1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/// This module defines common primitives for building and working with Harness types that rely on
/// interacting with bt-hci-emulator state.
///
/// There is no single 'EmulatorHarness' type; instead many different harness types can be built
/// that provide access to emulator behavior. To provide such harness functionality usually requires
/// two things:
///
/// - Providing access to a value of type `EmulatorState` within the Harness's State type, by
/// implementing `AsMut<EmulatorState>` on the state type
/// - Providing access to a fidl proxy of type `EmulatorProxy`, by implementing
/// `AsRef<EmulatorProxy>` on the auxiliary (Aux) type
///
/// This module defines the `EmulatorState` type, which represents the state common to the hci
/// emulator. It also provides common functionality for working with emulator behavior via this
/// state and via the EmulatorProxy.
///
/// The `expectation` submodule provides useful expectations (see `fuchsia_bluetooth::expectation`)
/// that can be used to write idiomatic testcases using these harnesses.
///
/// An example implementation of an Emulator harness may look like the following:
///
/// First, define our state type, nesting the `EmulatorState` within:
///
/// ```
/// #[derive(Clone, Debug, Default)]
/// pub struct PeripheralState {
/// emulator_state: EmulatorState,
/// connections: Vec<(Peer, ConnectionProxy)>,
/// }
/// ```
///
/// Then, define `AsMut` and `AsRef` implementations to provide access to the inner EmulatorState
///
/// ```
/// impl AsMut<EmulatorState> for PeripheralState {
/// fn as_mut(&mut self) -> &mut EmulatorState {
/// &mut self.emulator_state
/// }
/// }
/// impl AsRef<EmulatorState> for PeripheralState {
/// fn as_ref(&self) -> &EmulatorState {
/// &self.emulator_state
/// }
/// }
/// ```
///
/// Then, define an auxiliary type including the `EmulatorProxy`, and also implement `AsRef`:
///
/// ```
/// pub struct Aux {
/// peripheral: PeripheralProxy,
/// emulator: EmulatorProxy,
/// }
/// impl AsRef<EmulatorProxy> for Aux {
/// fn as_ref(&self) -> &EmulatorProxy {
/// &self.emulator
/// }
/// }
/// ```
///
/// Then we can build our harness by combining these two types:
///
/// ```
/// #[derive(Clone)]
/// pub struct PeripheralHarness(Expectable<PeripheralState, Aux>);
/// ```
///
/// Then we can use this harness to track emulator state and trigger expectations:
///
/// ```
/// // Start watching advertising events
/// let harness = PeripheralHarness::new(...);
/// fasync::Task::spawn(
/// watch_advertising_states(harness.deref().clone()).unwrap_or_else(|_| ())).detach();
/// let _ = harness.when_satisfied(emulator::expectation::advertising_is_enabled(true)).await?;
/// ```
use {
anyhow::{format_err, Error},
fidl_fuchsia_bluetooth::DeviceClass,
fidl_fuchsia_hardware_bluetooth::{
AdvertisingData, ConnectionState, EmulatorProxy, PeerParameters, PeerProxy,
PeerSetLeAdvertisementRequest,
},
fuchsia_bluetooth::{
expectation::asynchronous::{ExpectableExt, ExpectableState},
types::Address,
},
futures::{
future::{err, Either},
Future,
},
hci_emulator_client::types::{ControllerParameters, LegacyAdvertisingState},
std::{collections::HashMap, convert::AsRef},
};
/// The URL of the platform bus driver. The bt-hci-emulator driver is a legacy driver, which binds
/// under the platform-bus instead of the test-root driver. Because this is non-standard behavior,
/// we have to provide this URL to the Driver Test Realm.
pub(crate) const EMULATOR_ROOT_DRIVER_URL: &str =
"fuchsia-boot:///platform-bus#meta/platform-bus.cm";
/// Used to maintain the state transitions that are observed from the emulator. This type can be
/// used in test harness auxiliary types.
#[derive(Clone, Debug)]
pub struct EmulatorState {
/// Most recently observed controller parameters.
pub controller_parameters: Option<ControllerParameters>,
/// Observed changes to the controller's advertising state and parameters.
pub advertising_state_changes: Vec<LegacyAdvertisingState>,
/// List of observed peer connection states.
pub connection_states: HashMap<Address, Vec<ConnectionState>>,
}
impl Default for EmulatorState {
fn default() -> EmulatorState {
EmulatorState {
controller_parameters: None,
advertising_state_changes: vec![],
connection_states: HashMap::new(),
}
}
}
pub fn default_le_peer(addr: &Address) -> PeerParameters {
PeerParameters { address: Some(addr.into()), connectable: Some(true), ..Default::default() }
}
/// An emulated BR/EDR peer using default parameters commonly used in tests. The peer is set up to
/// be connectable and has the "toy" device class.
pub fn default_bredr_peer(addr: &Address) -> PeerParameters {
PeerParameters { address: Some(addr.into()), connectable: Some(true), ..Default::default() }
}
pub fn add_le_peer(
proxy: &EmulatorProxy,
mut parameters: PeerParameters,
adv_data: Option<Vec<u8>>,
) -> impl Future<Output = Result<PeerProxy, Error>> {
match fidl::endpoints::create_proxy() {
Ok((local, remote)) => {
let address = parameters.address.clone();
parameters.channel = Some(remote);
let fut = proxy.add_low_energy_peer(parameters);
Either::Right(async move {
let _ = fut
.await?
.map_err(|e| format_err!("Failed to add emulated LE peer: {:?}", e))?;
if adv_data.is_some() {
let request = PeerSetLeAdvertisementRequest {
le_address: Some(address.unwrap().into()),
advertisement: Some(AdvertisingData {
data: Some(adv_data.unwrap()),
__source_breaking: fidl::marker::SourceBreaking,
}),
scan_response: Some(AdvertisingData {
data: None,
__source_breaking: fidl::marker::SourceBreaking,
}),
__source_breaking: fidl::marker::SourceBreaking,
};
let _ = local.set_le_advertisement(&request).await.unwrap();
}
Ok(local)
})
}
Err(e) => Either::Left(err(e.into())),
}
}
pub fn add_bredr_peer(
proxy: &EmulatorProxy,
mut parameters: PeerParameters,
) -> impl Future<Output = Result<PeerProxy, Error>> {
match fidl::endpoints::create_proxy() {
Ok((local, remote)) => {
parameters.channel = Some(remote);
let fut = proxy.add_bredr_peer(parameters);
Either::Right(async {
let _ = fut
.await?
.map_err(|e| format_err!("Failed to add emulated BR/EDR peer: {:?}", e))?;
Ok(local)
})
}
Err(e) => Either::Left(err(e.into())),
}
}
pub async fn watch_controller_parameters<H, S, A>(harness: H) -> Result<(), Error>
where
H: ExpectableState<State = S> + ExpectableExt<S, A>,
S: AsMut<EmulatorState> + 'static,
A: AsRef<EmulatorProxy>,
{
let proxy = EmulatorProxy::clone(harness.aux().as_ref());
loop {
let cp = proxy.watch_controller_parameters().await?;
harness.write_state().as_mut().controller_parameters = Some(cp.into());
harness.notify_state_changed();
}
}
/// Record advertising state changes. The asynchronous execution doesn't complete until the
/// emulator channel gets closed or a FIDL error occurs.
pub async fn watch_advertising_states<H, S, A>(harness: H) -> Result<(), Error>
where
H: ExpectableState<State = S> + ExpectableExt<S, A>,
S: AsMut<EmulatorState> + 'static,
A: AsRef<EmulatorProxy>,
{
let proxy = EmulatorProxy::clone(harness.aux().as_ref());
loop {
let states = proxy.watch_legacy_advertising_states().await?;
harness
.write_state()
.as_mut()
.advertising_state_changes
.append(&mut states.into_iter().map(|s| s.into()).collect());
harness.notify_state_changed();
}
}
/// Record connection state changes from the given emulated Peer. The returned Future doesn't
/// run until the `proxy` channel gets closed or a FIDL error occurs.
pub async fn watch_peer_connection_states<H, S, A>(
harness: H,
address: Address,
proxy: PeerProxy,
) -> Result<(), Error>
where
H: ExpectableState<State = S> + ExpectableExt<S, A>,
S: AsMut<EmulatorState> + 'static,
A: AsRef<EmulatorProxy>,
{
loop {
let mut result = proxy.watch_connection_states().await?;
// Introduce a scope as it is important not to hold a mutable lock to the harness state when
// we call `harness.notify_state_changed()` below.
{
let mut s = harness.write_state();
let state_map = &mut s.as_mut().connection_states;
let states = state_map.entry(address).or_insert(vec![]);
states.append(&mut result);
}
harness.notify_state_changed();
}
}
/// Utilities used for setting up expectation predicates on the HCI emulator state transitions.
pub mod expectation {
use super::*;
use fidl_fuchsia_hardware_bluetooth::LegacyAdvertisingType;
use fuchsia_bluetooth::expectation::Predicate;
pub fn local_name_is<S>(name: &'static str) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
Predicate::equal(Some(name.to_string())).over_value(
|state: &S| {
state
.as_ref()
.controller_parameters
.as_ref()
.and_then(|p| p.local_name.as_ref().map(|o| o.to_string()))
},
"controller_parameters.local_name",
)
}
pub fn device_class_is<S>(device_class: DeviceClass) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
Predicate::equal(Some(device_class)).over_value(
|state: &S| state.as_ref().controller_parameters.as_ref().and_then(|p| p.device_class),
"controller_parameters.device_class",
)
}
pub fn advertising_is_enabled<S>(enabled: bool) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
Predicate::equal(Some(enabled)).over_value(
|state: &S| state.as_ref().advertising_state_changes.last().map(|s| s.enabled),
"controller_parameters.device_class",
)
}
pub fn advertising_was_enabled<S>(enabled: bool) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("advertising was (enabled: {})", enabled);
Predicate::predicate(
move |state: &S| -> bool {
state.as_ref().advertising_state_changes.iter().any(|s| s.enabled == enabled)
},
&descr,
)
}
pub fn advertising_type_is<S>(type_: LegacyAdvertisingType) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("advertising type is: {:#?}", type_);
Predicate::predicate(
move |state: &S| -> bool {
state
.as_ref()
.advertising_state_changes
.last()
.and_then(|s| s.type_)
.is_some_and(|t| t == type_)
},
&descr,
)
}
pub fn advertising_data_is<S>(data: AdvertisingData) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("advertising data is: {:#?}", data);
Predicate::predicate(
move |state: &S| -> bool {
state
.as_ref()
.advertising_state_changes
.last()
.and_then(|s| s.advertising_data.as_ref())
.is_some_and(|a| *a == data)
},
&descr,
)
}
pub fn scan_response_is<S>(data: AdvertisingData) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("scan response data is: {:#?}", data);
Predicate::predicate(
move |state: &S| -> bool {
state
.as_ref()
.advertising_state_changes
.last()
.and_then(|s| s.scan_response.as_ref())
.is_some_and(|s| *s == data)
},
&descr,
)
}
fn to_slices(ms: u16) -> u16 {
let slices = (ms as u32) * 1000 / 625;
slices as u16
}
pub fn advertising_max_interval_is<S>(interval_ms: u16) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("advertising max interval is: {:#?} ms", interval_ms);
Predicate::predicate(
move |state: &S| -> bool {
state
.as_ref()
.advertising_state_changes
.last()
.and_then(|s| s.interval_max)
.is_some_and(|i| i == to_slices(interval_ms))
},
&descr,
)
}
pub fn peer_connection_state_was<S>(address: Address, state: ConnectionState) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("emulated peer connection state was: {:?}", state);
Predicate::predicate(
move |s: &S| -> bool {
s.as_ref().connection_states.get(&address).is_some_and(|s| s.contains(&state))
},
&descr,
)
}
pub fn peer_connection_state_is<S>(address: Address, state: ConnectionState) -> Predicate<S>
where
S: 'static + AsRef<EmulatorState>,
{
let descr = format!("emulated peer connection state is: {:?}", state);
Predicate::predicate(
move |s: &S| -> bool {
s.as_ref().connection_states.get(&address).is_some_and(|s| s.last() == Some(&state))
},
&descr,
)
}
}