1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#[cfg(target_os = "fuchsia")]
mod fuchsia;
#[cfg(target_os = "fuchsia")]
use self::fuchsia as implementation;

#[cfg(all(not(target_os = "fuchsia"), not(target_arch = "wasm32")))]
mod portable;
#[cfg(all(not(target_os = "fuchsia"), not(target_arch = "wasm32")))]
use self::portable as implementation;

#[cfg(all(not(target_os = "fuchsia"), target_arch = "wasm32"))]
mod stub;
#[cfg(all(not(target_os = "fuchsia"), target_arch = "wasm32"))]
use self::stub as implementation;

// Exports common to all target os.
pub use implementation::executor::{
    LocalExecutor, MonotonicDuration, MonotonicInstant, SendExecutor, TestExecutor,
};
pub use implementation::task::{unblock, JoinHandle, Task};
pub use implementation::timer::Timer;

#[cfg(not(target_arch = "wasm32"))]
mod task_group;
#[cfg(not(target_arch = "wasm32"))]
pub use task_group::*;

// Fuchsia specific exports.
#[cfg(target_os = "fuchsia")]
pub use self::fuchsia::{
    executor::{BootInstant, EHandle, PacketReceiver, ReceiverRegistration},
    timer::Interval,
};

/// Structured concurrency API for fuchsia-async.
///
/// See the [`Scope`] documentation for details.
pub mod scope {
    pub use super::implementation::scope::{Scope, ScopeHandle};

    #[cfg(target_os = "fuchsia")]
    pub use super::implementation::scope::Join;
}

pub use scope::{Scope, ScopeHandle};

use futures::prelude::*;
use pin_project_lite::pin_project;
use std::pin::Pin;
use std::task::{ready, Context, Poll};

/// An extension trait to provide `after_now` on `zx::MonotonicDuration`.
pub trait DurationExt {
    /// Return a `MonotonicInstant` which is a `MonotonicDuration` after the current time.
    /// `duration.after_now()` is equivalent to `MonotonicInstant::after(duration)`.
    ///
    /// This method requires that an executor has been set up.
    fn after_now(self) -> MonotonicInstant;
}

/// The time when a Timer should wakeup.
pub trait WakeupTime {
    /// Create a timer based on this time.
    ///
    /// This is allowed to be inaccurate, but the inaccuracy must make the wakeup time later,
    /// never earlier.
    fn into_timer(self) -> Timer;
}

#[cfg(target_os = "fuchsia")]
impl WakeupTime for std::time::Duration {
    fn into_timer(self) -> Timer {
        EHandle::local().mono_timers().new_timer(MonotonicInstant::now() + self.into())
    }
}

#[cfg(not(target_os = "fuchsia"))]
impl WakeupTime for std::time::Duration {
    fn into_timer(self) -> Timer {
        Timer::from(self)
    }
}

#[cfg(target_os = "fuchsia")]
impl WakeupTime for MonotonicDuration {
    fn into_timer(self) -> Timer {
        EHandle::local().mono_timers().new_timer(MonotonicInstant::after(self))
    }
}

#[cfg(target_os = "fuchsia")]
impl WakeupTime for zx::BootDuration {
    fn into_timer(self) -> Timer {
        EHandle::local().boot_timers().new_timer(BootInstant::after(self))
    }
}

impl DurationExt for std::time::Duration {
    fn after_now(self) -> MonotonicInstant {
        MonotonicInstant::now() + self.into()
    }
}

/// A trait which allows futures to be easily wrapped in a timeout.
pub trait TimeoutExt: Future + Sized {
    /// Wraps the future in a timeout, calling `on_timeout` to produce a result
    /// when the timeout occurs.
    fn on_timeout<WT, OT>(self, time: WT, on_timeout: OT) -> OnTimeout<Self, OT>
    where
        WT: WakeupTime,
        OT: FnOnce() -> Self::Output,
    {
        OnTimeout { timer: time.into_timer(), future: self, on_timeout: Some(on_timeout) }
    }

    /// Wraps the future in a stall-guard, calling `on_stalled` to produce a result
    /// when the future hasn't been otherwise polled within the `timeout`.
    /// This is a heuristic - spurious wakeups will keep the detection from triggering,
    /// and moving all work to external tasks or threads with force the triggering early.
    fn on_stalled<OS>(self, timeout: std::time::Duration, on_stalled: OS) -> OnStalled<Self, OS>
    where
        OS: FnOnce() -> Self::Output,
    {
        OnStalled {
            timer: timeout.into_timer(),
            future: self,
            timeout,
            on_stalled: Some(on_stalled),
        }
    }
}

impl<F: Future + Sized> TimeoutExt for F {}

pin_project! {
    /// A wrapper for a future which will complete with a provided closure when a timeout occurs.
    #[derive(Debug)]
    #[must_use = "futures do nothing unless polled"]
    pub struct OnTimeout<F, OT> {
        #[pin]
        timer: Timer,
        #[pin]
        future: F,
        on_timeout: Option<OT>,
    }
}

impl<F: Future, OT> Future for OnTimeout<F, OT>
where
    OT: FnOnce() -> F::Output,
{
    type Output = F::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();
        if let Poll::Ready(item) = this.future.poll(cx) {
            return Poll::Ready(item);
        }
        if let Poll::Ready(()) = this.timer.poll(cx) {
            let ot = this.on_timeout.take().expect("polled withtimeout after completion");
            let item = (ot)();
            return Poll::Ready(item);
        }
        Poll::Pending
    }
}

pin_project! {
    /// A wrapper for a future who's steady progress is monitored and will complete with the
    /// provided closure if no progress is made before the timeout.
    #[derive(Debug)]
    #[must_use = "futures do nothing unless polled"]
    pub struct OnStalled<F, OS> {
        #[pin]
        timer: Timer,
        #[pin]
        future: F,
        timeout: std::time::Duration,
        on_stalled: Option<OS>,
    }
}

impl<F: Future, OS> Future for OnStalled<F, OS>
where
    OS: FnOnce() -> F::Output,
{
    type Output = F::Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let mut this = self.project();
        if let Poll::Ready(item) = this.future.poll(cx) {
            return Poll::Ready(item);
        }
        match this.timer.as_mut().poll(cx) {
            Poll::Ready(()) => {}
            Poll::Pending => {
                this.timer.set(this.timeout.into_timer());
                ready!(this.timer.as_mut().poll(cx));
            }
        }
        Poll::Ready((this.on_stalled.take().expect("polled after completion"))())
    }
}

#[cfg(test)]
mod task_tests {

    use super::*;
    use futures::channel::oneshot;

    fn run(f: impl Send + 'static + Future<Output = ()>) {
        const TEST_THREADS: usize = 2;
        SendExecutor::new(TEST_THREADS).run(f)
    }

    #[test]
    fn can_detach() {
        run(async move {
            let (tx_started, rx_started) = oneshot::channel();
            let (tx_continue, rx_continue) = oneshot::channel();
            let (tx_done, rx_done) = oneshot::channel();
            {
                // spawn a task and detach it
                // the task will wait for a signal, signal it received it, and then wait for another
                Task::spawn(async move {
                    tx_started.send(()).unwrap();
                    rx_continue.await.unwrap();
                    tx_done.send(()).unwrap();
                })
                .detach();
            }
            // task is detached, have a short conversation with it
            rx_started.await.unwrap();
            tx_continue.send(()).unwrap();
            rx_done.await.unwrap();
        });
    }

    #[test]
    fn can_join() {
        // can we spawn, then join a task
        run(async move {
            assert_eq!(42, Task::spawn(async move { 42u8 }).await);
        })
    }

    #[test]
    fn can_join_unblock() {
        // can we poll a blocked task
        run(async move {
            assert_eq!(42, unblock(|| 42u8).await);
        })
    }

    #[test]
    fn can_join_unblock_local() {
        // can we poll a blocked task in a local executor
        LocalExecutor::new().run_singlethreaded(async move {
            assert_eq!(42, unblock(|| 42u8).await);
        });
    }

    #[test]
    #[should_panic]
    // TODO(https://fxbug.dev/42169733): delete the below
    #[cfg_attr(feature = "variant_asan", ignore)]
    fn unblock_fn_panics() {
        run(async move {
            unblock(|| panic!("bad")).await;
        })
    }

    #[test]
    fn can_join_local() {
        // can we spawn, then join a task locally
        LocalExecutor::new().run_singlethreaded(async move {
            assert_eq!(42, Task::local(async move { 42u8 }).await);
        })
    }

    #[test]
    fn can_cancel() {
        run(async move {
            let (_tx_start, rx_start) = oneshot::channel::<()>();
            let (tx_done, rx_done) = oneshot::channel();
            // Start and immediately cancel the task (by dropping it).
            let _ = Task::spawn(async move {
                rx_start.await.unwrap();
                tx_done.send(()).unwrap();
            });
            // we should see an error on receive
            rx_done.await.expect_err("done should not be sent");
        })
    }
}

#[cfg(test)]
mod timer_tests {
    use super::*;
    use futures::future::Either;
    use std::pin::pin;

    #[test]
    fn shorter_fires_first_instant() {
        use std::time::{Duration, Instant};
        let mut exec = LocalExecutor::new();
        let now = Instant::now();
        let shorter = pin!(Timer::new(now + Duration::from_millis(100)));
        let longer = pin!(Timer::new(now + Duration::from_secs(1)));
        match exec.run_singlethreaded(future::select(shorter, longer)) {
            Either::Left((_, _)) => {}
            Either::Right((_, _)) => panic!("wrong timer fired"),
        }
    }

    #[cfg(target_os = "fuchsia")]
    #[test]
    fn can_use_zx_duration() {
        let mut exec = LocalExecutor::new();
        let start = MonotonicInstant::now();
        let timer = Timer::new(MonotonicDuration::from_millis(100));
        exec.run_singlethreaded(timer);
        let end = MonotonicInstant::now();
        assert!(end - start > MonotonicDuration::from_millis(100));
    }

    #[test]
    fn can_detect_stalls() {
        use std::sync::atomic::{AtomicU64, Ordering};
        use std::sync::Arc;
        use std::time::Duration;
        let runs = Arc::new(AtomicU64::new(0));
        assert_eq!(
            {
                let runs = runs.clone();
                LocalExecutor::new().run_singlethreaded(
                    async move {
                        let mut sleep = Duration::from_millis(1);
                        loop {
                            Timer::new(sleep).await;
                            sleep *= 2;
                            runs.fetch_add(1, Ordering::SeqCst);
                        }
                    }
                    .on_stalled(Duration::from_secs(1), || 1u8),
                )
            },
            1u8
        );
        assert!(runs.load(Ordering::SeqCst) >= 9);
    }
}