hyper/server/
server.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
use std::error::Error as StdError;
use std::fmt;
#[cfg(feature = "tcp")]
use std::net::{SocketAddr, TcpListener as StdTcpListener};
#[cfg(any(feature = "tcp", feature = "http1"))]
use std::time::Duration;

use pin_project_lite::pin_project;
use tokio::io::{AsyncRead, AsyncWrite};
use tracing::trace;

use super::accept::Accept;
#[cfg(all(feature = "tcp"))]
use super::tcp::AddrIncoming;
use crate::body::{Body, HttpBody};
use crate::common::exec::Exec;
use crate::common::exec::{ConnStreamExec, NewSvcExec};
use crate::common::{task, Future, Pin, Poll, Unpin};
// Renamed `Http` as `Http_` for now so that people upgrading don't see an
// error that `hyper::server::Http` is private...
use super::conn::{Connection, Http as Http_, UpgradeableConnection};
use super::shutdown::{Graceful, GracefulWatcher};
use crate::service::{HttpService, MakeServiceRef};

use self::new_svc::NewSvcTask;

pin_project! {
    /// A listening HTTP server that accepts connections in both HTTP1 and HTTP2 by default.
    ///
    /// `Server` is a `Future` mapping a bound listener with a set of service
    /// handlers. It is built using the [`Builder`](Builder), and the future
    /// completes when the server has been shutdown. It should be run by an
    /// `Executor`.
    pub struct Server<I, S, E = Exec> {
        #[pin]
        incoming: I,
        make_service: S,
        protocol: Http_<E>,
    }
}

/// A builder for a [`Server`](Server).
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(any(feature = "http1", feature = "http2"))))]
pub struct Builder<I, E = Exec> {
    incoming: I,
    protocol: Http_<E>,
}

// ===== impl Server =====

#[cfg_attr(docsrs, doc(cfg(any(feature = "http1", feature = "http2"))))]
impl<I> Server<I, ()> {
    /// Starts a [`Builder`](Builder) with the provided incoming stream.
    pub fn builder(incoming: I) -> Builder<I> {
        Builder {
            incoming,
            protocol: Http_::new(),
        }
    }
}

#[cfg(feature = "tcp")]
#[cfg_attr(
    docsrs,
    doc(cfg(all(feature = "tcp", any(feature = "http1", feature = "http2"))))
)]
impl Server<AddrIncoming, ()> {
    /// Binds to the provided address, and returns a [`Builder`](Builder).
    ///
    /// # Panics
    ///
    /// This method will panic if binding to the address fails. For a method
    /// to bind to an address and return a `Result`, see `Server::try_bind`.
    pub fn bind(addr: &SocketAddr) -> Builder<AddrIncoming> {
        let incoming = AddrIncoming::new(addr).unwrap_or_else(|e| {
            panic!("error binding to {}: {}", addr, e);
        });
        Server::builder(incoming)
    }

    /// Tries to bind to the provided address, and returns a [`Builder`](Builder).
    pub fn try_bind(addr: &SocketAddr) -> crate::Result<Builder<AddrIncoming>> {
        AddrIncoming::new(addr).map(Server::builder)
    }

    /// Create a new instance from a `std::net::TcpListener` instance.
    pub fn from_tcp(listener: StdTcpListener) -> Result<Builder<AddrIncoming>, crate::Error> {
        AddrIncoming::from_std(listener).map(Server::builder)
    }
}

#[cfg(feature = "tcp")]
#[cfg_attr(
    docsrs,
    doc(cfg(all(feature = "tcp", any(feature = "http1", feature = "http2"))))
)]
impl<S, E> Server<AddrIncoming, S, E> {
    /// Returns the local address that this server is bound to.
    pub fn local_addr(&self) -> SocketAddr {
        self.incoming.local_addr()
    }
}

#[cfg_attr(docsrs, doc(cfg(any(feature = "http1", feature = "http2"))))]
impl<I, IO, IE, S, E, B> Server<I, S, E>
where
    I: Accept<Conn = IO, Error = IE>,
    IE: Into<Box<dyn StdError + Send + Sync>>,
    IO: AsyncRead + AsyncWrite + Unpin + Send + 'static,
    S: MakeServiceRef<IO, Body, ResBody = B>,
    S::Error: Into<Box<dyn StdError + Send + Sync>>,
    B: HttpBody + 'static,
    B::Error: Into<Box<dyn StdError + Send + Sync>>,
    E: ConnStreamExec<<S::Service as HttpService<Body>>::Future, B>,
{
    /// Prepares a server to handle graceful shutdown when the provided future
    /// completes.
    ///
    /// # Example
    ///
    /// ```
    /// # fn main() {}
    /// # #[cfg(feature = "tcp")]
    /// # async fn run() {
    /// # use hyper::{Body, Response, Server, Error};
    /// # use hyper::service::{make_service_fn, service_fn};
    /// # let make_service = make_service_fn(|_| async {
    /// #     Ok::<_, Error>(service_fn(|_req| async {
    /// #         Ok::<_, Error>(Response::new(Body::from("Hello World")))
    /// #     }))
    /// # });
    /// // Make a server from the previous examples...
    /// let server = Server::bind(&([127, 0, 0, 1], 3000).into())
    ///     .serve(make_service);
    ///
    /// // Prepare some signal for when the server should start shutting down...
    /// let (tx, rx) = tokio::sync::oneshot::channel::<()>();
    /// let graceful = server
    ///     .with_graceful_shutdown(async {
    ///         rx.await.ok();
    ///     });
    ///
    /// // Await the `server` receiving the signal...
    /// if let Err(e) = graceful.await {
    ///     eprintln!("server error: {}", e);
    /// }
    ///
    /// // And later, trigger the signal by calling `tx.send(())`.
    /// let _ = tx.send(());
    /// # }
    /// ```
    pub fn with_graceful_shutdown<F>(self, signal: F) -> Graceful<I, S, F, E>
    where
        F: Future<Output = ()>,
        E: NewSvcExec<IO, S::Future, S::Service, E, GracefulWatcher>,
    {
        Graceful::new(self, signal)
    }

    fn poll_next_(
        self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
    ) -> Poll<Option<crate::Result<Connecting<IO, S::Future, E>>>> {
        let me = self.project();
        match ready!(me.make_service.poll_ready_ref(cx)) {
            Ok(()) => (),
            Err(e) => {
                trace!("make_service closed");
                return Poll::Ready(Some(Err(crate::Error::new_user_make_service(e))));
            }
        }

        if let Some(item) = ready!(me.incoming.poll_accept(cx)) {
            let io = item.map_err(crate::Error::new_accept)?;
            let new_fut = me.make_service.make_service_ref(&io);
            Poll::Ready(Some(Ok(Connecting {
                future: new_fut,
                io: Some(io),
                protocol: me.protocol.clone(),
            })))
        } else {
            Poll::Ready(None)
        }
    }

    pub(super) fn poll_watch<W>(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
        watcher: &W,
    ) -> Poll<crate::Result<()>>
    where
        E: NewSvcExec<IO, S::Future, S::Service, E, W>,
        W: Watcher<IO, S::Service, E>,
    {
        loop {
            if let Some(connecting) = ready!(self.as_mut().poll_next_(cx)?) {
                let fut = NewSvcTask::new(connecting, watcher.clone());
                self.as_mut().project().protocol.exec.execute_new_svc(fut);
            } else {
                return Poll::Ready(Ok(()));
            }
        }
    }
}

#[cfg_attr(docsrs, doc(cfg(any(feature = "http1", feature = "http2"))))]
impl<I, IO, IE, S, B, E> Future for Server<I, S, E>
where
    I: Accept<Conn = IO, Error = IE>,
    IE: Into<Box<dyn StdError + Send + Sync>>,
    IO: AsyncRead + AsyncWrite + Unpin + Send + 'static,
    S: MakeServiceRef<IO, Body, ResBody = B>,
    S::Error: Into<Box<dyn StdError + Send + Sync>>,
    B: HttpBody + 'static,
    B::Error: Into<Box<dyn StdError + Send + Sync>>,
    E: ConnStreamExec<<S::Service as HttpService<Body>>::Future, B>,
    E: NewSvcExec<IO, S::Future, S::Service, E, NoopWatcher>,
{
    type Output = crate::Result<()>;

    fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
        self.poll_watch(cx, &NoopWatcher)
    }
}

impl<I: fmt::Debug, S: fmt::Debug> fmt::Debug for Server<I, S> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut st = f.debug_struct("Server");
        st.field("listener", &self.incoming);
        st.finish()
    }
}

// ===== impl Builder =====

#[cfg_attr(docsrs, doc(cfg(any(feature = "http1", feature = "http2"))))]
impl<I, E> Builder<I, E> {
    /// Start a new builder, wrapping an incoming stream and low-level options.
    ///
    /// For a more convenient constructor, see [`Server::bind`](Server::bind).
    pub fn new(incoming: I, protocol: Http_<E>) -> Self {
        Builder { incoming, protocol }
    }

    /// Sets whether to use keep-alive for HTTP/1 connections.
    ///
    /// Default is `true`.
    #[cfg(feature = "http1")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http1")))]
    pub fn http1_keepalive(mut self, val: bool) -> Self {
        self.protocol.http1_keep_alive(val);
        self
    }

    /// Set whether HTTP/1 connections should support half-closures.
    ///
    /// Clients can chose to shutdown their write-side while waiting
    /// for the server to respond. Setting this to `true` will
    /// prevent closing the connection immediately if `read`
    /// detects an EOF in the middle of a request.
    ///
    /// Default is `false`.
    #[cfg(feature = "http1")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http1")))]
    pub fn http1_half_close(mut self, val: bool) -> Self {
        self.protocol.http1_half_close(val);
        self
    }

    /// Set the maximum buffer size.
    ///
    /// Default is ~ 400kb.
    #[cfg(feature = "http1")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http1")))]
    pub fn http1_max_buf_size(mut self, val: usize) -> Self {
        self.protocol.max_buf_size(val);
        self
    }

    // Sets whether to bunch up HTTP/1 writes until the read buffer is empty.
    //
    // This isn't really desirable in most cases, only really being useful in
    // silly pipeline benchmarks.
    #[doc(hidden)]
    #[cfg(feature = "http1")]
    pub fn http1_pipeline_flush(mut self, val: bool) -> Self {
        self.protocol.pipeline_flush(val);
        self
    }

    /// Set whether HTTP/1 connections should try to use vectored writes,
    /// or always flatten into a single buffer.
    ///
    /// Note that setting this to false may mean more copies of body data,
    /// but may also improve performance when an IO transport doesn't
    /// support vectored writes well, such as most TLS implementations.
    ///
    /// Setting this to true will force hyper to use queued strategy
    /// which may eliminate unnecessary cloning on some TLS backends
    ///
    /// Default is `auto`. In this mode hyper will try to guess which
    /// mode to use
    #[cfg(feature = "http1")]
    pub fn http1_writev(mut self, enabled: bool) -> Self {
        self.protocol.http1_writev(enabled);
        self
    }

    /// Set whether HTTP/1 connections will write header names as title case at
    /// the socket level.
    ///
    /// Note that this setting does not affect HTTP/2.
    ///
    /// Default is false.
    #[cfg(feature = "http1")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http1")))]
    pub fn http1_title_case_headers(mut self, val: bool) -> Self {
        self.protocol.http1_title_case_headers(val);
        self
    }

    /// Set whether to support preserving original header cases.
    ///
    /// Currently, this will record the original cases received, and store them
    /// in a private extension on the `Request`. It will also look for and use
    /// such an extension in any provided `Response`.
    ///
    /// Since the relevant extension is still private, there is no way to
    /// interact with the original cases. The only effect this can have now is
    /// to forward the cases in a proxy-like fashion.
    ///
    /// Note that this setting does not affect HTTP/2.
    ///
    /// Default is false.
    #[cfg(feature = "http1")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http1")))]
    pub fn http1_preserve_header_case(mut self, val: bool) -> Self {
        self.protocol.http1_preserve_header_case(val);
        self
    }

    /// Set a timeout for reading client request headers. If a client does not
    /// transmit the entire header within this time, the connection is closed.
    ///
    /// Default is None.
    #[cfg(all(feature = "http1", feature = "runtime"))]
    #[cfg_attr(docsrs, doc(cfg(all(feature = "http1", feature = "runtime"))))]
    pub fn http1_header_read_timeout(mut self, read_timeout: Duration) -> Self {
        self.protocol.http1_header_read_timeout(read_timeout);
        self
    }

    /// Sets whether HTTP/1 is required.
    ///
    /// Default is `false`.
    #[cfg(feature = "http1")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http1")))]
    pub fn http1_only(mut self, val: bool) -> Self {
        self.protocol.http1_only(val);
        self
    }

    /// Sets whether HTTP/2 is required.
    ///
    /// Default is `false`.
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_only(mut self, val: bool) -> Self {
        self.protocol.http2_only(val);
        self
    }

    /// Sets the [`SETTINGS_INITIAL_WINDOW_SIZE`][spec] option for HTTP2
    /// stream-level flow control.
    ///
    /// Passing `None` will do nothing.
    ///
    /// If not set, hyper will use a default.
    ///
    /// [spec]: https://http2.github.io/http2-spec/#SETTINGS_INITIAL_WINDOW_SIZE
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_initial_stream_window_size(mut self, sz: impl Into<Option<u32>>) -> Self {
        self.protocol.http2_initial_stream_window_size(sz.into());
        self
    }

    /// Sets the max connection-level flow control for HTTP2
    ///
    /// Passing `None` will do nothing.
    ///
    /// If not set, hyper will use a default.
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_initial_connection_window_size(mut self, sz: impl Into<Option<u32>>) -> Self {
        self.protocol
            .http2_initial_connection_window_size(sz.into());
        self
    }

    /// Sets whether to use an adaptive flow control.
    ///
    /// Enabling this will override the limits set in
    /// `http2_initial_stream_window_size` and
    /// `http2_initial_connection_window_size`.
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_adaptive_window(mut self, enabled: bool) -> Self {
        self.protocol.http2_adaptive_window(enabled);
        self
    }

    /// Sets the maximum frame size to use for HTTP2.
    ///
    /// Passing `None` will do nothing.
    ///
    /// If not set, hyper will use a default.
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_max_frame_size(mut self, sz: impl Into<Option<u32>>) -> Self {
        self.protocol.http2_max_frame_size(sz);
        self
    }

    /// Sets the [`SETTINGS_MAX_CONCURRENT_STREAMS`][spec] option for HTTP2
    /// connections.
    ///
    /// Default is no limit (`std::u32::MAX`). Passing `None` will do nothing.
    ///
    /// [spec]: https://http2.github.io/http2-spec/#SETTINGS_MAX_CONCURRENT_STREAMS
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_max_concurrent_streams(mut self, max: impl Into<Option<u32>>) -> Self {
        self.protocol.http2_max_concurrent_streams(max.into());
        self
    }

    /// Sets an interval for HTTP2 Ping frames should be sent to keep a
    /// connection alive.
    ///
    /// Pass `None` to disable HTTP2 keep-alive.
    ///
    /// Default is currently disabled.
    ///
    /// # Cargo Feature
    ///
    /// Requires the `runtime` cargo feature to be enabled.
    #[cfg(all(feature = "runtime", feature = "http2"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_keep_alive_interval(mut self, interval: impl Into<Option<Duration>>) -> Self {
        self.protocol.http2_keep_alive_interval(interval);
        self
    }

    /// Sets a timeout for receiving an acknowledgement of the keep-alive ping.
    ///
    /// If the ping is not acknowledged within the timeout, the connection will
    /// be closed. Does nothing if `http2_keep_alive_interval` is disabled.
    ///
    /// Default is 20 seconds.
    ///
    /// # Cargo Feature
    ///
    /// Requires the `runtime` cargo feature to be enabled.
    #[cfg(all(feature = "runtime", feature = "http2"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_keep_alive_timeout(mut self, timeout: Duration) -> Self {
        self.protocol.http2_keep_alive_timeout(timeout);
        self
    }

    /// Set the maximum write buffer size for each HTTP/2 stream.
    ///
    /// Default is currently ~400KB, but may change.
    ///
    /// # Panics
    ///
    /// The value must be no larger than `u32::MAX`.
    #[cfg(feature = "http2")]
    #[cfg_attr(docsrs, doc(cfg(feature = "http2")))]
    pub fn http2_max_send_buf_size(mut self, max: usize) -> Self {
        self.protocol.http2_max_send_buf_size(max);
        self
    }

    /// Enables the [extended CONNECT protocol].
    ///
    /// [extended CONNECT protocol]: https://datatracker.ietf.org/doc/html/rfc8441#section-4
    #[cfg(feature = "http2")]
    pub fn http2_enable_connect_protocol(mut self) -> Self {
        self.protocol.http2_enable_connect_protocol();
        self
    }

    /// Sets the `Executor` to deal with connection tasks.
    ///
    /// Default is `tokio::spawn`.
    pub fn executor<E2>(self, executor: E2) -> Builder<I, E2> {
        Builder {
            incoming: self.incoming,
            protocol: self.protocol.with_executor(executor),
        }
    }

    /// Consume this `Builder`, creating a [`Server`](Server).
    ///
    /// # Example
    ///
    /// ```
    /// # #[cfg(feature = "tcp")]
    /// # async fn run() {
    /// use hyper::{Body, Error, Response, Server};
    /// use hyper::service::{make_service_fn, service_fn};
    ///
    /// // Construct our SocketAddr to listen on...
    /// let addr = ([127, 0, 0, 1], 3000).into();
    ///
    /// // And a MakeService to handle each connection...
    /// let make_svc = make_service_fn(|_| async {
    ///     Ok::<_, Error>(service_fn(|_req| async {
    ///         Ok::<_, Error>(Response::new(Body::from("Hello World")))
    ///     }))
    /// });
    ///
    /// // Then bind and serve...
    /// let server = Server::bind(&addr)
    ///     .serve(make_svc);
    ///
    /// // Run forever-ish...
    /// if let Err(err) = server.await {
    ///     eprintln!("server error: {}", err);
    /// }
    /// # }
    /// ```
    pub fn serve<S, B>(self, make_service: S) -> Server<I, S, E>
    where
        I: Accept,
        I::Error: Into<Box<dyn StdError + Send + Sync>>,
        I::Conn: AsyncRead + AsyncWrite + Unpin + Send + 'static,
        S: MakeServiceRef<I::Conn, Body, ResBody = B>,
        S::Error: Into<Box<dyn StdError + Send + Sync>>,
        B: HttpBody + 'static,
        B::Error: Into<Box<dyn StdError + Send + Sync>>,
        E: NewSvcExec<I::Conn, S::Future, S::Service, E, NoopWatcher>,
        E: ConnStreamExec<<S::Service as HttpService<Body>>::Future, B>,
    {
        Server {
            incoming: self.incoming,
            make_service,
            protocol: self.protocol.clone(),
        }
    }
}

#[cfg(feature = "tcp")]
#[cfg_attr(
    docsrs,
    doc(cfg(all(feature = "tcp", any(feature = "http1", feature = "http2"))))
)]
impl<E> Builder<AddrIncoming, E> {
    /// Set whether TCP keepalive messages are enabled on accepted connections.
    ///
    /// If `None` is specified, keepalive is disabled, otherwise the duration
    /// specified will be the time to remain idle before sending TCP keepalive
    /// probes.
    pub fn tcp_keepalive(mut self, keepalive: Option<Duration>) -> Self {
        self.incoming.set_keepalive(keepalive);
        self
    }

    /// Set the value of `TCP_NODELAY` option for accepted connections.
    pub fn tcp_nodelay(mut self, enabled: bool) -> Self {
        self.incoming.set_nodelay(enabled);
        self
    }

    /// Set whether to sleep on accept errors.
    ///
    /// A possible scenario is that the process has hit the max open files
    /// allowed, and so trying to accept a new connection will fail with
    /// EMFILE. In some cases, it's preferable to just wait for some time, if
    /// the application will likely close some files (or connections), and try
    /// to accept the connection again. If this option is true, the error will
    /// be logged at the error level, since it is still a big deal, and then
    /// the listener will sleep for 1 second.
    ///
    /// In other cases, hitting the max open files should be treat similarly
    /// to being out-of-memory, and simply error (and shutdown). Setting this
    /// option to false will allow that.
    ///
    /// For more details see [`AddrIncoming::set_sleep_on_errors`]
    pub fn tcp_sleep_on_accept_errors(mut self, val: bool) -> Self {
        self.incoming.set_sleep_on_errors(val);
        self
    }
}

// Used by `Server` to optionally watch a `Connection` future.
//
// The regular `hyper::Server` just uses a `NoopWatcher`, which does
// not need to watch anything, and so returns the `Connection` untouched.
//
// The `Server::with_graceful_shutdown` needs to keep track of all active
// connections, and signal that they start to shutdown when prompted, so
// it has a `GracefulWatcher` implementation to do that.
pub trait Watcher<I, S: HttpService<Body>, E>: Clone {
    type Future: Future<Output = crate::Result<()>>;

    fn watch(&self, conn: UpgradeableConnection<I, S, E>) -> Self::Future;
}

#[allow(missing_debug_implementations)]
#[derive(Copy, Clone)]
pub struct NoopWatcher;

impl<I, S, E> Watcher<I, S, E> for NoopWatcher
where
    I: AsyncRead + AsyncWrite + Unpin + Send + 'static,
    S: HttpService<Body>,
    E: ConnStreamExec<S::Future, S::ResBody>,
    S::ResBody: 'static,
    <S::ResBody as HttpBody>::Error: Into<Box<dyn StdError + Send + Sync>>,
{
    type Future = UpgradeableConnection<I, S, E>;

    fn watch(&self, conn: UpgradeableConnection<I, S, E>) -> Self::Future {
        conn
    }
}

// used by exec.rs
pub(crate) mod new_svc {
    use std::error::Error as StdError;
    use tokio::io::{AsyncRead, AsyncWrite};
    use tracing::debug;

    use super::{Connecting, Watcher};
    use crate::body::{Body, HttpBody};
    use crate::common::exec::ConnStreamExec;
    use crate::common::{task, Future, Pin, Poll, Unpin};
    use crate::service::HttpService;
    use pin_project_lite::pin_project;

    // This is a `Future<Item=(), Error=()>` spawned to an `Executor` inside
    // the `Server`. By being a nameable type, we can be generic over the
    // user's `Service::Future`, and thus an `Executor` can execute it.
    //
    // Doing this allows for the server to conditionally require `Send` futures,
    // depending on the `Executor` configured.
    //
    // Users cannot import this type, nor the associated `NewSvcExec`. Instead,
    // a blanket implementation for `Executor<impl Future>` is sufficient.

    pin_project! {
        #[allow(missing_debug_implementations)]
        pub struct NewSvcTask<I, N, S: HttpService<Body>, E, W: Watcher<I, S, E>> {
            #[pin]
            state: State<I, N, S, E, W>,
        }
    }

    pin_project! {
        #[project = StateProj]
        pub(super) enum State<I, N, S: HttpService<Body>, E, W: Watcher<I, S, E>> {
            Connecting {
                #[pin]
                connecting: Connecting<I, N, E>,
                watcher: W,
            },
            Connected {
                #[pin]
                future: W::Future,
            },
        }
    }

    impl<I, N, S: HttpService<Body>, E, W: Watcher<I, S, E>> NewSvcTask<I, N, S, E, W> {
        pub(super) fn new(connecting: Connecting<I, N, E>, watcher: W) -> Self {
            NewSvcTask {
                state: State::Connecting {
                    connecting,
                    watcher,
                },
            }
        }
    }

    impl<I, N, S, NE, B, E, W> Future for NewSvcTask<I, N, S, E, W>
    where
        I: AsyncRead + AsyncWrite + Unpin + Send + 'static,
        N: Future<Output = Result<S, NE>>,
        NE: Into<Box<dyn StdError + Send + Sync>>,
        S: HttpService<Body, ResBody = B>,
        B: HttpBody + 'static,
        B::Error: Into<Box<dyn StdError + Send + Sync>>,
        E: ConnStreamExec<S::Future, B>,
        W: Watcher<I, S, E>,
    {
        type Output = ();

        fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
            // If it weren't for needing to name this type so the `Send` bounds
            // could be projected to the `Serve` executor, this could just be
            // an `async fn`, and much safer. Woe is me.

            let mut me = self.project();
            loop {
                let next = {
                    match me.state.as_mut().project() {
                        StateProj::Connecting {
                            connecting,
                            watcher,
                        } => {
                            let res = ready!(connecting.poll(cx));
                            let conn = match res {
                                Ok(conn) => conn,
                                Err(err) => {
                                    let err = crate::Error::new_user_make_service(err);
                                    debug!("connecting error: {}", err);
                                    return Poll::Ready(());
                                }
                            };
                            let future = watcher.watch(conn.with_upgrades());
                            State::Connected { future }
                        }
                        StateProj::Connected { future } => {
                            return future.poll(cx).map(|res| {
                                if let Err(err) = res {
                                    debug!("connection error: {}", err);
                                }
                            });
                        }
                    }
                };

                me.state.set(next);
            }
        }
    }
}

pin_project! {
    /// A future building a new `Service` to a `Connection`.
    ///
    /// Wraps the future returned from `MakeService` into one that returns
    /// a `Connection`.
    #[must_use = "futures do nothing unless polled"]
    #[derive(Debug)]
    #[cfg_attr(docsrs, doc(cfg(any(feature = "http1", feature = "http2"))))]
    pub struct Connecting<I, F, E = Exec> {
        #[pin]
        future: F,
        io: Option<I>,
        protocol: Http_<E>,
    }
}

impl<I, F, S, FE, E, B> Future for Connecting<I, F, E>
where
    I: AsyncRead + AsyncWrite + Unpin,
    F: Future<Output = Result<S, FE>>,
    S: HttpService<Body, ResBody = B>,
    B: HttpBody + 'static,
    B::Error: Into<Box<dyn StdError + Send + Sync>>,
    E: ConnStreamExec<S::Future, B>,
{
    type Output = Result<Connection<I, S, E>, FE>;

    fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
        let mut me = self.project();
        let service = ready!(me.future.poll(cx))?;
        let io = Option::take(&mut me.io).expect("polled after complete");
        Poll::Ready(Ok(me.protocol.serve_connection(io, service)))
    }
}