1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright 2023 The Fuchsia Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use once_cell::sync::Lazy;
use static_assertions::const_assert_eq;

#[derive(Clone, Copy)]
pub(crate) struct State {
    pub(crate) buffer: XSaveArea,
    strategy: Strategy,
}

// Size of the XSAVE area.
pub const XSAVE_AREA_SIZE: usize = 832;

const XSAVE_FEATURE_X87: u64 = 1 << 0;
const XSAVE_FEATURE_SSE: u64 = 1 << 1;
const XSAVE_FEATURE_AVX: u64 = 1 << 2;

// Save FPU, SSE and AVX registers. This matches the set of features supported by Zircon (see
// zircon/kernel/arch/x86/registers.cc ).
pub const SUPPORTED_XSAVE_FEATURES: u64 = XSAVE_FEATURE_X87 | XSAVE_FEATURE_SSE | XSAVE_FEATURE_AVX;

#[derive(Clone, Copy, Default)]
#[repr(C)]
struct X87MMXState {
    low: u64,
    high: u64,
}

#[derive(Clone, Copy, Default)]
#[repr(C)]
struct SSERegister {
    low: u64,
    high: u64,
}

// [intel/vol1] Table 10-2. Format of an FXSAVE Area
#[derive(Clone, Copy)]
#[repr(C)]
struct X86LegacySaveArea {
    fcw: u16,
    fsw: u16,
    ftw: u8,
    _reserved: u8,

    fop: u16,
    fip: u64,
    fdp: u64,

    mxcsr: u32,
    mxcsr_mask: u32,

    st: [X87MMXState; 8],

    xmm: [SSERegister; 16],
}

const_assert_eq!(std::mem::size_of::<X86LegacySaveArea>(), 416);

#[derive(Clone, Copy)]
#[repr(C, align(16))]
struct FXSaveArea {
    x86_legacy_save_area: X86LegacySaveArea,
    _reserved: [u8; 96],
}
const_assert_eq!(std::mem::size_of::<FXSaveArea>(), 512);

impl Default for FXSaveArea {
    fn default() -> Self {
        Self {
            x86_legacy_save_area: X86LegacySaveArea {
                fcw: 0x37f, // All exceptions masked, no exceptions raised.
                fsw: 0,
                // The ftw field stores an abbreviated version where all zero bits match the default.
                // See [intel/vol1] 10.5.1.1 x87 State for details.
                ftw: 0,
                _reserved: Default::default(),
                fop: 0,
                fip: 0,
                fdp: 0,
                mxcsr: 0x3f << 7, // All exceptions masked, no exceptions raised.
                mxcsr_mask: 0,
                st: Default::default(),
                xmm: Default::default(),
            },
            _reserved: [0; 96],
        }
    }
}

#[derive(Clone, Copy)]
#[repr(C, align(64))]
pub(crate) struct XSaveArea {
    fxsave_area: FXSaveArea,
    xsave_header: [u8; 64],
    // High 128 bits of ymm0-15 registers
    avx_state: [u8; 256],
    // TODO: Size of the extended region is dynamic depending on which features are enabled.
    // See [intel/vol1] 13.5 XSAVE-MANAGED STATE
}

const_assert_eq!(std::mem::size_of::<XSaveArea>(), XSAVE_AREA_SIZE);

impl XSaveArea {
    fn addr(&self) -> *const u8 {
        self as *const _ as *const u8
    }

    fn addr_mut(&mut self) -> *mut u8 {
        self as *mut _ as *mut u8
    }
}

impl Default for XSaveArea {
    fn default() -> Self {
        Self { fxsave_area: Default::default(), xsave_header: [0; 64], avx_state: [0; 256] }
    }
}

#[derive(PartialEq, Debug, Copy, Clone, PartialOrd)]
pub enum Strategy {
    XSaveOpt,
    XSave,
    FXSave,
}

pub static PREFERRED_STRATEGY: Lazy<Strategy> = Lazy::new(|| {
    if is_x86_feature_detected!("xsaveopt") {
        Strategy::XSaveOpt
    } else if is_x86_feature_detected!("xsave") {
        Strategy::XSave
    } else {
        // The FXSave strategy does not preserve the high 128 bits of the YMM
        // register. If we find hardware that requires this, we need to add
        // support for saving and restoring these through load/store
        // instructions with the VEX.256 prefix and remove this assertion.
        // [intel/vol1]: 14.8 ACCESSING YMM REGISTERS
        assert!(!is_x86_feature_detected!("avx"));
        Strategy::FXSave
    }
});

impl State {
    pub fn with_strategy(strategy: Strategy) -> Self {
        Self { buffer: XSaveArea::default(), strategy }
    }

    #[inline(always)]
    pub(crate) fn save(&mut self) {
        match self.strategy {
            Strategy::XSaveOpt => unsafe {
                std::arch::x86_64::_xsaveopt(self.buffer.addr_mut(), SUPPORTED_XSAVE_FEATURES);
            },
            Strategy::XSave => unsafe {
                std::arch::x86_64::_xsave(self.buffer.addr_mut(), SUPPORTED_XSAVE_FEATURES);
            },
            Strategy::FXSave => unsafe {
                std::arch::x86_64::_fxsave(self.buffer.addr_mut());
            },
        }
    }

    #[inline(always)]
    // Safety: See comment in lib.rs.
    pub(crate) unsafe fn restore(&self) {
        match self.strategy {
            Strategy::XSave | Strategy::XSaveOpt => {
                std::arch::x86_64::_xrstor(self.buffer.addr(), SUPPORTED_XSAVE_FEATURES)
            }
            Strategy::FXSave => std::arch::x86_64::_fxrstor(self.buffer.addr()),
        }
    }

    pub fn reset(&mut self) {
        self.initialize_saved_area()
    }

    fn initialize_saved_area(&mut self) {
        *self = Default::default()
    }

    pub(crate) fn set_xsave_area(&mut self, xsave_area: [u8; XSAVE_AREA_SIZE]) {
        self.buffer = unsafe { std::mem::transmute(xsave_area) };

        // The tail of the FXSAVE are is unused and is ignored. It may be modified when returning
        // from a signal handler. Reset it to zeros.
        self.buffer.fxsave_area._reserved = [0u8; 96];
    }
}

impl Default for State {
    fn default() -> Self {
        Self { buffer: XSaveArea::default(), strategy: *PREFERRED_STRATEGY }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[::fuchsia::test]
    fn save_restore_sse_registers() {
        use core::arch::asm;

        let write_custom_state = || {
            // x87 FPU status word
            //   x87 FPU Status Word: FSTSW/FNSTSW, FSTENV/FNSTENV
            // Exception state lives in the status word
            // The exception flags are “sticky” bits (once set, they remain set until explicitly cleared). They can be cleared by
            // executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or
            // FSAVE/FNSAVE instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

            // We expect the FPU stack to be empty. Pop a value to generate a stack underflow exception
            let flt = [0u8; 8];
            unsafe {
                asm!("fstp dword ptr [{flt}]", flt = in(reg) &flt as *const u8);
            }
            // Check that the IE and SF bits are 1 and the C1 flag is 0. [intel/vol1] 8.5.1.1 Stack Overflow or Underflow Exception (#IS)
            let fpust = 0u16;
            unsafe {
                asm!("fnstsw [{fpust}]", fpust = in(reg)&fpust);
            }
            assert_eq!(fpust & 1 << 0, 0x1); // IE flag, bit 0
            assert_eq!(fpust & 1 << 6, 1 << 6); // SF flag, bit 6
            assert_eq!(fpust & 1 << 9, 0); // C1 flag, bit 9.

            // x87 FPU control word.
            let mut fpucw = 0u16;
            unsafe {
                asm!("fnstcw [{fpucw}]", fpucw = in(reg) &fpucw);
            }
            // Unmask all 6 x87 exceptions
            fpucw &= !0x3f;
            unsafe {
                asm!("fldcw [{fpucw}]", fpucw = in(reg) &fpucw);
            }

            let mut mxcsr = 0u32;
            unsafe {
                asm!("stmxcsr [{mxcsr}]", mxcsr = in(reg) &mxcsr);
            }
            // Unmask the lowest 3 exceptions.
            mxcsr &= !(0x7 << 7);
            unsafe {
                asm!("ldmxcsr [{mxcsr}]", mxcsr = in(reg) &mxcsr);
            }

            // Populate SSE registers
            let vals_a = [0x42u8; 16];
            let vals_b = [0x43u8; 16];
            let vals_c = [0x44u8; 16];
            unsafe {
                asm!("movups xmm0, [{vals_a}]
                          movups xmm1, [{vals_b}]
                          movups xmm2, [{vals_c}]",
                    vals_a = in(reg) &vals_a,
                    vals_b = in(reg) &vals_b,
                    vals_c = in(reg) &vals_c,
                    out("xmm0") _,
                    out("xmm1") _,
                    out("xmm2") _,
                );
            }
        };

        let clear_state = || {
            unsafe {
                // Reinitialize x87 FPU
                asm!("fninit");
                // Reset SSE control state to all exceptions masked, no exceptions detected
                let mxcsr = 0x3f << 7;
                asm!("ldmxcsr [{mxcsr}]", mxcsr = in(reg) &mxcsr);
                // Clear SSE registers
                asm!("xorps xmm0, xmm0
                          xorps xmm1, xmm1
                          xorps xmm2, xmm2",
                    out("xmm0") _,
                    out("xmm1") _,
                    out("xmm2") _,
                );
            }
        };

        let dest = [0u8; 16];
        let validate_state_cleared = || {
            let fpust = 0u16;
            unsafe {
                asm!("fnstsw [{fpust}]", fpust = in(reg)&fpust);
            }
            assert_eq!(fpust, 0);

            let fpucw = 0u16;
            unsafe { asm!("fnstcw [{fpucw}]", fpucw = in(reg) &fpucw) };
            assert_eq!(fpucw, 0x37f); // Initial FPU state per [intel/vol1] 8.1.5 x87 FPU Control Word

            let mxcsr = 0u32;
            unsafe {
                asm!("stmxcsr [{mxcsr}]", mxcsr = in(reg) &mxcsr);
            }
            assert_eq!(mxcsr & 0x1f, 0); // No exceptions raised.
            assert_eq!((mxcsr >> 7) & 0x3f, 0x3f); // All exceptions masked.
            unsafe {
                asm!("movups [{dest}], xmm0", dest = in(reg) &dest);
            }
            for i in 0..16 {
                assert_eq!(dest[i], 0);
            }
            unsafe {
                asm!("movups [{dest}], xmm1", dest = in(reg) &dest);
            }
            for i in 0..16 {
                assert_eq!(dest[i], 0);
            }
            unsafe {
                asm!("movups [{dest}], xmm2", dest = in(reg) &dest);
            }
            for i in 0..16 {
                assert_eq!(dest[i], 0);
            }
        };

        let validate_state_restored = || {
            // x87 FPU status word

            // Check that the IE and SF bits are 1 and the C1 flag is 0. [intel/vol1] 8.5.1.1 Stack Overflow or Underflow Exception (#IS)
            let fpust = 0u16;
            unsafe {
                asm!("fnstsw [{fpust}]", fpust = in(reg)&fpust);
            }
            assert_eq!(fpust & 1 << 0, 0x1); // IE flag, bit 0
            assert_eq!(fpust & 1 << 6, 1 << 6); // SF flag, bit 6
            assert_eq!(fpust & 1 << 9, 0); // C1 flag, bit 9.

            // x87 FPU control word
            let fpucw = 0u16;
            unsafe { asm!("fnstcw [{fpucw}]", fpucw = in(reg) &fpucw) };
            assert_eq!(fpucw, 0x340); // All exceptions masked, 64 bit precision, round to nearest.

            let mxcsr = 0u32;
            unsafe {
                asm!("stmxcsr [{mxcsr}]", mxcsr = in(reg) &mxcsr);
            }
            assert_eq!(mxcsr & 0x1f, 0); // No exceptions raised.
            assert_eq!((mxcsr >> 7) & 0x3f, 0x38); // First 3 exceptions unmasked, rest masked.

            // SSE registers
            unsafe {
                asm!("movups [{dest}], xmm0", dest = in(reg) &dest);
            }
            for i in 0..16 {
                assert_eq!(dest[i], 0x42);
            }
            unsafe {
                asm!("movups [{dest}], xmm1", dest = in(reg) &dest);
            }
            for i in 0..16 {
                assert_eq!(dest[i], 0x43);
            }
            unsafe {
                asm!("movups [{dest}], xmm2", dest = in(reg) &dest);
            }
            for i in 0..16 {
                assert_eq!(dest[i], 0x44);
            }
        };

        let mut state = State::default();
        write_custom_state();
        state.save();
        clear_state();
        validate_state_cleared();
        unsafe {
            state.restore();
        }
        validate_state_restored();
    }
}