get_variant(&self) -> usize {
match self.var {
FakeVariants::A => 0,
FakeVariants::B => 1,
FakeVariants::C => 2,
}
}
fn get_id(&self) -> usize {
self.id
}
}
type TestCollection = DenseMapCollection<FakeKey, i32>;
const KEY_A: FakeKey = FakeKey::new(0, FakeVariants::A);
const KEY_B: FakeKey = FakeKey::new(2, FakeVariants::B);
const KEY_C: FakeKey = FakeKey::new(4, FakeVariants::C);
#[test]
fn test_insert_and_get() {
let mut t = TestCollection::new();
let DenseMapCollection { data, count, _marker } = &t;
assert_empty(data[0].key_ordered_iter());
assert_empty(data[1].key_ordered_iter());
assert_empty(data[2].key_ordered_iter());
assert_eq!(count, &0);
assert_eq!(t.insert(&KEY_A, 1), None);
let DenseMapCollection { data, count, _marker } = &t;
assert!(!data[0].is_empty());
assert_eq!(count, &1);
assert_eq!(t.insert(&KEY_B, 2), None);
let DenseMapCollection { data, count, _marker } = &t;
assert!(!data[1].is_empty());
assert_eq!(count, &2);
assert_eq!(*t.get(&KEY_A).unwrap(), 1);
assert_eq!(t.get(&KEY_C), None);
*t.get_mut(&KEY_B).unwrap() = 3;
assert_eq!(*t.get(&KEY_B).unwrap(), 3);
}
#[test]
fn test_remove() {
let mut t = TestCollection::new();
assert_eq!(t.insert(&KEY_B, 15), None);
assert_eq!(t.remove(&KEY_B).unwrap(), 15);
let DenseMapCollection { data: _, count, _marker } = &t;
assert_eq!(count, &0);
assert_eq!(t.remove(&KEY_B), None);
}
#[test]
fn test_iter() {
let mut t = TestCollection::new();
assert_eq!(t.insert(&KEY_A, 15), None);
assert_eq!(t.insert(&KEY_B, -5), None);
assert_eq!(t.insert(&KEY_C, -10), None);
let mut c = 0;
let mut sum = 0;
for i in t.iter() {
c += 1;
sum += *i;
}
assert_eq!(c, 3);
assert_eq!(sum, 0);
}
#[test]
fn test_iter_len() {
let mut t = TestCollection::new();
assert_eq!(t.insert(&KEY_A, 1), None);
assert_eq!(t.insert(&KEY_B, 1), None);
assert_eq!(t.insert(&KEY_C, 1), None);
assert_eq!(t.iter().len(), 3);
assert_eq!(t.remove(&KEY_A), Some(1));
assert_eq!(t.iter().len(), 2);
}
#[test]
fn test_is_empty() {
let mut t = TestCollection::new();
assert!(t.is_empty());
assert_eq!(t.insert(&KEY_B, 15), None);
assert!(!t.is_empty());
}
#[test]
fn test_iter_mut() {
let mut t = TestCollection::new();
assert_eq!(t.insert(&KEY_A, 15), None);
assert_eq!(t.insert(&KEY_B, -5), None);
assert_eq!(t.insert(&KEY_C, -10), None);
for i in t.iter_mut() {
*i *= 2;
}
assert_eq!(*t.get(&KEY_A).unwrap(), 30);
assert_eq!(*t.get(&KEY_B).unwrap(), -10);
assert_eq!(*t.get(&KEY_C).unwrap(), -20);
assert_eq!(t.iter_mut().len(), 3);
}
#[test]
fn test_entry() {
let mut t = TestCollection::new();
assert_eq!(*t.entry(KEY_A).or_insert(2), 2);
assert_eq!(
*t.entry(KEY_A)
.and_modify(|v| {
*v = 10;
})
.or_insert(5),
10
);
assert_eq!(
*t.entry(KEY_B)
.and_modify(|v| {
*v = 10;
})
.or_insert(5),
5
);
assert_eq!(*t.entry(KEY_C).or_insert_with(|| 7), 7);
assert_eq!(*t.entry(KEY_C).key(), KEY_C);
assert_eq!(*t.get(&KEY_A).unwrap(), 10);
assert_eq!(*t.get(&KEY_B).unwrap(), 5);
assert_eq!(*t.get(&KEY_C).unwrap(), 7);
}
#[test]
fn push_entry_valid() {
let mut t = TestCollection::new();
assert_eq!(t.insert(&KEY_A, 0), None);
assert_eq!(t.insert(&KEY_B, 1), None);
assert_eq!(t.insert(&KEY_C, 2), None);
let make_key = |index| FakeKey { id: index, var: FakeVariants::A };
{
let entry = t.push_entry(make_key, 30);
assert_eq!(entry.key(), &FakeKey { id: 1, var: FakeVariants::A });
assert_eq!(entry.get(), &30);
}
{
let entry = t.push_entry(make_key, 20);
assert_eq!(entry.key(), &FakeKey { id: 2, var: FakeVariants::A });
assert_eq!(entry.get(), &20);
}
assert_eq!(t.iter().collect::<HashSet<_>>(), HashSet::from([&0, &1, &2, &30, &20]));
}
#[test]
#[should_panic(expected = "variant is inconsistent")]
fn push_entry_invalid_key_fn() {
let mut t = TestCollection::new();
assert_eq!(t.insert(&KEY_A, 0), None);
let bad_make_key = |index| FakeKey {
id: index,
var: if index % 2 == 0 { FakeVariants::A } else { FakeVariants::B },
};
let _ = t.push_entry(bad_make_key, 1);
let _ = t.push_entry(bad_make_key, 2);
}
}