binder/parcel.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Container for messages that are sent via binder.
use crate::binder::AsNative;
use crate::error::{status_result, Result, StatusCode};
use crate::proxy::SpIBinder;
use crate::sys;
use std::convert::TryInto;
use std::fmt;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::ptr::{self, NonNull};
mod file_descriptor;
mod parcelable;
mod parcelable_holder;
pub use self::file_descriptor::ParcelFileDescriptor;
pub use self::parcelable::{
Deserialize, DeserializeArray, DeserializeOption, Parcelable, Serialize, SerializeArray,
SerializeOption, UnstructuredParcelable, NON_NULL_PARCELABLE_FLAG, NULL_PARCELABLE_FLAG,
};
pub use self::parcelable_holder::{ParcelableHolder, ParcelableMetadata};
/// Container for a message (data and object references) that can be sent
/// through Binder.
///
/// A Parcel can contain both serialized data that will be deserialized on the
/// other side of the IPC, and references to live Binder objects that will
/// result in the other side receiving a proxy Binder connected with the
/// original Binder in the Parcel.
///
/// This type represents a parcel that is owned by Rust code.
#[repr(transparent)]
pub struct Parcel {
ptr: NonNull<sys::AParcel>,
}
/// Safety: This type guarantees that it owns the AParcel and that all access to
/// the AParcel happens through the Parcel, so it is ok to send across threads.
///
/// It would not be okay to implement Sync, because that would allow you to call
/// the reading methods from several threads in parallel, which would be a data
/// race on the cursor position inside the AParcel.
unsafe impl Send for Parcel {}
/// Container for a message (data and object references) that can be sent
/// through Binder.
///
/// This object is a borrowed variant of [`Parcel`]. It is a separate type from
/// `&mut Parcel` because it is not valid to `mem::swap` two parcels.
#[repr(transparent)]
pub struct BorrowedParcel<'a> {
ptr: NonNull<sys::AParcel>,
_lifetime: PhantomData<&'a mut Parcel>,
}
impl Parcel {
/// Create a new empty `Parcel`.
pub fn new() -> Parcel {
// Safety: If `AParcel_create` succeeds, it always returns
// a valid pointer. If it fails, the process will crash.
let ptr = unsafe { sys::AParcel_create() };
Self { ptr: NonNull::new(ptr).expect("AParcel_create returned null pointer") }
}
/// Create an owned reference to a parcel object from a raw pointer.
///
/// # Safety
///
/// This constructor is safe if the raw pointer parameter is either null
/// (resulting in `None`), or a valid pointer to an `AParcel` object. The
/// parcel object must be owned by the caller prior to this call, as this
/// constructor takes ownership of the parcel and will destroy it on drop.
///
/// Additionally, the caller must guarantee that it is valid to take
/// ownership of the AParcel object. All future access to the AParcel
/// must happen through this `Parcel`.
///
/// Because `Parcel` implements `Send`, the pointer must never point to any
/// thread-local data, e.g., a variable on the stack, either directly or
/// indirectly.
pub unsafe fn from_raw(ptr: *mut sys::AParcel) -> Option<Parcel> {
NonNull::new(ptr).map(|ptr| Self { ptr })
}
/// Consume the parcel, transferring ownership to the caller.
pub(crate) fn into_raw(self) -> *mut sys::AParcel {
let ptr = self.ptr.as_ptr();
let _ = ManuallyDrop::new(self);
ptr
}
/// Get a borrowed view into the contents of this `Parcel`.
pub fn borrowed(&mut self) -> BorrowedParcel<'_> {
// Safety: The raw pointer is a valid pointer to an AParcel, and the
// lifetime of the returned `BorrowedParcel` is tied to `self`, so the
// borrow checker will ensure that the `AParcel` can only be accessed
// via the `BorrowParcel` until it goes out of scope.
BorrowedParcel { ptr: self.ptr, _lifetime: PhantomData }
}
/// Get an immutable borrowed view into the contents of this `Parcel`.
pub fn borrowed_ref(&self) -> &BorrowedParcel<'_> {
// Safety: Parcel and BorrowedParcel are both represented in the same
// way as a NonNull<sys::AParcel> due to their use of repr(transparent),
// so casting references as done here is valid.
unsafe { &*(self as *const Parcel as *const BorrowedParcel<'_>) }
}
}
impl Default for Parcel {
fn default() -> Self {
Self::new()
}
}
impl Clone for Parcel {
fn clone(&self) -> Self {
let mut new_parcel = Self::new();
new_parcel
.borrowed()
.append_all_from(self.borrowed_ref())
.expect("Failed to append from Parcel");
new_parcel
}
}
impl<'a> BorrowedParcel<'a> {
/// Create a borrowed reference to a parcel object from a raw pointer.
///
/// # Safety
///
/// This constructor is safe if the raw pointer parameter is either null
/// (resulting in `None`), or a valid pointer to an `AParcel` object.
///
/// Since the raw pointer is not restricted by any lifetime, the lifetime on
/// the returned `BorrowedParcel` object can be chosen arbitrarily by the
/// caller. The caller must ensure it is valid to mutably borrow the AParcel
/// for the duration of the lifetime that the caller chooses. Note that
/// since this is a mutable borrow, it must have exclusive access to the
/// AParcel for the duration of the borrow.
pub unsafe fn from_raw(ptr: *mut sys::AParcel) -> Option<BorrowedParcel<'a>> {
Some(Self { ptr: NonNull::new(ptr)?, _lifetime: PhantomData })
}
/// Get a sub-reference to this reference to the parcel.
pub fn reborrow(&mut self) -> BorrowedParcel<'_> {
// Safety: The raw pointer is a valid pointer to an AParcel, and the
// lifetime of the returned `BorrowedParcel` is tied to `self`, so the
// borrow checker will ensure that the `AParcel` can only be accessed
// via the `BorrowParcel` until it goes out of scope.
BorrowedParcel { ptr: self.ptr, _lifetime: PhantomData }
}
}
/// Safety: The `Parcel` constructors guarantee that a `Parcel` object will
/// always contain a valid pointer to an `AParcel`.
unsafe impl AsNative<sys::AParcel> for Parcel {
fn as_native(&self) -> *const sys::AParcel {
self.ptr.as_ptr()
}
fn as_native_mut(&mut self) -> *mut sys::AParcel {
self.ptr.as_ptr()
}
}
/// Safety: The `BorrowedParcel` constructors guarantee that a `BorrowedParcel`
/// object will always contain a valid pointer to an `AParcel`.
unsafe impl<'a> AsNative<sys::AParcel> for BorrowedParcel<'a> {
fn as_native(&self) -> *const sys::AParcel {
self.ptr.as_ptr()
}
fn as_native_mut(&mut self) -> *mut sys::AParcel {
self.ptr.as_ptr()
}
}
// Data serialization methods
impl<'a> BorrowedParcel<'a> {
/// Data written to parcelable is zero'd before being deleted or reallocated.
#[cfg(not(android_ndk))]
pub fn mark_sensitive(&mut self) {
// Safety: guaranteed to have a parcel object, and this method never fails
unsafe { sys::AParcel_markSensitive(self.as_native()) }
}
/// Write a type that implements [`Serialize`] to the parcel.
pub fn write<S: Serialize + ?Sized>(&mut self, parcelable: &S) -> Result<()> {
parcelable.serialize(self)
}
/// Writes the length of a slice to the parcel.
///
/// This is used in AIDL-generated client side code to indicate the
/// allocated space for an output array parameter.
pub fn write_slice_size<T>(&mut self, slice: Option<&[T]>) -> Result<()> {
if let Some(slice) = slice {
let len: i32 = slice.len().try_into().or(Err(StatusCode::BAD_VALUE))?;
self.write(&len)
} else {
self.write(&-1i32)
}
}
/// Perform a series of writes to the parcel, prepended with the length
/// (in bytes) of the written data.
///
/// The length `0i32` will be written to the parcel first, followed by the
/// writes performed by the callback. The initial length will then be
/// updated to the length of all data written by the callback, plus the
/// size of the length elemement itself (4 bytes).
///
/// # Examples
///
/// After the following call:
///
/// ```
/// # use binder::{Binder, Interface, Parcel};
/// # let mut parcel = Parcel::new();
/// parcel.sized_write(|subparcel| {
/// subparcel.write(&1u32)?;
/// subparcel.write(&2u32)?;
/// subparcel.write(&3u32)
/// });
/// ```
///
/// `parcel` will contain the following:
///
/// ```ignore
/// [16i32, 1u32, 2u32, 3u32]
/// ```
pub fn sized_write<F>(&mut self, f: F) -> Result<()>
where
for<'b> F: FnOnce(&'b mut WritableSubParcel<'b>) -> Result<()>,
{
let start = self.get_data_position();
self.write(&0i32)?;
{
let mut subparcel = WritableSubParcel(self.reborrow());
f(&mut subparcel)?;
}
let end = self.get_data_position();
// Safety: start is less than the current size of the parcel data
// buffer, because we just got it with `get_data_position`.
unsafe {
self.set_data_position(start)?;
}
assert!(end >= start);
self.write(&(end - start))?;
// Safety: end is less than the current size of the parcel data
// buffer, because we just got it with `get_data_position`.
unsafe {
self.set_data_position(end)?;
}
Ok(())
}
/// Returns the current position in the parcel data.
pub fn get_data_position(&self) -> i32 {
// Safety: `BorrowedParcel` always contains a valid pointer to an
// `AParcel`, and this call is otherwise safe.
unsafe { sys::AParcel_getDataPosition(self.as_native()) }
}
/// Returns the total size of the parcel.
pub fn get_data_size(&self) -> i32 {
// Safety: `BorrowedParcel` always contains a valid pointer to an
// `AParcel`, and this call is otherwise safe.
unsafe { sys::AParcel_getDataSize(self.as_native()) }
}
/// Move the current read/write position in the parcel.
///
/// # Safety
///
/// This method is safe if `pos` is less than the current size of the parcel
/// data buffer. Otherwise, we are relying on correct bounds checking in the
/// Parcel C++ code on every subsequent read or write to this parcel. If all
/// accesses are bounds checked, this call is still safe, but we can't rely
/// on that.
pub unsafe fn set_data_position(&self, pos: i32) -> Result<()> {
// Safety: `BorrowedParcel` always contains a valid pointer to an
// `AParcel`, and the caller guarantees that `pos` is within bounds.
status_result(unsafe { sys::AParcel_setDataPosition(self.as_native(), pos) })
}
/// Append a subset of another parcel.
///
/// This appends `size` bytes of data from `other` starting at offset
/// `start` to the current parcel, or returns an error if not possible.
pub fn append_from(
&mut self,
other: &impl AsNative<sys::AParcel>,
start: i32,
size: i32,
) -> Result<()> {
// Safety: `Parcel::appendFrom` from C++ checks that `start`
// and `size` are in bounds, and returns an error otherwise.
// Both `self` and `other` always contain valid pointers.
let status = unsafe {
sys::AParcel_appendFrom(other.as_native(), self.as_native_mut(), start, size)
};
status_result(status)
}
/// Append the contents of another parcel.
pub fn append_all_from(&mut self, other: &impl AsNative<sys::AParcel>) -> Result<()> {
// Safety: `BorrowedParcel` always contains a valid pointer to an
// `AParcel`, and this call is otherwise safe.
let size = unsafe { sys::AParcel_getDataSize(other.as_native()) };
self.append_from(other, 0, size)
}
}
/// A segment of a writable parcel, used for [`BorrowedParcel::sized_write`].
pub struct WritableSubParcel<'a>(BorrowedParcel<'a>);
impl<'a> WritableSubParcel<'a> {
/// Write a type that implements [`Serialize`] to the sub-parcel.
pub fn write<S: Serialize + ?Sized>(&mut self, parcelable: &S) -> Result<()> {
parcelable.serialize(&mut self.0)
}
}
impl Parcel {
/// Data written to parcelable is zero'd before being deleted or reallocated.
#[cfg(not(android_ndk))]
pub fn mark_sensitive(&mut self) {
self.borrowed().mark_sensitive()
}
/// Write a type that implements [`Serialize`] to the parcel.
pub fn write<S: Serialize + ?Sized>(&mut self, parcelable: &S) -> Result<()> {
self.borrowed().write(parcelable)
}
/// Writes the length of a slice to the parcel.
///
/// This is used in AIDL-generated client side code to indicate the
/// allocated space for an output array parameter.
pub fn write_slice_size<T>(&mut self, slice: Option<&[T]>) -> Result<()> {
self.borrowed().write_slice_size(slice)
}
/// Perform a series of writes to the parcel, prepended with the length
/// (in bytes) of the written data.
///
/// The length `0i32` will be written to the parcel first, followed by the
/// writes performed by the callback. The initial length will then be
/// updated to the length of all data written by the callback, plus the
/// size of the length elemement itself (4 bytes).
///
/// # Examples
///
/// After the following call:
///
/// ```
/// # use binder::{Binder, Interface, Parcel};
/// # let mut parcel = Parcel::new();
/// parcel.sized_write(|subparcel| {
/// subparcel.write(&1u32)?;
/// subparcel.write(&2u32)?;
/// subparcel.write(&3u32)
/// });
/// ```
///
/// `parcel` will contain the following:
///
/// ```ignore
/// [16i32, 1u32, 2u32, 3u32]
/// ```
pub fn sized_write<F>(&mut self, f: F) -> Result<()>
where
for<'b> F: FnOnce(&'b mut WritableSubParcel<'b>) -> Result<()>,
{
self.borrowed().sized_write(f)
}
/// Returns the current position in the parcel data.
pub fn get_data_position(&self) -> i32 {
self.borrowed_ref().get_data_position()
}
/// Returns the total size of the parcel.
pub fn get_data_size(&self) -> i32 {
self.borrowed_ref().get_data_size()
}
/// Move the current read/write position in the parcel.
///
/// # Safety
///
/// This method is safe if `pos` is less than the current size of the parcel
/// data buffer. Otherwise, we are relying on correct bounds checking in the
/// Parcel C++ code on every subsequent read or write to this parcel. If all
/// accesses are bounds checked, this call is still safe, but we can't rely
/// on that.
pub unsafe fn set_data_position(&self, pos: i32) -> Result<()> {
// Safety: We have the same safety requirements as
// `BorrowedParcel::set_data_position`.
unsafe { self.borrowed_ref().set_data_position(pos) }
}
/// Append a subset of another parcel.
///
/// This appends `size` bytes of data from `other` starting at offset
/// `start` to the current parcel, or returns an error if not possible.
pub fn append_from(
&mut self,
other: &impl AsNative<sys::AParcel>,
start: i32,
size: i32,
) -> Result<()> {
self.borrowed().append_from(other, start, size)
}
/// Append the contents of another parcel.
pub fn append_all_from(&mut self, other: &impl AsNative<sys::AParcel>) -> Result<()> {
self.borrowed().append_all_from(other)
}
}
// Data deserialization methods
impl<'a> BorrowedParcel<'a> {
/// Attempt to read a type that implements [`Deserialize`] from this parcel.
pub fn read<D: Deserialize>(&self) -> Result<D> {
D::deserialize(self)
}
/// Attempt to read a type that implements [`Deserialize`] from this parcel
/// onto an existing value. This operation will overwrite the old value
/// partially or completely, depending on how much data is available.
pub fn read_onto<D: Deserialize>(&self, x: &mut D) -> Result<()> {
x.deserialize_from(self)
}
/// Safely read a sized parcelable.
///
/// Read the size of a parcelable, compute the end position
/// of that parcelable, then build a sized readable sub-parcel
/// and call a closure with the sub-parcel as its parameter.
/// The closure can keep reading data from the sub-parcel
/// until it runs out of input data. The closure is responsible
/// for calling `ReadableSubParcel::has_more_data` to check for
/// more data before every read, at least until Rust generators
/// are stabilized.
/// After the closure returns, skip to the end of the current
/// parcelable regardless of how much the closure has read.
///
/// # Examples
///
/// ```no_run
/// let mut parcelable = Default::default();
/// parcel.sized_read(|subparcel| {
/// if subparcel.has_more_data() {
/// parcelable.a = subparcel.read()?;
/// }
/// if subparcel.has_more_data() {
/// parcelable.b = subparcel.read()?;
/// }
/// Ok(())
/// });
/// ```
///
pub fn sized_read<F>(&self, f: F) -> Result<()>
where
for<'b> F: FnOnce(ReadableSubParcel<'b>) -> Result<()>,
{
let start = self.get_data_position();
let parcelable_size: i32 = self.read()?;
if parcelable_size < 4 {
return Err(StatusCode::BAD_VALUE);
}
let end = start.checked_add(parcelable_size).ok_or(StatusCode::BAD_VALUE)?;
if end > self.get_data_size() {
return Err(StatusCode::NOT_ENOUGH_DATA);
}
let subparcel = ReadableSubParcel {
parcel: BorrowedParcel { ptr: self.ptr, _lifetime: PhantomData },
end_position: end,
};
f(subparcel)?;
// Advance the data position to the actual end,
// in case the closure read less data than was available.
//
// Safety: end must be less than the current size of the parcel, because
// we checked above against `get_data_size`.
unsafe {
self.set_data_position(end)?;
}
Ok(())
}
/// Read a vector size from the parcel and resize the given output vector to
/// be correctly sized for that amount of data.
///
/// This method is used in AIDL-generated server side code for methods that
/// take a mutable slice reference parameter.
pub fn resize_out_vec<D: Default + Deserialize>(&self, out_vec: &mut Vec<D>) -> Result<()> {
let len: i32 = self.read()?;
if len < 0 {
return Err(StatusCode::UNEXPECTED_NULL);
}
// usize in Rust may be 16-bit, so i32 may not fit
let len = len.try_into().unwrap();
out_vec.resize_with(len, Default::default);
Ok(())
}
/// Read a vector size from the parcel and either create a correctly sized
/// vector for that amount of data or set the output parameter to None if
/// the vector should be null.
///
/// This method is used in AIDL-generated server side code for methods that
/// take a mutable slice reference parameter.
pub fn resize_nullable_out_vec<D: Default + Deserialize>(
&self,
out_vec: &mut Option<Vec<D>>,
) -> Result<()> {
let len: i32 = self.read()?;
if len < 0 {
*out_vec = None;
} else {
// usize in Rust may be 16-bit, so i32 may not fit
let len = len.try_into().unwrap();
let mut vec = Vec::with_capacity(len);
vec.resize_with(len, Default::default);
*out_vec = Some(vec);
}
Ok(())
}
}
/// A segment of a readable parcel, used for [`Parcel::sized_read`].
pub struct ReadableSubParcel<'a> {
parcel: BorrowedParcel<'a>,
end_position: i32,
}
impl<'a> ReadableSubParcel<'a> {
/// Read a type that implements [`Deserialize`] from the sub-parcel.
pub fn read<D: Deserialize>(&self) -> Result<D> {
D::deserialize(&self.parcel)
}
/// Check if the sub-parcel has more data to read
pub fn has_more_data(&self) -> bool {
self.parcel.get_data_position() < self.end_position
}
}
impl Parcel {
/// Attempt to read a type that implements [`Deserialize`] from this parcel.
pub fn read<D: Deserialize>(&self) -> Result<D> {
self.borrowed_ref().read()
}
/// Attempt to read a type that implements [`Deserialize`] from this parcel
/// onto an existing value. This operation will overwrite the old value
/// partially or completely, depending on how much data is available.
pub fn read_onto<D: Deserialize>(&self, x: &mut D) -> Result<()> {
self.borrowed_ref().read_onto(x)
}
/// Safely read a sized parcelable.
///
/// Read the size of a parcelable, compute the end position
/// of that parcelable, then build a sized readable sub-parcel
/// and call a closure with the sub-parcel as its parameter.
/// The closure can keep reading data from the sub-parcel
/// until it runs out of input data. The closure is responsible
/// for calling `ReadableSubParcel::has_more_data` to check for
/// more data before every read, at least until Rust generators
/// are stabilized.
/// After the closure returns, skip to the end of the current
/// parcelable regardless of how much the closure has read.
///
/// # Examples
///
/// ```no_run
/// let mut parcelable = Default::default();
/// parcel.sized_read(|subparcel| {
/// if subparcel.has_more_data() {
/// parcelable.a = subparcel.read()?;
/// }
/// if subparcel.has_more_data() {
/// parcelable.b = subparcel.read()?;
/// }
/// Ok(())
/// });
/// ```
///
pub fn sized_read<F>(&self, f: F) -> Result<()>
where
for<'b> F: FnOnce(ReadableSubParcel<'b>) -> Result<()>,
{
self.borrowed_ref().sized_read(f)
}
/// Read a vector size from the parcel and resize the given output vector to
/// be correctly sized for that amount of data.
///
/// This method is used in AIDL-generated server side code for methods that
/// take a mutable slice reference parameter.
pub fn resize_out_vec<D: Default + Deserialize>(&self, out_vec: &mut Vec<D>) -> Result<()> {
self.borrowed_ref().resize_out_vec(out_vec)
}
/// Read a vector size from the parcel and either create a correctly sized
/// vector for that amount of data or set the output parameter to None if
/// the vector should be null.
///
/// This method is used in AIDL-generated server side code for methods that
/// take a mutable slice reference parameter.
pub fn resize_nullable_out_vec<D: Default + Deserialize>(
&self,
out_vec: &mut Option<Vec<D>>,
) -> Result<()> {
self.borrowed_ref().resize_nullable_out_vec(out_vec)
}
}
// Internal APIs
impl<'a> BorrowedParcel<'a> {
pub(crate) fn write_binder(&mut self, binder: Option<&SpIBinder>) -> Result<()> {
// Safety: `BorrowedParcel` always contains a valid pointer to an
// `AParcel`. `AsNative` for `Option<SpIBinder`> will either return
// null or a valid pointer to an `AIBinder`, both of which are
// valid, safe inputs to `AParcel_writeStrongBinder`.
//
// This call does not take ownership of the binder. However, it does
// require a mutable pointer, which we cannot extract from an
// immutable reference, so we clone the binder, incrementing the
// refcount before the call. The refcount will be immediately
// decremented when this temporary is dropped.
unsafe {
status_result(sys::AParcel_writeStrongBinder(
self.as_native_mut(),
binder.cloned().as_native_mut(),
))
}
}
pub(crate) fn read_binder(&self) -> Result<Option<SpIBinder>> {
let mut binder = ptr::null_mut();
// Safety: `BorrowedParcel` always contains a valid pointer to an
// `AParcel`. We pass a valid, mutable out pointer to the `binder`
// parameter. After this call, `binder` will be either null or a
// valid pointer to an `AIBinder` owned by the caller.
let status = unsafe { sys::AParcel_readStrongBinder(self.as_native(), &mut binder) };
status_result(status)?;
// Safety: `binder` is either null or a valid, owned pointer at this
// point, so can be safely passed to `SpIBinder::from_raw`.
Ok(unsafe { SpIBinder::from_raw(binder) })
}
}
impl Drop for Parcel {
fn drop(&mut self) {
// Run the C++ Parcel complete object destructor
//
// Safety: `Parcel` always contains a valid pointer to an
// `AParcel`. Since we own the parcel, we can safely delete it
// here.
unsafe { sys::AParcel_delete(self.ptr.as_ptr()) }
}
}
impl fmt::Debug for Parcel {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Parcel").finish()
}
}
impl<'a> fmt::Debug for BorrowedParcel<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BorrowedParcel").finish()
}
}
#[test]
fn test_read_write() {
let mut parcel = Parcel::new();
let start = parcel.get_data_position();
assert_eq!(parcel.read::<bool>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<i8>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<u16>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<i32>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<u32>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<i64>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<u64>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<f32>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<f64>(), Err(StatusCode::NOT_ENOUGH_DATA));
assert_eq!(parcel.read::<Option<String>>(), Ok(None));
assert_eq!(parcel.read::<String>(), Err(StatusCode::UNEXPECTED_NULL));
assert_eq!(parcel.borrowed_ref().read_binder().err(), Some(StatusCode::BAD_TYPE));
parcel.write(&1i32).unwrap();
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
parcel.set_data_position(start).unwrap();
}
let i: i32 = parcel.read().unwrap();
assert_eq!(i, 1i32);
}
#[test]
#[allow(clippy::float_cmp)]
fn test_read_data() {
let mut parcel = Parcel::new();
let str_start = parcel.get_data_position();
parcel.write(&b"Hello, Binder!\0"[..]).unwrap();
// Skip over string length
// SAFETY: str_start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(str_start).is_ok());
}
assert_eq!(parcel.read::<i32>().unwrap(), 15);
let start = parcel.get_data_position();
assert!(parcel.read::<bool>().unwrap());
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<i8>().unwrap(), 72i8);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<u16>().unwrap(), 25928);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<i32>().unwrap(), 1819043144);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<u32>().unwrap(), 1819043144);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<i64>().unwrap(), 4764857262830019912);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<u64>().unwrap(), 4764857262830019912);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<f32>().unwrap(), 1143139100000000000000000000.0);
assert_eq!(parcel.read::<f32>().unwrap(), 40.043392);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<f64>().unwrap(), 34732488246.197815);
// Skip back to before the string length
// SAFETY: str_start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(str_start).is_ok());
}
assert_eq!(parcel.read::<Vec<u8>>().unwrap(), b"Hello, Binder!\0");
}
#[test]
fn test_utf8_utf16_conversions() {
let mut parcel = Parcel::new();
let start = parcel.get_data_position();
assert!(parcel.write("Hello, Binder!").is_ok());
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<Option<String>>().unwrap().unwrap(), "Hello, Binder!",);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert!(parcel.write("Embedded null \0 inside a string").is_ok());
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(
parcel.read::<Option<String>>().unwrap().unwrap(),
"Embedded null \0 inside a string",
);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert!(parcel.write(&["str1", "str2", "str3"][..]).is_ok());
assert!(parcel
.write(&[String::from("str4"), String::from("str5"), String::from("str6"),][..])
.is_ok());
let s1 = "Hello, Binder!";
let s2 = "This is a utf8 string.";
let s3 = "Some more text here.";
assert!(parcel.write(&[s1, s2, s3][..]).is_ok());
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
assert!(parcel.set_data_position(start).is_ok());
}
assert_eq!(parcel.read::<Vec<String>>().unwrap(), ["str1", "str2", "str3"]);
assert_eq!(parcel.read::<Vec<String>>().unwrap(), ["str4", "str5", "str6"]);
assert_eq!(parcel.read::<Vec<String>>().unwrap(), [s1, s2, s3]);
}
#[test]
fn test_sized_write() {
let mut parcel = Parcel::new();
let start = parcel.get_data_position();
let arr = [1i32, 2i32, 3i32];
parcel
.sized_write(|subparcel| subparcel.write(&arr[..]))
.expect("Could not perform sized write");
// i32 sub-parcel length + i32 array length + 3 i32 elements
let expected_len = 20i32;
assert_eq!(parcel.get_data_position(), start + expected_len);
// SAFETY: start is less than the current size of the parcel data buffer, because we haven't
// made it any shorter since we got the position.
unsafe {
parcel.set_data_position(start).unwrap();
}
assert_eq!(expected_len, parcel.read().unwrap(),);
assert_eq!(parcel.read::<Vec<i32>>().unwrap(), &arr,);
}
#[test]
fn test_append_from() {
let mut parcel1 = Parcel::new();
parcel1.write(&42i32).expect("Could not perform write");
let mut parcel2 = Parcel::new();
assert_eq!(Ok(()), parcel2.append_all_from(&parcel1));
assert_eq!(4, parcel2.get_data_size());
assert_eq!(Ok(()), parcel2.append_all_from(&parcel1));
assert_eq!(8, parcel2.get_data_size());
// SAFETY: 0 is less than the current size of the parcel data buffer, because the parcel is not
// empty.
unsafe {
parcel2.set_data_position(0).unwrap();
}
assert_eq!(Ok(42), parcel2.read::<i32>());
assert_eq!(Ok(42), parcel2.read::<i32>());
let mut parcel2 = Parcel::new();
assert_eq!(Ok(()), parcel2.append_from(&parcel1, 0, 2));
assert_eq!(Ok(()), parcel2.append_from(&parcel1, 2, 2));
assert_eq!(4, parcel2.get_data_size());
// SAFETY: 0 is less than the current size of the parcel data buffer, because the parcel is not
// empty.
unsafe {
parcel2.set_data_position(0).unwrap();
}
assert_eq!(Ok(42), parcel2.read::<i32>());
let mut parcel2 = Parcel::new();
assert_eq!(Ok(()), parcel2.append_from(&parcel1, 0, 2));
assert_eq!(2, parcel2.get_data_size());
// SAFETY: 0 is less than the current size of the parcel data buffer, because the parcel is not
// empty.
unsafe {
parcel2.set_data_position(0).unwrap();
}
assert_eq!(Err(StatusCode::NOT_ENOUGH_DATA), parcel2.read::<i32>());
let mut parcel2 = Parcel::new();
assert_eq!(Err(StatusCode::BAD_VALUE), parcel2.append_from(&parcel1, 4, 2));
assert_eq!(Err(StatusCode::BAD_VALUE), parcel2.append_from(&parcel1, 2, 4));
assert_eq!(Err(StatusCode::BAD_VALUE), parcel2.append_from(&parcel1, -1, 4));
assert_eq!(Err(StatusCode::BAD_VALUE), parcel2.append_from(&parcel1, 2, -1));
}