dhcp_client_core/
deps.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Defines trait abstractions for platform dependencies of the DHCP client
//! core, and provides fake implementations of these dependencies for testing
//! purposes.

use fuchsia_async as fasync;
use rand::Rng;

/// Provides access to random number generation.
pub trait RngProvider {
    /// The random number generator being provided.
    type RNG: Rng + ?Sized;

    /// Get access to a random number generator.
    fn get_rng(&mut self) -> &mut Self::RNG;
}

impl RngProvider for rand::rngs::StdRng {
    type RNG = Self;
    fn get_rng(&mut self) -> &mut Self::RNG {
        self
    }
}

#[derive(Clone, Copy, PartialEq, Debug)]
/// Contains information about a datagram received on a socket.
pub struct DatagramInfo<T> {
    /// The length in bytes of the datagram received on the socket.
    pub length: usize,
    /// The address associated with the datagram received on the socket
    /// (usually, the address from which the datagram was received).
    pub address: T,
}

#[derive(thiserror::Error, Debug)]
/// Errors encountered while performing a socket operation.
pub enum SocketError {
    /// Failure while attempting to open a socket.
    #[error("failed to open socket: {0}")]
    FailedToOpen(anyhow::Error),
    /// Tried to bind a socket on a nonexistent interface.
    #[error("tried to bind socket on nonexistent interface")]
    NoInterface,
    /// The hardware type of the interface is unsupported.
    #[error("unsupported hardware type")]
    UnsupportedHardwareType,
    /// The host we are attempting to send to is unreachable.
    #[error("host unreachable")]
    HostUnreachable,
    /// The network is unreachable.
    #[error("network unreachable")]
    NetworkUnreachable,
    /// Other IO errors observed on socket operations.
    #[error("socket error: {0}")]
    Other(std::io::Error),
}

/// Abstracts sending and receiving datagrams on a socket.
// `async_fn_in_trait` is stabilized, but currently emits a lint warning when
// used in pub traits due to the inability to specify Send or Sync bounds on
// the Future returned by the async fn. We suppress this lint as the DHCP client
// uses only a local executor and thus doesn't require Send + Sync.
#[allow(async_fn_in_trait)]
pub trait Socket<T> {
    /// Sends a datagram containing the contents of `buf` to `addr`.
    async fn send_to(&self, buf: &[u8], addr: T) -> Result<(), SocketError>;

    /// Receives a datagram into `buf`, returning the number of bytes received
    /// and the address the datagram was received from.
    async fn recv_from(&self, buf: &mut [u8]) -> Result<DatagramInfo<T>, SocketError>;
}

/// Provides access to AF_PACKET sockets.
// `async_fn_in_trait` is stabilized, but currently emits a lint warning when
// used in pub traits due to the inability to specify Send or Sync bounds on
// the Future returned by the async fn. We suppress this lint as the DHCP client
// uses only a local executor and thus doesn't require Send + Sync.
#[allow(async_fn_in_trait)]
pub trait PacketSocketProvider {
    /// The type of sockets provided by this `PacketSocketProvider`.
    type Sock: Socket<net_types::ethernet::Mac>;

    /// Gets a packet socket bound to the device on which the DHCP client
    /// protocol is being performed. The packet socket should already be bound
    /// to the appropriate device and protocol number.
    async fn get_packet_socket(&self) -> Result<Self::Sock, SocketError>;
}

/// Provides access to UDP sockets.
// `async_fn_in_trait` is stabilized, but currently emits a lint warning when
// used in pub traits due to the inability to specify Send or Sync bounds on
// the Future returned by the async fn. We suppress this lint as the DHCP client
// uses only a local executor and thus doesn't require Send + Sync.
#[allow(async_fn_in_trait)]
pub trait UdpSocketProvider {
    /// The type of sockets provided by this `UdpSocketProvider`.
    type Sock: Socket<std::net::SocketAddr>;

    /// Gets a UDP socket bound to the given address. The UDP socket should be
    /// allowed to send broadcast packets.
    async fn bind_new_udp_socket(
        &self,
        bound_addr: std::net::SocketAddr,
    ) -> Result<Self::Sock, SocketError>;
}

/// A type representing an instant in time.
pub trait Instant: Sized + Ord + Copy + Clone + std::fmt::Debug + Send + Sync {
    /// Returns the time `self + duration`. Panics if `self + duration` would
    /// overflow the underlying instant storage type.
    fn add(&self, duration: std::time::Duration) -> Self;

    /// Returns the instant halfway between `self` and `other`.
    fn average(&self, other: Self) -> Self;
}

impl Instant for fasync::MonotonicInstant {
    fn add(&self, duration: std::time::Duration) -> Self {
        // On host builds, fasync::MonotonicDuration is simply an alias for
        // std::time::Duration, making the `duration.into()` appear useless.
        #[allow(clippy::useless_conversion)]
        {
            *self + duration.into()
        }
    }

    fn average(&self, other: Self) -> Self {
        let lower = *self.min(&other);
        let higher = *self.max(&other);
        lower + (higher - lower) / 2
    }
}

/// Provides access to system-time-related operations.
// `async_fn_in_trait` is stabilized, but currently emits a lint warning when
// used in pub traits due to the inability to specify Send or Sync bounds on
// the Future returned by the async fn. We suppress this lint as the DHCP client
// uses only a local executor and thus doesn't require Send + Sync.
#[allow(async_fn_in_trait)]
pub trait Clock {
    /// The type representing monotonic system time.
    type Instant: Instant;

    /// Completes once the monotonic system time is at or after the given time.
    async fn wait_until(&self, time: Self::Instant);

    /// Gets the monotonic system time.
    fn now(&self) -> Self::Instant;
}

#[cfg(test)]
pub(crate) mod testutil {
    use super::*;
    use futures::channel::{mpsc, oneshot};
    use futures::lock::Mutex;
    use futures::StreamExt as _;
    use rand::SeedableRng as _;
    use std::cell::RefCell;
    use std::cmp::Reverse;
    use std::collections::BTreeMap;
    use std::future::Future;
    use std::ops::{Deref as _, DerefMut as _};
    use std::rc::Rc;

    /// Provides a seedable implementation of `RngProvider` using `StdRng`.
    pub(crate) struct FakeRngProvider {
        std_rng: rand::rngs::StdRng,
    }

    impl FakeRngProvider {
        pub(crate) fn new(seed: u64) -> Self {
            Self { std_rng: rand::rngs::StdRng::seed_from_u64(seed) }
        }
    }

    impl RngProvider for FakeRngProvider {
        type RNG = rand::rngs::StdRng;
        fn get_rng(&mut self) -> &mut Self::RNG {
            &mut self.std_rng
        }
    }

    /// Provides a fake implementation of `Socket` using `mpsc` channels.
    ///
    /// Simply forwards pairs of (payload, address) over the channel. This means
    /// that the "sent to" address from the sender side is actually observed as
    /// the "received from" address on the receiver side.
    pub(crate) struct FakeSocket<T> {
        sender: mpsc::UnboundedSender<(Vec<u8>, T)>,
        receiver: Mutex<mpsc::UnboundedReceiver<(Vec<u8>, T)>>,
    }

    impl<T> FakeSocket<T> {
        pub(crate) fn new_pair() -> (FakeSocket<T>, FakeSocket<T>) {
            let (send_a, recv_a) = mpsc::unbounded();
            let (send_b, recv_b) = mpsc::unbounded();
            (
                FakeSocket { sender: send_a, receiver: Mutex::new(recv_b) },
                FakeSocket { sender: send_b, receiver: Mutex::new(recv_a) },
            )
        }
    }

    impl<T: Send> Socket<T> for FakeSocket<T> {
        async fn send_to(&self, buf: &[u8], addr: T) -> Result<(), SocketError> {
            let FakeSocket { sender, receiver: _ } = self;
            sender.clone().unbounded_send((buf.to_vec(), addr)).expect("unbounded_send error");
            Ok(())
        }

        async fn recv_from(&self, buf: &mut [u8]) -> Result<DatagramInfo<T>, SocketError> {
            let FakeSocket { receiver, sender: _ } = self;
            let mut receiver = receiver.lock().await;
            let (bytes, addr) = receiver.next().await.expect("TestSocket receiver closed");
            if buf.len() < bytes.len() {
                panic!("TestSocket receiver would produce short read")
            }
            (buf[..bytes.len()]).copy_from_slice(&bytes);
            Ok(DatagramInfo { length: bytes.len(), address: addr })
        }
    }

    impl<T, U> Socket<U> for T
    where
        T: AsRef<FakeSocket<U>>,
        U: Send + 'static,
    {
        async fn send_to(&self, buf: &[u8], addr: U) -> Result<(), SocketError> {
            self.as_ref().send_to(buf, addr).await
        }

        async fn recv_from(&self, buf: &mut [u8]) -> Result<DatagramInfo<U>, SocketError> {
            self.as_ref().recv_from(buf).await
        }
    }

    /// Fake socket provider implementation that vends out copies of
    /// the same `FakeSocket`.
    ///
    /// These copies will compete to receive and send on the same underlying
    /// `mpsc` channels.
    pub(crate) struct FakeSocketProvider<T, E> {
        /// The socket being vended out.
        pub(crate) socket: Rc<FakeSocket<T>>,

        /// If present, used to notify tests when the client binds new sockets.
        pub(crate) bound_events: Option<mpsc::UnboundedSender<E>>,
    }

    impl<T, E> FakeSocketProvider<T, E> {
        pub(crate) fn new(socket: FakeSocket<T>) -> Self {
            Self { socket: Rc::new(socket), bound_events: None }
        }

        pub(crate) fn new_with_events(
            socket: FakeSocket<T>,
            bound_events: mpsc::UnboundedSender<E>,
        ) -> Self {
            Self { socket: Rc::new(socket), bound_events: Some(bound_events) }
        }
    }

    impl PacketSocketProvider for FakeSocketProvider<net_types::ethernet::Mac, ()> {
        type Sock = Rc<FakeSocket<net_types::ethernet::Mac>>;
        async fn get_packet_socket(&self) -> Result<Self::Sock, SocketError> {
            let Self { socket, bound_events } = self;
            if let Some(bound_events) = bound_events {
                bound_events.unbounded_send(()).expect("events receiver should not be dropped");
            }
            Ok(socket.clone())
        }
    }

    impl UdpSocketProvider for FakeSocketProvider<std::net::SocketAddr, std::net::SocketAddr> {
        type Sock = Rc<FakeSocket<std::net::SocketAddr>>;
        async fn bind_new_udp_socket(
            &self,
            bound_addr: std::net::SocketAddr,
        ) -> Result<Self::Sock, SocketError> {
            let Self { socket, bound_events } = self;
            if let Some(bound_events) = bound_events {
                bound_events
                    .unbounded_send(bound_addr)
                    .expect("events receiver should not be dropped");
            }
            Ok(socket.clone())
        }
    }

    impl Instant for std::time::Duration {
        fn add(&self, duration: std::time::Duration) -> Self {
            self.checked_add(duration).unwrap()
        }

        fn average(&self, other: Self) -> Self {
            let lower = *self.min(&other);
            let higher = *self.max(&other);
            lower + (higher - lower) / 2
        }
    }

    /// Fake implementation of `Time` that uses `std::time::Duration` as its
    /// `Instant` type.
    pub(crate) struct FakeTimeController {
        pub(super) timer_heap:
            BTreeMap<std::cmp::Reverse<std::time::Duration>, Vec<oneshot::Sender<()>>>,
        pub(super) current_time: std::time::Duration,
    }

    impl FakeTimeController {
        pub(crate) fn new() -> Rc<RefCell<FakeTimeController>> {
            Rc::new(RefCell::new(FakeTimeController {
                timer_heap: BTreeMap::default(),
                current_time: std::time::Duration::default(),
            }))
        }
    }

    /// Advances the "current time" encoded by `ctl` by `duration`. Any timers
    /// that were set at or before the resulting "current time" will fire.
    pub(crate) fn advance(ctl: &Rc<RefCell<FakeTimeController>>, duration: std::time::Duration) {
        let timers_to_fire = {
            let mut ctl = ctl.borrow_mut();
            let FakeTimeController { timer_heap, current_time } = ctl.deref_mut();
            let next_time = *current_time + duration;
            *current_time = next_time;
            timer_heap.split_off(&std::cmp::Reverse(next_time))
        };
        for (_, senders) in timers_to_fire {
            for sender in senders {
                match sender.send(()) {
                    Ok(()) => (),
                    Err(()) => {
                        // ignore, it's fine for the client core to drop a timer
                        // to cancel it
                    }
                }
            }
        }
    }

    pub(crate) fn run_until_next_timers_fire<F>(
        executor: &mut fasync::TestExecutor,
        time: &Rc<RefCell<FakeTimeController>>,
        main_future: &mut F,
    ) -> std::task::Poll<F::Output>
    where
        F: Future + Unpin,
    {
        let poll: std::task::Poll<_> = executor.run_until_stalled(main_future);
        if poll.is_ready() {
            return poll;
        }

        {
            let mut time = time.borrow_mut();
            let FakeTimeController { timer_heap, current_time } = time.deref_mut();

            // NOTE: the timer heap is ordered by Reverse<Duration> in order to
            // facilitate the implementation of `advance()` by making
            // `BTreeMap::split_off` have the right edge-case behavior. This
            // makes it easy to get it first_entry vs last_entry mixed up here,
            // though.
            let earliest_entry = timer_heap.last_entry().expect("no timers installed");

            let (Reverse(instant), senders) = earliest_entry.remove_entry();
            *current_time = instant;
            for sender in senders {
                match sender.send(()) {
                    Ok(()) => (),
                    Err(()) => {
                        // ignore, it's fine for the client core to drop a timer
                        // to cancel it
                    }
                }
            }
        }

        executor.run_until_stalled(main_future)
    }

    impl Clock for Rc<RefCell<FakeTimeController>> {
        type Instant = std::time::Duration;

        fn now(&self) -> Self::Instant {
            let ctl = self.borrow_mut();
            let FakeTimeController { timer_heap: _, current_time } = ctl.deref();
            *current_time
        }

        async fn wait_until(&self, time: Self::Instant) {
            log::info!("registering timer at {:?}", time);
            let receiver = {
                let mut ctl = self.borrow_mut();
                let FakeTimeController { timer_heap, current_time } = ctl.deref_mut();
                if *current_time >= time {
                    return;
                }
                let (sender, receiver) = oneshot::channel();
                timer_heap.entry(std::cmp::Reverse(time)).or_default().push(sender);
                receiver
            };
            receiver.await.expect("shouldn't be cancelled")
        }
    }
}

#[cfg(test)]
mod test {
    use super::testutil::*;
    use super::*;
    use fuchsia_async as fasync;
    use futures::channel::mpsc;
    use futures::{FutureExt, StreamExt};
    use net_declare::std_socket_addr;
    use std::pin::pin;

    #[test]
    fn test_rng() {
        let make_sequence = |seed| {
            let mut rng = FakeRngProvider::new(seed);
            std::iter::from_fn(|| Some(rng.get_rng().gen::<u32>())).take(5).collect::<Vec<_>>()
        };
        assert_eq!(
            make_sequence(42),
            make_sequence(42),
            "should provide identical sequences with same seed"
        );
        assert_ne!(
            make_sequence(42),
            make_sequence(999999),
            "should provide different sequences with different seeds"
        );
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_socket() {
        let (a, b) = FakeSocket::new_pair();
        let to_send = [
            (b"hello".to_vec(), "1.2.3.4:5".to_string()),
            (b"test".to_vec(), "1.2.3.5:5".to_string()),
            (b"socket".to_vec(), "1.2.3.6:5".to_string()),
        ];

        let mut buf = [0u8; 10];
        for (msg, addr) in &to_send {
            a.send_to(msg, addr.clone()).await.unwrap();

            let DatagramInfo { length: n, address: received_addr } =
                b.recv_from(&mut buf).await.unwrap();
            assert_eq!(&received_addr, addr);
            assert_eq!(&buf[..n], msg);
        }

        let (a, b) = (b, a);
        for (msg, addr) in &to_send {
            a.send_to(msg, addr.clone()).await.unwrap();

            let DatagramInfo { length: n, address: received_addr } =
                b.recv_from(&mut buf).await.unwrap();
            assert_eq!(&received_addr, addr);
            assert_eq!(&buf[..n], msg);
        }
    }

    #[fasync::run_singlethreaded(test)]
    #[should_panic]
    async fn test_socket_panics_on_short_read() {
        let (a, b) = FakeSocket::new_pair();

        let mut buf = [0u8; 10];
        let message = b"this message is way longer than 10 bytes";
        a.send_to(message, "1.2.3.4:5".to_string()).await.unwrap();

        // Should panic here.
        let _: Result<_, _> = b.recv_from(&mut buf).await;
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_fake_udp_socket_provider() {
        let (a, b) = FakeSocket::new_pair();
        let (events_sender, mut events_receiver) = mpsc::unbounded();
        let provider = FakeSocketProvider::new_with_events(b, events_sender);
        const ADDR_1: std::net::SocketAddr = std_socket_addr!("1.1.1.1:11");
        const ADDR_2: std::net::SocketAddr = std_socket_addr!("2.2.2.2:22");
        const ADDR_3: std::net::SocketAddr = std_socket_addr!("3.3.3.3:33");
        let b_1 = provider.bind_new_udp_socket(ADDR_1).await.expect("get packet socket");
        assert_eq!(
            events_receiver
                .next()
                .now_or_never()
                .expect("should have received bound event")
                .expect("stream should not have ended"),
            ADDR_1
        );

        let b_2 = provider.bind_new_udp_socket(ADDR_2).await.expect("get packet socket");
        assert_eq!(
            events_receiver
                .next()
                .now_or_never()
                .expect("should have received bound event")
                .expect("stream should not have ended"),
            ADDR_2
        );

        a.send_to(b"hello", ADDR_3).await.unwrap();
        a.send_to(b"world", ADDR_3).await.unwrap();

        let mut buf = [0u8; 5];
        let DatagramInfo { length, address } = b_1.recv_from(&mut buf).await.unwrap();
        assert_eq!(&buf[..length], b"hello");
        assert_eq!(address, ADDR_3);

        let DatagramInfo { length, address } = b_2.recv_from(&mut buf).await.unwrap();
        assert_eq!(&buf[..length], b"world");
        assert_eq!(address, ADDR_3);
    }

    #[fasync::run_singlethreaded(test)]
    async fn test_fake_packet_socket_provider() {
        let (a, b) = FakeSocket::new_pair();
        let (events_sender, mut events_receiver) = mpsc::unbounded();
        let provider = FakeSocketProvider::new_with_events(b, events_sender);
        let b_1 = provider.get_packet_socket().await.expect("get packet socket");
        events_receiver
            .next()
            .now_or_never()
            .expect("should have received bound event")
            .expect("stream should not have ended");

        let b_2 = provider.get_packet_socket().await.expect("get packet socket");
        events_receiver
            .next()
            .now_or_never()
            .expect("should have received bound event")
            .expect("stream should not have ended");

        const ADDRESS: net_types::ethernet::Mac = net_declare::net_mac!("01:02:03:04:05:06");

        a.send_to(b"hello", ADDRESS).await.unwrap();

        a.send_to(b"world", ADDRESS).await.unwrap();

        let mut buf = [0u8; 5];
        let DatagramInfo { length, address } = b_1.recv_from(&mut buf).await.unwrap();
        assert_eq!(&buf[..length], b"hello");
        assert_eq!(address, ADDRESS);

        let DatagramInfo { length, address } = b_2.recv_from(&mut buf).await.unwrap();
        assert_eq!(&buf[..length], b"world");
        assert_eq!(address, ADDRESS);
    }

    #[test]
    fn test_time_controller() {
        let time_ctl = FakeTimeController::new();
        assert!(time_ctl.borrow().timer_heap.is_empty());
        assert_eq!(time_ctl.borrow().current_time, std::time::Duration::from_secs(0));
        assert_eq!(time_ctl.now(), std::time::Duration::from_secs(0));

        let mut timer_registered_before_should_fire_1 =
            pin!(time_ctl.wait_until(std::time::Duration::from_secs(1)));
        let mut timer_registered_before_should_fire_2 =
            pin!(time_ctl.wait_until(std::time::Duration::from_secs(1)));

        let mut timer_should_not_fire =
            pin!(time_ctl.wait_until(std::time::Duration::from_secs(10)));

        // Poll the timer futures once so that they have the chance to
        // register themselves in our timer heap.
        {
            let waker = futures::task::noop_waker();
            let mut context = futures::task::Context::from_waker(&waker);
            assert_eq!(
                timer_registered_before_should_fire_1.poll_unpin(&mut context),
                futures::task::Poll::Pending
            );
            assert_eq!(
                timer_registered_before_should_fire_2.poll_unpin(&mut context),
                futures::task::Poll::Pending
            );
            assert_eq!(
                timer_should_not_fire.poll_unpin(&mut context),
                futures::task::Poll::Pending
            );
        }

        {
            let time_ctl = time_ctl.borrow_mut();
            let entries = time_ctl.timer_heap.iter().collect::<Vec<_>>();
            assert_eq!(entries.len(), 2);

            let (time, senders) = entries[0];
            assert_eq!(time, &std::cmp::Reverse(std::time::Duration::from_secs(10)));
            assert_eq!(senders.len(), 1);

            let (time, senders) = entries[1];
            assert_eq!(time, &std::cmp::Reverse(std::time::Duration::from_secs(1)));
            assert_eq!(senders.len(), 2);
        }

        advance(&time_ctl, std::time::Duration::from_secs(1));

        assert_eq!(time_ctl.now(), std::time::Duration::from_secs(1));
        {
            let time_ctl = time_ctl.borrow_mut();
            let entries = time_ctl.timer_heap.iter().collect::<Vec<_>>();
            assert_eq!(entries.len(), 1);
            let (time, senders) = entries[0];
            assert_eq!(time, &std::cmp::Reverse(std::time::Duration::from_secs(10)));
            assert_eq!(senders.len(), 1);
        }

        assert_eq!(timer_registered_before_should_fire_1.now_or_never(), Some(()));
        assert_eq!(timer_registered_before_should_fire_2.now_or_never(), Some(()));
        assert_eq!(timer_should_not_fire.now_or_never(), None);

        let timer_set_in_past = time_ctl.wait_until(std::time::Duration::from_secs(0));
        assert_eq!(timer_set_in_past.now_or_never(), Some(()));

        let timer_set_for_present = time_ctl.wait_until(time_ctl.now());
        assert_eq!(timer_set_for_present.now_or_never(), Some(()));
    }
}