1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Elliptic Curve-based cryptographic algorithms over NIST P curves.
//!
//! This module only supports elliptic curve cryptography over NIST's P curves,
//! defined in FIPS 186-3. These are the P-256, P-384, and P-521 curves (P-224
//! is considered insecure, and thus is not supported). The ECDSA and ECDH
//! algorithms are both defined over P curves, and so are exposed in this
//! module.
//!
//! Other elliptic curve algorithms on non-P curves live in other modules (e.g.,
//! operations on the Edwards 25519 curve live in the [`ed25519`] module).
//!
//! [`ed25519`]: ::public::ed25519
mod curve;
pub use public::ec::curve::{PCurve, P256, P384, P521};
use std::fmt::{self, Debug, Formatter};
use boringssl::{CHeapWrapper, CStackWrapper};
use public::ec::curve::CurveKind;
use public::ec::inner::EcKey;
use public::inner::DerKey;
use public::{DerPrivateKey, DerPublicKey, PrivateKey, PublicKey};
use util::Sealed;
use Error;
mod inner {
use std::marker::PhantomData;
use boringssl::{self, BoringError, CHeapWrapper, CStackWrapper};
use public::ec::curve::PCurve;
use public::inner::BoringDerKey;
use Error;
// A convenience wrapper around boringssl::EC_KEY.
//
// EcKey maintains the following invariants:
// - The key is valid.
// - The key is on the curve C.
//
// This is marked pub and put in this (non-public) module so that using it in impls of
// the Key trait don't result in public-in-private errors.
#[derive(Clone)]
pub struct EcKey<C: PCurve> {
pub key: CHeapWrapper<boringssl::EC_KEY>,
_marker: PhantomData<C>,
}
impl<C: PCurve> EcKey<C> {
pub fn generate() -> Result<EcKey<C>, BoringError> {
let mut key = CHeapWrapper::default();
// EC_KEY_set_group only errors if there's already a group set
key.ec_key_set_group(&C::group()).unwrap();
key.ec_key_generate_key()?;
Ok(EcKey { key, _marker: PhantomData })
}
/// Creates an `EcKey` from a BoringSSL `EC_KEY`.
///
/// `from_EC_KEY` validates that `key`'s curve is `C`.
///
/// # Panics
///
/// `from_EC_KEY` panics if `key`'s group is not set.
#[allow(non_snake_case)]
pub fn from_EC_KEY(key: CHeapWrapper<boringssl::EC_KEY>) -> Result<EcKey<C>, Error> {
// ec_key_get0_group returns the EC_KEY's internal group pointer,
// which is guaranteed to be set by the caller.
C::validate_group(key.ec_key_get0_group().unwrap())?;
Ok(EcKey { key, _marker: PhantomData })
}
}
impl<C: PCurve> BoringDerKey for EcKey<C> {
fn pkey_assign(&self, pkey: &mut CHeapWrapper<boringssl::EVP_PKEY>) {
pkey.evp_pkey_assign_ec_key(self.key.clone())
}
// NOTE: panics if the key is an EC key and doesn't have a group set
// (due to EcKey::from_EC_KEY)
fn pkey_get(pkey: &mut CHeapWrapper<boringssl::EVP_PKEY>) -> Result<Self, Error> {
let key = pkey.evp_pkey_get1_ec_key()?;
EcKey::from_EC_KEY(key)
}
fn parse_private_key(cbs: &mut CStackWrapper<boringssl::CBS>) -> Result<EcKey<C>, Error> {
// The last argument is a group. If it's not None, then it is either
// used as the group or, if the DER encoding also contains a group,
// the encoded group is validated against the group passed as an
// argument. Note that this validation is mostly redundant - similar
// validation is performed in EcKey::from_EC_KEY - however, it's not
// fully redundant, since it allows keys to be parsed which have no
// group.
let key = CHeapWrapper::ec_key_parse_private_key(cbs, Some(C::group()))?;
EcKey::from_EC_KEY(key)
}
fn marshal_private_key(
&self,
cbb: &mut CStackWrapper<boringssl::CBB>,
) -> Result<(), Error> {
self.key.ec_key_marshal_private_key(cbb).map_err(From::from)
}
}
#[cfg(test)]
mod tests {
use std::mem;
use super::*;
use public::ec::{P256, P384, P521};
#[test]
fn test_refcount() {
fn test<C: PCurve>() {
let key = EcKey::<C>::generate().unwrap();
for i in 0..8 {
// make i clones and then free them all
let mut keys = Vec::new();
for _ in 0..i {
keys.push(key.clone());
}
mem::drop(keys);
}
mem::drop(key);
}
test::<P256>();
test::<P384>();
test::<P521>();
}
}
}
/// An elliptic curve public key over a P curve.
///
/// `EcPubKey` is a public key over the curve `C`.
pub struct EcPubKey<C: PCurve> {
inner: EcKey<C>,
}
impl<C: PCurve> Sealed for EcPubKey<C> {}
impl<C: PCurve> DerPublicKey for EcPubKey<C> {}
impl<C: PCurve> DerKey for EcPubKey<C> {
type Boring = EcKey<C>;
fn boring(&self) -> &EcKey<C> {
&self.inner
}
fn from_boring(inner: EcKey<C>) -> EcPubKey<C> {
EcPubKey { inner }
}
}
impl<C: PCurve> PublicKey for EcPubKey<C> {
type Private = EcPrivKey<C>;
}
impl<C: PCurve> Debug for EcPubKey<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "EcPubKey")
}
}
/// An elliptic curve private key over a P curve.
///
/// `EcPrivKey` is a private key over the curve `C`.
pub struct EcPrivKey<C: PCurve> {
inner: EcKey<C>,
}
impl<C: PCurve> EcPrivKey<C> {
/// Generates a new private key.
#[must_use]
pub fn generate() -> Result<EcPrivKey<C>, Error> {
Ok(EcPrivKey { inner: EcKey::generate()? })
}
}
impl<C: PCurve> Sealed for EcPrivKey<C> {}
impl<C: PCurve> DerPrivateKey for EcPrivKey<C> {}
impl<C: PCurve> DerKey for EcPrivKey<C> {
type Boring = EcKey<C>;
fn boring(&self) -> &EcKey<C> {
&self.inner
}
fn from_boring(inner: EcKey<C>) -> EcPrivKey<C> {
EcPrivKey { inner }
}
}
impl<C: PCurve> PrivateKey for EcPrivKey<C> {
type Public = EcPubKey<C>;
fn public(&self) -> EcPubKey<C> {
EcPubKey { inner: self.inner.clone() }
}
}
impl<C: PCurve> Debug for EcPrivKey<C> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "EcPrivKey")
}
}
/// An elliptic curve public key whose curve is unknown at compile time.
///
/// An `EcPubKeyAnyCurve` is an enum of [`EcPubKey`]s over the three supported
/// curves.
#[allow(missing_docs)]
#[derive(Debug)]
pub enum EcPubKeyAnyCurve {
P256(EcPubKey<P256>),
P384(EcPubKey<P384>),
P521(EcPubKey<P521>),
}
impl EcPubKeyAnyCurve {
/// Parses a public key in DER format with any curve.
///
/// `parse_from_der` is like [`DerPublicKey::parse_from_der`], but it
/// accepts any [`PCurve`] rather than a particular, static curve.
///
/// Since [`EcPubKey`] requires a static [`PCurve`] type parameter, the
/// `parse_from_der` function on `EcPubKey`'s `DerPublicKey` implementation
/// can only be called when the curve is known ahead of time. This function,
/// on the other hand, accepts any curve.
///
/// Because the curve is not known statically, one must be specified in the DER
/// input.
///
/// [`DerPublicKey::parse_from_der`]: ::public::DerPublicKey::parse_from_der
/// [`PublicKey`]: ::public::PublicKey
#[must_use]
pub fn parse_from_der(bytes: &[u8]) -> Result<EcPubKeyAnyCurve, Error> {
CStackWrapper::cbs_with_temp_buffer(bytes, |cbs| {
let mut evp_pkey = CHeapWrapper::evp_parse_public_key(cbs)?;
let key = evp_pkey.evp_pkey_get1_ec_key()?;
if cbs.cbs_len() > 0 {
return Err(Error::new("excess data provided after valid DER input".to_string()));
}
// EVP_parse_public_key guarantees that the returned key has its group
// set, so this unwrap is safe.
let group = key.ec_key_get0_group().unwrap();
Ok(match CurveKind::from_nid(group.ec_group_get_curve_name())? {
CurveKind::P256 => {
EcPubKeyAnyCurve::P256(EcPubKey { inner: EcKey::from_EC_KEY(key.clone())? })
}
CurveKind::P384 => {
EcPubKeyAnyCurve::P384(EcPubKey { inner: EcKey::from_EC_KEY(key.clone())? })
}
CurveKind::P521 => {
EcPubKeyAnyCurve::P521(EcPubKey { inner: EcKey::from_EC_KEY(key.clone())? })
}
})
})
}
}
/// An elliptic curve private key whose curve is unknown at compile time.
///
/// An `EcPrivKeyAnyCurve` is an enum of [`EcPrivKey`]s over the three supported
/// curves.
#[allow(missing_docs)]
#[derive(Debug)]
pub enum EcPrivKeyAnyCurve {
P256(EcPrivKey<P256>),
P384(EcPrivKey<P384>),
P521(EcPrivKey<P521>),
}
impl EcPrivKeyAnyCurve {
/// Gets the public key corresponding to this private key.
#[must_use]
pub fn public(&self) -> EcPubKeyAnyCurve {
match self {
EcPrivKeyAnyCurve::P256(key) => EcPubKeyAnyCurve::P256(key.public()),
EcPrivKeyAnyCurve::P384(key) => EcPubKeyAnyCurve::P384(key.public()),
EcPrivKeyAnyCurve::P521(key) => EcPubKeyAnyCurve::P521(key.public()),
}
}
/// Parses a private key in DER format with any curve.
///
/// `parse_from_der` is like [`DerPrivateKey::parse_from_der`], but it
/// accepts any [`PCurve`] rather than a particular, static curve.
///
/// Since [`EcPrivKey`] requires a static [`PCurve`] type parameter, the
/// `parse_from_der` function on `EcPrivKey`'s `DerPrivateKey`
/// implementation can only be called when the curve is known ahead of time.
/// This function, on the other hand, accepts any curve.
///
/// Because the curve is not known statically, one must be specified in the DER
/// input.
///
/// [`DerPrivateKey::parse_from_der`]: ::public::DerPrivateKey::parse_from_der
/// [`PrivateKey`]: ::public::PrivateKey
#[must_use]
pub fn parse_from_der(bytes: &[u8]) -> Result<EcPrivKeyAnyCurve, Error> {
CStackWrapper::cbs_with_temp_buffer(bytes, |cbs| {
// The last argument is a group. Since it's None,
// EC_KEY_parse_private_key will require the DER to name the group.
let key = CHeapWrapper::ec_key_parse_private_key(cbs, None)?;
if cbs.cbs_len() > 0 {
return Err(Error::new("excess data provided after valid DER input".to_string()));
}
// TODO(joshlf): Add documentation to EC_KEY_parse_private_key
// guaranteeing that the internal group pointer is set.
let group = key.ec_key_get0_group().unwrap();
Ok(match CurveKind::from_nid(group.ec_group_get_curve_name())? {
CurveKind::P256 => {
EcPrivKeyAnyCurve::P256(EcPrivKey { inner: EcKey::from_EC_KEY(key.clone())? })
}
CurveKind::P384 => {
EcPrivKeyAnyCurve::P384(EcPrivKey { inner: EcKey::from_EC_KEY(key.clone())? })
}
CurveKind::P521 => {
EcPrivKeyAnyCurve::P521(EcPrivKey { inner: EcKey::from_EC_KEY(key.clone())? })
}
})
})
}
}
/// The Elliptic Curve Digital Signature Algorithm.
pub mod ecdsa {
use std::fmt::{self, Debug, Formatter};
use std::marker::PhantomData;
use hash::inner::Digest;
#[cfg(feature = "experimental-sha512-ec")]
use hash::Sha512;
use hash::{Hasher, Sha256, Sha384};
use public::ec::{EcPrivKey, EcPubKey, PCurve, P256, P384, P521};
use public::Signature;
use util::Sealed;
use {boringssl, Error};
/// A hash function which is compatible with ECDSA signatures over the curve
/// `C`.
///
/// An ECDSA signature is constructed by hashing the message and then
/// signing the resulting digest. However, EC keys over certain curves may
/// not be compatible with all hashes. In particular, some digests may be
/// too long (in number of bytes) and thus not correspond to a point on the
/// curve. `EcdsaHash<C>` is implemented by all hash functions whose digests
/// are compatible with ECDSA signatures over the curve `C`.
pub trait EcdsaHash<C: PCurve>: Sealed {}
impl EcdsaHash<P256> for Sha256 {}
impl EcdsaHash<P384> for Sha256 {}
impl EcdsaHash<P384> for Sha384 {}
impl EcdsaHash<P521> for Sha256 {}
impl EcdsaHash<P521> for Sha384 {}
#[cfg(feature = "experimental-sha512-ec")]
impl EcdsaHash<P384> for Sha512 {}
#[cfg(feature = "experimental-sha512-ec")]
impl EcdsaHash<P521> for Sha512 {}
// The maximum length of an ECDSA signature over P-521. Since this isn't
// exposed in the API, we can increase later if we add support for curves
// with larger signatures.
//
// This was calculated with the following equation, which is thanks to
// agl@google.com:
//
// r = s = (521 + 7)/8 # Bytes to store the integers r and s
// = 66
// DER encoded bytes = (1 # type byte 0x02
// + 1 # length byte
// + 1 # possible 0 padding
// + 66) * 2 # one for each of r and s
// + 1 # ASN.1 SEQUENCE type byte
// + 2 # outer length
// = 141
const MAX_SIGNATURE_LEN: usize = 141;
/// A DER-encoded ECDSA signature.
#[must_use]
pub struct EcdsaSignature<C: PCurve, H: Hasher + EcdsaHash<C>> {
bytes: [u8; MAX_SIGNATURE_LEN],
// Invariant: len is in [0; MAX_SIGNATURE_LEN). If len is 0, it
// indicates an invalid signature. Invalid signatures can be produced
// when a caller invokes from_bytes with a byte slice longer than
// MAX_SIGNATURE_LEN. Such signatures cannot possibly have been
// generated by an ECDSA signature over any of the curves we support,
// and so it could not possibly be valid. In other words, it would never
// be correct for Signature::is_valid to return true when invoked on such a
// signature.
//
// However, if we were to simply truncate the byte slice and store a
// subset of it, then we might open ourselves up to attacks in which an
// attacker induces a mismatch between the signature that the caller
// /thinks/ is being verified and the signature that is /actually/ being
// verified. Thus, it's important that we always reject such signatures.
//
// Finally, it's OK for us to use 0 as the sentinal value to mean
// "invalid signature" because ECDSA can never produce a 0-byte
// signature. Thus, we will never produce a 0-byte signature from
// ecdsa_sign, and similarly, if the caller constructs a 0-byte
// signature using from_bytes, it's correct for us to treat it as
// invalid.
len: usize,
_marker: PhantomData<(C, H)>,
}
impl<C: PCurve, H: Hasher + EcdsaHash<C>> EcdsaSignature<C, H> {
/// Constructs an `EcdsaSignature` from raw bytes.
#[must_use]
pub fn from_bytes(bytes: &[u8]) -> EcdsaSignature<C, H> {
if bytes.len() > MAX_SIGNATURE_LEN {
// see comment on the len field for why we do this
return Self::empty();
}
let mut ret = Self::empty();
(&mut ret.bytes[..bytes.len()]).copy_from_slice(bytes);
ret.len = bytes.len();
ret
}
// TODO(joshlf): Once we have const generics, have this return a
// fixed-length array.
/// Gets the raw bytes of this `EcdsaSignature`.
#[must_use]
pub fn bytes(&self) -> &[u8] {
&self.bytes[..self.len]
}
fn is_valid_format(&self) -> bool {
self.len != 0
}
fn empty() -> EcdsaSignature<C, H> {
EcdsaSignature { bytes: [0u8; MAX_SIGNATURE_LEN], len: 0, _marker: PhantomData }
}
}
impl<C: PCurve, H: Hasher + EcdsaHash<C>> Sealed for EcdsaSignature<C, H> {}
impl<C: PCurve, H: Hasher + EcdsaHash<C>> Signature for EcdsaSignature<C, H> {
type PrivateKey = EcPrivKey<C>;
fn sign(key: &EcPrivKey<C>, message: &[u8]) -> Result<EcdsaSignature<C, H>, Error> {
let digest = H::hash(message);
let mut sig = EcdsaSignature::empty();
sig.len = boringssl::ecdsa_sign(digest.as_ref(), &mut sig.bytes[..], &key.inner.key)?;
Ok(sig)
}
fn is_valid(&self, key: &EcPubKey<C>, message: &[u8]) -> bool {
if !self.is_valid_format() {
// see comment on EcdsaSignature::len for why we do this
return false;
}
let digest = H::hash(message);
boringssl::ecdsa_verify(digest.as_ref(), self.bytes(), &key.inner.key)
}
}
impl<C: PCurve, H: Hasher + EcdsaHash<C>> Debug for EcdsaSignature<C, H> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "EcdsaSignature")
}
}
#[cfg(test)]
mod tests {
use super::super::*;
use super::*;
use public::testutil::test_signature_smoke;
#[test]
fn test_smoke() {
let p256 = EcPrivKey::<P256>::generate().unwrap();
let p384 = EcPrivKey::<P384>::generate().unwrap();
let p521 = EcPrivKey::<P521>::generate().unwrap();
test_signature_smoke(
&p256,
EcdsaSignature::<_, Sha256>::from_bytes,
EcdsaSignature::bytes,
);
test_signature_smoke(
&p384,
EcdsaSignature::<_, Sha256>::from_bytes,
EcdsaSignature::bytes,
);
test_signature_smoke(
&p384,
EcdsaSignature::<_, Sha384>::from_bytes,
EcdsaSignature::bytes,
);
test_signature_smoke(
&p521,
EcdsaSignature::<_, Sha256>::from_bytes,
EcdsaSignature::bytes,
);
test_signature_smoke(
&p521,
EcdsaSignature::<_, Sha384>::from_bytes,
EcdsaSignature::bytes,
);
#[cfg(feature = "experimental-sha512-ec")]
{
test_signature_smoke(
&p384,
EcdsaSignature::<_, Sha512>::from_bytes,
EcdsaSignature::bytes,
);
test_signature_smoke(
&p521,
EcdsaSignature::<_, Sha512>::from_bytes,
EcdsaSignature::bytes,
);
}
}
#[test]
fn test_invalid_signature() {
fn test_is_invalid(sig: &EcdsaSignature<P256, Sha256>) {
assert_eq!(sig.len, 0);
assert!(!sig.is_valid_format());
assert!(!sig.is_valid(&EcPrivKey::<P256>::generate().unwrap().public(), &[],));
}
test_is_invalid(&EcdsaSignature::from_bytes(&[0; MAX_SIGNATURE_LEN + 1]));
test_is_invalid(&EcdsaSignature::from_bytes(&[]));
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use hash::Sha256;
use public::ec::ecdsa::*;
use public::Signature;
use util::should_fail;
#[test]
fn test_generate() {
EcPrivKey::<P256>::generate().unwrap();
EcPrivKey::<P384>::generate().unwrap();
EcPrivKey::<P521>::generate().unwrap();
}
#[test]
fn test_marshal_parse() {
// Test various combinations of parsing and serializing keys.
//
// Since we need to test dynamic parsing (the
// parse_private_key_der_any_curve and parse_public_key_der_any_curve
// functions), we need a way of unwrapping their return values into a
// static key type. Unfortunately, there's no way (on stable Rust) to do
// that generically, so the caller must pass a function which will do
// it.
fn test<
C: PCurve,
F: Fn(EcPrivKeyAnyCurve) -> EcPrivKey<C>,
G: Fn(EcPubKeyAnyCurve) -> EcPubKey<C>,
>(
unwrap_priv_any: F,
unwrap_pub_any: G,
) where
Sha256: EcdsaHash<C>,
{
const MESSAGE: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7];
let key = EcPrivKey::<C>::generate().unwrap();
let parsed_key = EcPrivKey::<C>::parse_from_der(&key.marshal_to_der()).unwrap();
let parsed_key_any_curve =
unwrap_priv_any(EcPrivKeyAnyCurve::parse_from_der(&key.marshal_to_der()).unwrap());
let pubkey = key.public();
let parsed_pubkey = EcPubKey::<C>::parse_from_der(&pubkey.marshal_to_der()).unwrap();
let parsed_pubkey_any_curve =
unwrap_pub_any(EcPubKeyAnyCurve::parse_from_der(&pubkey.marshal_to_der()).unwrap());
fn sign_and_verify<C: PCurve>(privkey: &EcPrivKey<C>, pubkey: &EcPubKey<C>)
where
Sha256: EcdsaHash<C>,
{
let sig = EcdsaSignature::<C, Sha256>::sign(&privkey, MESSAGE).unwrap();
assert!(
EcdsaSignature::<C, Sha256>::from_bytes(sig.bytes()).is_valid(&pubkey, MESSAGE)
)
}
// Sign and verify with every pair of keys to make sure we parsed
// the same key we marshaled.
sign_and_verify(&key, &pubkey);
sign_and_verify(&key, &parsed_pubkey);
sign_and_verify(&key, &parsed_pubkey_any_curve);
sign_and_verify(&parsed_key, &pubkey);
sign_and_verify(&parsed_key, &parsed_pubkey);
sign_and_verify(&parsed_key, &parsed_pubkey_any_curve);
sign_and_verify(&parsed_key_any_curve, &pubkey);
sign_and_verify(&parsed_key_any_curve, &parsed_pubkey);
sign_and_verify(&parsed_key_any_curve, &parsed_pubkey_any_curve);
let _ = EcPubKey::<C>::marshal_to_der;
let _ = EcPubKey::<C>::parse_from_der;
}
macro_rules! unwrap_any_curve {
($name:ident, $any_type:ty, $key_type:ty, $curve_variant:path) => {
fn $name(key: $any_type) -> $key_type {
match key {
$curve_variant(key) => key,
_ => panic!("unexpected curve"),
}
}
};
}
unwrap_any_curve!(
unwrap_priv_key_any_p256,
EcPrivKeyAnyCurve,
EcPrivKey<P256>,
EcPrivKeyAnyCurve::P256
);
unwrap_any_curve!(
unwrap_priv_key_any_p384,
EcPrivKeyAnyCurve,
EcPrivKey<P384>,
EcPrivKeyAnyCurve::P384
);
unwrap_any_curve!(
unwrap_priv_key_any_p521,
EcPrivKeyAnyCurve,
EcPrivKey<P521>,
EcPrivKeyAnyCurve::P521
);
unwrap_any_curve!(
unwrap_pub_key_any_p256,
EcPubKeyAnyCurve,
EcPubKey<P256>,
EcPubKeyAnyCurve::P256
);
unwrap_any_curve!(
unwrap_pub_key_any_p384,
EcPubKeyAnyCurve,
EcPubKey<P384>,
EcPubKeyAnyCurve::P384
);
unwrap_any_curve!(
unwrap_pub_key_any_p521,
EcPubKeyAnyCurve,
EcPubKey<P521>,
EcPubKeyAnyCurve::P521
);
test::<P256, _, _>(unwrap_priv_key_any_p256, unwrap_pub_key_any_p256);
test::<P384, _, _>(unwrap_priv_key_any_p384, unwrap_pub_key_any_p384);
test::<P521, _, _>(unwrap_priv_key_any_p521, unwrap_pub_key_any_p521);
}
#[test]
fn test_parse_fail() {
// Test that invalid input is rejected.
fn test_parse_invalid<C: PCurve>() {
should_fail(
EcPrivKey::<C>::parse_from_der(&[]),
"EcPrivKey::parse_from_der",
"elliptic curve routines:OPENSSL_internal:DECODE_ERROR",
);
should_fail(
EcPubKey::<C>::parse_from_der(&[]),
"EcPubKey::parse_from_der",
"public key routines:OPENSSL_internal:DECODE_ERROR",
);
should_fail(
EcPrivKeyAnyCurve::parse_from_der(&[]),
"EcPrivKeyAnyCurve::parse_from_der",
"elliptic curve routines:OPENSSL_internal:DECODE_ERROR",
);
should_fail(
EcPubKeyAnyCurve::parse_from_der(&[]),
"EcPubKeyAnyCurve::parse_from_der",
"public key routines:OPENSSL_internal:DECODE_ERROR",
);
}
test_parse_invalid::<P256>();
test_parse_invalid::<P384>();
test_parse_invalid::<P521>();
// Test that, when a particular curve is expected, other curves are
// rejected.
fn test_parse_wrong_curve<C1: PCurve, C2: PCurve>() {
let privkey = EcPrivKey::<C1>::generate().unwrap();
let key_der = privkey.marshal_to_der();
should_fail(
EcPrivKey::<C2>::parse_from_der(&key_der),
"EcPrivKey::parse_from_der",
"elliptic curve routines:OPENSSL_internal:GROUP_MISMATCH",
);
let key_der = privkey.public().marshal_to_der();
should_fail(
EcPubKey::<C2>::parse_from_der(&key_der),
"EcPubKey::parse_from_der",
"unexpected curve:",
);
}
// All pairs of curves, (X, Y), such that X != Y.
test_parse_wrong_curve::<P256, P384>();
test_parse_wrong_curve::<P256, P521>();
test_parse_wrong_curve::<P384, P256>();
test_parse_wrong_curve::<P384, P521>();
test_parse_wrong_curve::<P521, P256>();
test_parse_wrong_curve::<P521, P384>();
}
}