ring/ec/
suite_b.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Elliptic curve operations on P-256 & P-384.

use self::ops::*;
use crate::{arithmetic::montgomery::*, cpu, ec, error, io::der, limb::LimbMask, pkcs8};

// NIST SP 800-56A Step 3: "If q is an odd prime p, verify that
// yQ**2 = xQ**3 + axQ + b in GF(p), where the arithmetic is performed modulo
// p."
//
// That is, verify that (x, y) is on the curve, which is true iif:
//
//     y**2 == x**3 + a*x + b (mod q)
//
// Or, equivalently, but more efficiently:
//
//     y**2 == (x**2 + a)*x + b  (mod q)
//
fn verify_affine_point_is_on_the_curve(
    ops: &CommonOps,
    (x, y): (&Elem<R>, &Elem<R>),
) -> Result<(), error::Unspecified> {
    verify_affine_point_is_on_the_curve_scaled(ops, (x, y), &ops.a, &ops.b)
}

// Use `verify_affine_point_is_on_the_curve` instead of this function whenever
// the affine coordinates are available or will become available. This function
// should only be used then the affine coordinates are never calculated. See
// the notes for `verify_affine_point_is_on_the_curve_scaled`.
//
// The value `z**2` is returned on success because it is useful for ECDSA
// verification.
//
// This function also verifies that the point is not at infinity.
fn verify_jacobian_point_is_on_the_curve(
    ops: &CommonOps,
    p: &Point,
) -> Result<Elem<R>, error::Unspecified> {
    let z = ops.point_z(p);

    // Verify that the point is not at infinity.
    ops.elem_verify_is_not_zero(&z)?;

    let x = ops.point_x(p);
    let y = ops.point_y(p);

    // We are given Jacobian coordinates (x, y, z). So, we have:
    //
    //    (x/z**2, y/z**3) == (x', y'),
    //
    // where (x', y') are the affine coordinates. The curve equation is:
    //
    //     y'**2  ==  x'**3 + a*x' + b  ==  (x'**2 + a)*x' + b
    //
    // Substituting our Jacobian coordinates, we get:
    //
    //    /   y  \**2       /  /   x  \**2       \   /   x  \
    //    | ---- |      ==  |  | ---- |    +  a  | * | ---- |  +  b
    //    \ z**3 /          \  \ z**2 /          /   \ z**2 /
    //
    // Simplify:
    //
    //            y**2      / x**2       \     x
    //            ----  ==  | ----  +  a | * ----  +  b
    //            z**6      \ z**4       /   z**2
    //
    // Multiply both sides by z**6:
    //
    //     z**6             / x**2       \   z**6
    //     ---- * y**2  ==  | ----  +  a | * ---- * x  +  (z**6) * b
    //     z**6             \ z**4       /   z**2
    //
    // Simplify:
    //
    //                      / x**2       \
    //            y**2  ==  | ----  +  a | * z**4 * x  +  (z**6) * b
    //                      \ z**4       /
    //
    // Distribute z**4:
    //
    //                      / z**4                     \
    //            y**2  ==  | ---- * x**2  +  z**4 * a | * x  +  (z**6) * b
    //                      \ z**4                     /
    //
    // Simplify:
    //
    //            y**2  ==  (x**2  +  z**4 * a) * x  +  (z**6) * b
    //
    let z2 = ops.elem_squared(&z);
    let z4 = ops.elem_squared(&z2);
    let z4_a = ops.elem_product(&z4, &ops.a);
    let z6 = ops.elem_product(&z4, &z2);
    let z6_b = ops.elem_product(&z6, &ops.b);
    verify_affine_point_is_on_the_curve_scaled(ops, (&x, &y), &z4_a, &z6_b)?;
    Ok(z2)
}

// Handles the common logic of point-is-on-the-curve checks for both affine and
// Jacobian cases.
//
// When doing the check that the point is on the curve after a computation,
// to avoid fault attacks or mitigate potential bugs, it is better for security
// to use `verify_affine_point_is_on_the_curve` on the affine coordinates,
// because it provides some protection against faults that occur in the
// computation of the inverse of `z`. See the paper and presentation "Fault
// Attacks on Projective-to-Affine Coordinates Conversion" by Diana Maimuţ,
// Cédric Murdica, David Naccache, Mehdi Tibouchi. That presentation concluded
// simply "Check the validity of the result after conversion to affine
// coordinates." (It seems like a good idea to verify that
// z_inv * z == 1 mod q too).
//
// In the case of affine coordinates (x, y), `a_scaled` and `b_scaled` are
// `a` and `b`, respectively. In the case of Jacobian coordinates (x, y, z),
// the computation and comparison is the same, except `a_scaled` and `b_scaled`
// are (z**4 * a) and (z**6 * b), respectively. Thus, performance is another
// reason to prefer doing the check on the affine coordinates, as Jacobian
// computation requires 3 extra multiplications and 2 extra squarings.
//
// An example of a fault attack that isn't mitigated by a point-on-the-curve
// check after multiplication is given in "Sign Change Fault Attacks On
// Elliptic Curve Cryptosystems" by Johannes Blömer, Martin Otto, and
// Jean-Pierre Seifert.
fn verify_affine_point_is_on_the_curve_scaled(
    ops: &CommonOps,
    (x, y): (&Elem<R>, &Elem<R>),
    a_scaled: &Elem<R>,
    b_scaled: &Elem<R>,
) -> Result<(), error::Unspecified> {
    let lhs = ops.elem_squared(y);

    let mut rhs = ops.elem_squared(x);
    ops.elem_add(&mut rhs, a_scaled);
    ops.elem_mul(&mut rhs, x);
    ops.elem_add(&mut rhs, b_scaled);

    if ops.elems_are_equal(&lhs, &rhs) != LimbMask::True {
        return Err(error::Unspecified);
    }

    Ok(())
}

pub(crate) fn key_pair_from_pkcs8(
    curve: &'static ec::Curve,
    template: &pkcs8::Template,
    input: untrusted::Input,
    cpu_features: cpu::Features,
) -> Result<ec::KeyPair, error::KeyRejected> {
    let (ec_private_key, _) = pkcs8::unwrap_key(template, pkcs8::Version::V1Only, input)?;
    let (private_key, public_key) =
        ec_private_key.read_all(error::KeyRejected::invalid_encoding(), |input| {
            // https://tools.ietf.org/html/rfc5915#section-3
            der::nested(
                input,
                der::Tag::Sequence,
                error::KeyRejected::invalid_encoding(),
                |input| key_pair_from_pkcs8_(template, input),
            )
        })?;
    key_pair_from_bytes(curve, private_key, public_key, cpu_features)
}

fn key_pair_from_pkcs8_<'a>(
    template: &pkcs8::Template,
    input: &mut untrusted::Reader<'a>,
) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::KeyRejected> {
    let version = der::small_nonnegative_integer(input)
        .map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;
    if version != 1 {
        return Err(error::KeyRejected::version_not_supported());
    }

    let private_key = der::expect_tag_and_get_value(input, der::Tag::OctetString)
        .map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;

    // [0] parameters (optional).
    if input.peek(u8::from(der::Tag::ContextSpecificConstructed0)) {
        let actual_alg_id =
            der::expect_tag_and_get_value(input, der::Tag::ContextSpecificConstructed0)
                .map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;
        if actual_alg_id != template.curve_oid() {
            return Err(error::KeyRejected::wrong_algorithm());
        }
    }

    // [1] publicKey. The RFC says it is optional, but we require it
    // to be present.
    let public_key = der::nested(
        input,
        der::Tag::ContextSpecificConstructed1,
        error::Unspecified,
        der::bit_string_with_no_unused_bits,
    )
    .map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;

    Ok((private_key, public_key))
}

pub(crate) fn key_pair_from_bytes(
    curve: &'static ec::Curve,
    private_key_bytes: untrusted::Input,
    public_key_bytes: untrusted::Input,
    cpu_features: cpu::Features,
) -> Result<ec::KeyPair, error::KeyRejected> {
    let seed = ec::Seed::from_bytes(curve, private_key_bytes, cpu_features)
        .map_err(|error::Unspecified| error::KeyRejected::invalid_component())?;

    let r = ec::KeyPair::derive(seed)
        .map_err(|error::Unspecified| error::KeyRejected::unexpected_error())?;
    if public_key_bytes != *r.public_key().as_ref() {
        return Err(error::KeyRejected::inconsistent_components());
    }

    Ok(r)
}

pub mod curve;
pub mod ecdh;
pub mod ecdsa;

mod ops;

mod private_key;
mod public_key;