tokio/sync/
broadcast.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
//! A multi-producer, multi-consumer broadcast queue. Each sent value is seen by
//! all consumers.
//!
//! A [`Sender`] is used to broadcast values to **all** connected [`Receiver`]
//! values. [`Sender`] handles are clone-able, allowing concurrent send and
//! receive actions. [`Sender`] and [`Receiver`] are both `Send` and `Sync` as
//! long as `T` is `Send`.
//!
//! When a value is sent, **all** [`Receiver`] handles are notified and will
//! receive the value. The value is stored once inside the channel and cloned on
//! demand for each receiver. Once all receivers have received a clone of the
//! value, the value is released from the channel.
//!
//! A channel is created by calling [`channel`], specifying the maximum number
//! of messages the channel can retain at any given time.
//!
//! New [`Receiver`] handles are created by calling [`Sender::subscribe`]. The
//! returned [`Receiver`] will receive values sent **after** the call to
//! `subscribe`.
//!
//! This channel is also suitable for the single-producer multi-consumer
//! use-case, where a single sender broadcasts values to many receivers.
//!
//! ## Lagging
//!
//! As sent messages must be retained until **all** [`Receiver`] handles receive
//! a clone, broadcast channels are susceptible to the "slow receiver" problem.
//! In this case, all but one receiver are able to receive values at the rate
//! they are sent. Because one receiver is stalled, the channel starts to fill
//! up.
//!
//! This broadcast channel implementation handles this case by setting a hard
//! upper bound on the number of values the channel may retain at any given
//! time. This upper bound is passed to the [`channel`] function as an argument.
//!
//! If a value is sent when the channel is at capacity, the oldest value
//! currently held by the channel is released. This frees up space for the new
//! value. Any receiver that has not yet seen the released value will return
//! [`RecvError::Lagged`] the next time [`recv`] is called.
//!
//! Once [`RecvError::Lagged`] is returned, the lagging receiver's position is
//! updated to the oldest value contained by the channel. The next call to
//! [`recv`] will return this value.
//!
//! This behavior enables a receiver to detect when it has lagged so far behind
//! that data has been dropped. The caller may decide how to respond to this:
//! either by aborting its task or by tolerating lost messages and resuming
//! consumption of the channel.
//!
//! ## Closing
//!
//! When **all** [`Sender`] handles have been dropped, no new values may be
//! sent. At this point, the channel is "closed". Once a receiver has received
//! all values retained by the channel, the next call to [`recv`] will return
//! with [`RecvError::Closed`].
//!
//! When a [`Receiver`] handle is dropped, any messages not read by the receiver
//! will be marked as read. If this receiver was the only one not to have read
//! that message, the message will be dropped at this point.
//!
//! [`Sender`]: crate::sync::broadcast::Sender
//! [`Sender::subscribe`]: crate::sync::broadcast::Sender::subscribe
//! [`Receiver`]: crate::sync::broadcast::Receiver
//! [`channel`]: crate::sync::broadcast::channel
//! [`RecvError::Lagged`]: crate::sync::broadcast::error::RecvError::Lagged
//! [`RecvError::Closed`]: crate::sync::broadcast::error::RecvError::Closed
//! [`recv`]: crate::sync::broadcast::Receiver::recv
//!
//! # Examples
//!
//! Basic usage
//!
//! ```
//! use tokio::sync::broadcast;
//!
//! #[tokio::main]
//! async fn main() {
//!     let (tx, mut rx1) = broadcast::channel(16);
//!     let mut rx2 = tx.subscribe();
//!
//!     tokio::spawn(async move {
//!         assert_eq!(rx1.recv().await.unwrap(), 10);
//!         assert_eq!(rx1.recv().await.unwrap(), 20);
//!     });
//!
//!     tokio::spawn(async move {
//!         assert_eq!(rx2.recv().await.unwrap(), 10);
//!         assert_eq!(rx2.recv().await.unwrap(), 20);
//!     });
//!
//!     tx.send(10).unwrap();
//!     tx.send(20).unwrap();
//! }
//! ```
//!
//! Handling lag
//!
//! ```
//! use tokio::sync::broadcast;
//!
//! #[tokio::main]
//! async fn main() {
//!     let (tx, mut rx) = broadcast::channel(2);
//!
//!     tx.send(10).unwrap();
//!     tx.send(20).unwrap();
//!     tx.send(30).unwrap();
//!
//!     // The receiver lagged behind
//!     assert!(rx.recv().await.is_err());
//!
//!     // At this point, we can abort or continue with lost messages
//!
//!     assert_eq!(20, rx.recv().await.unwrap());
//!     assert_eq!(30, rx.recv().await.unwrap());
//! }
//! ```

use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::{AtomicBool, AtomicUsize};
use crate::loom::sync::{Arc, Mutex, MutexGuard, RwLock, RwLockReadGuard};
use crate::util::linked_list::{self, GuardedLinkedList, LinkedList};
use crate::util::WakeList;

use std::fmt;
use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
use std::task::{Context, Poll, Waker};

/// Sending-half of the [`broadcast`] channel.
///
/// May be used from many threads. Messages can be sent with
/// [`send`][Sender::send].
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx1) = broadcast::channel(16);
///     let mut rx2 = tx.subscribe();
///
///     tokio::spawn(async move {
///         assert_eq!(rx1.recv().await.unwrap(), 10);
///         assert_eq!(rx1.recv().await.unwrap(), 20);
///     });
///
///     tokio::spawn(async move {
///         assert_eq!(rx2.recv().await.unwrap(), 10);
///         assert_eq!(rx2.recv().await.unwrap(), 20);
///     });
///
///     tx.send(10).unwrap();
///     tx.send(20).unwrap();
/// }
/// ```
///
/// [`broadcast`]: crate::sync::broadcast
pub struct Sender<T> {
    shared: Arc<Shared<T>>,
}

/// Receiving-half of the [`broadcast`] channel.
///
/// Must not be used concurrently. Messages may be retrieved using
/// [`recv`][Receiver::recv].
///
/// To turn this receiver into a `Stream`, you can use the [`BroadcastStream`]
/// wrapper.
///
/// [`BroadcastStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.BroadcastStream.html
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx1) = broadcast::channel(16);
///     let mut rx2 = tx.subscribe();
///
///     tokio::spawn(async move {
///         assert_eq!(rx1.recv().await.unwrap(), 10);
///         assert_eq!(rx1.recv().await.unwrap(), 20);
///     });
///
///     tokio::spawn(async move {
///         assert_eq!(rx2.recv().await.unwrap(), 10);
///         assert_eq!(rx2.recv().await.unwrap(), 20);
///     });
///
///     tx.send(10).unwrap();
///     tx.send(20).unwrap();
/// }
/// ```
///
/// [`broadcast`]: crate::sync::broadcast
pub struct Receiver<T> {
    /// State shared with all receivers and senders.
    shared: Arc<Shared<T>>,

    /// Next position to read from
    next: u64,
}

pub mod error {
    //! Broadcast error types

    use std::fmt;

    /// Error returned by the [`send`] function on a [`Sender`].
    ///
    /// A **send** operation can only fail if there are no active receivers,
    /// implying that the message could never be received. The error contains the
    /// message being sent as a payload so it can be recovered.
    ///
    /// [`send`]: crate::sync::broadcast::Sender::send
    /// [`Sender`]: crate::sync::broadcast::Sender
    #[derive(Debug)]
    pub struct SendError<T>(pub T);

    impl<T> fmt::Display for SendError<T> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            write!(f, "channel closed")
        }
    }

    impl<T: fmt::Debug> std::error::Error for SendError<T> {}

    /// An error returned from the [`recv`] function on a [`Receiver`].
    ///
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    #[derive(Debug, PartialEq, Eq, Clone)]
    pub enum RecvError {
        /// There are no more active senders implying no further messages will ever
        /// be sent.
        Closed,

        /// The receiver lagged too far behind. Attempting to receive again will
        /// return the oldest message still retained by the channel.
        ///
        /// Includes the number of skipped messages.
        Lagged(u64),
    }

    impl fmt::Display for RecvError {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            match self {
                RecvError::Closed => write!(f, "channel closed"),
                RecvError::Lagged(amt) => write!(f, "channel lagged by {}", amt),
            }
        }
    }

    impl std::error::Error for RecvError {}

    /// An error returned from the [`try_recv`] function on a [`Receiver`].
    ///
    /// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    #[derive(Debug, PartialEq, Eq, Clone)]
    pub enum TryRecvError {
        /// The channel is currently empty. There are still active
        /// [`Sender`] handles, so data may yet become available.
        ///
        /// [`Sender`]: crate::sync::broadcast::Sender
        Empty,

        /// There are no more active senders implying no further messages will ever
        /// be sent.
        Closed,

        /// The receiver lagged too far behind and has been forcibly disconnected.
        /// Attempting to receive again will return the oldest message still
        /// retained by the channel.
        ///
        /// Includes the number of skipped messages.
        Lagged(u64),
    }

    impl fmt::Display for TryRecvError {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            match self {
                TryRecvError::Empty => write!(f, "channel empty"),
                TryRecvError::Closed => write!(f, "channel closed"),
                TryRecvError::Lagged(amt) => write!(f, "channel lagged by {}", amt),
            }
        }
    }

    impl std::error::Error for TryRecvError {}
}

use self::error::{RecvError, SendError, TryRecvError};

/// Data shared between senders and receivers.
struct Shared<T> {
    /// slots in the channel.
    buffer: Box<[RwLock<Slot<T>>]>,

    /// Mask a position -> index.
    mask: usize,

    /// Tail of the queue. Includes the rx wait list.
    tail: Mutex<Tail>,

    /// Number of outstanding Sender handles.
    num_tx: AtomicUsize,
}

/// Next position to write a value.
struct Tail {
    /// Next position to write to.
    pos: u64,

    /// Number of active receivers.
    rx_cnt: usize,

    /// True if the channel is closed.
    closed: bool,

    /// Receivers waiting for a value.
    waiters: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
}

/// Slot in the buffer.
struct Slot<T> {
    /// Remaining number of receivers that are expected to see this value.
    ///
    /// When this goes to zero, the value is released.
    ///
    /// An atomic is used as it is mutated concurrently with the slot read lock
    /// acquired.
    rem: AtomicUsize,

    /// Uniquely identifies the `send` stored in the slot.
    pos: u64,

    /// The value being broadcast.
    ///
    /// The value is set by `send` when the write lock is held. When a reader
    /// drops, `rem` is decremented. When it hits zero, the value is dropped.
    val: UnsafeCell<Option<T>>,
}

/// An entry in the wait queue.
struct Waiter {
    /// True if queued.
    queued: AtomicBool,

    /// Task waiting on the broadcast channel.
    waker: Option<Waker>,

    /// Intrusive linked-list pointers.
    pointers: linked_list::Pointers<Waiter>,

    /// Should not be `Unpin`.
    _p: PhantomPinned,
}

impl Waiter {
    fn new() -> Self {
        Self {
            queued: AtomicBool::new(false),
            waker: None,
            pointers: linked_list::Pointers::new(),
            _p: PhantomPinned,
        }
    }
}

generate_addr_of_methods! {
    impl<> Waiter {
        unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
            &self.pointers
        }
    }
}

struct RecvGuard<'a, T> {
    slot: RwLockReadGuard<'a, Slot<T>>,
}

/// Receive a value future.
struct Recv<'a, T> {
    /// Receiver being waited on.
    receiver: &'a mut Receiver<T>,

    /// Entry in the waiter `LinkedList`.
    waiter: UnsafeCell<Waiter>,
}

unsafe impl<'a, T: Send> Send for Recv<'a, T> {}
unsafe impl<'a, T: Send> Sync for Recv<'a, T> {}

/// Max number of receivers. Reserve space to lock.
const MAX_RECEIVERS: usize = usize::MAX >> 2;

/// Create a bounded, multi-producer, multi-consumer channel where each sent
/// value is broadcasted to all active receivers.
///
/// **Note:** The actual capacity may be greater than the provided `capacity`.
///
/// All data sent on [`Sender`] will become available on every active
/// [`Receiver`] in the same order as it was sent.
///
/// The `Sender` can be cloned to `send` to the same channel from multiple
/// points in the process or it can be used concurrently from an `Arc`. New
/// `Receiver` handles are created by calling [`Sender::subscribe`].
///
/// If all [`Receiver`] handles are dropped, the `send` method will return a
/// [`SendError`]. Similarly, if all [`Sender`] handles are dropped, the [`recv`]
/// method will return a [`RecvError`].
///
/// [`Sender`]: crate::sync::broadcast::Sender
/// [`Sender::subscribe`]: crate::sync::broadcast::Sender::subscribe
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`SendError`]: crate::sync::broadcast::error::SendError
/// [`RecvError`]: crate::sync::broadcast::error::RecvError
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, mut rx1) = broadcast::channel(16);
///     let mut rx2 = tx.subscribe();
///
///     tokio::spawn(async move {
///         assert_eq!(rx1.recv().await.unwrap(), 10);
///         assert_eq!(rx1.recv().await.unwrap(), 20);
///     });
///
///     tokio::spawn(async move {
///         assert_eq!(rx2.recv().await.unwrap(), 10);
///         assert_eq!(rx2.recv().await.unwrap(), 20);
///     });
///
///     tx.send(10).unwrap();
///     tx.send(20).unwrap();
/// }
/// ```
///
/// # Panics
///
/// This will panic if `capacity` is equal to `0` or larger
/// than `usize::MAX / 2`.
#[track_caller]
pub fn channel<T: Clone>(capacity: usize) -> (Sender<T>, Receiver<T>) {
    // SAFETY: In the line below we are creating one extra receiver, so there will be 1 in total.
    let tx = unsafe { Sender::new_with_receiver_count(1, capacity) };
    let rx = Receiver {
        shared: tx.shared.clone(),
        next: 0,
    };
    (tx, rx)
}

unsafe impl<T: Send> Send for Sender<T> {}
unsafe impl<T: Send> Sync for Sender<T> {}

unsafe impl<T: Send> Send for Receiver<T> {}
unsafe impl<T: Send> Sync for Receiver<T> {}

impl<T> Sender<T> {
    /// Creates the sending-half of the [`broadcast`] channel.
    ///
    /// See the documentation of [`broadcast::channel`] for more information on this method.
    ///
    /// [`broadcast`]: crate::sync::broadcast
    /// [`broadcast::channel`]: crate::sync::broadcast::channel
    #[track_caller]
    pub fn new(capacity: usize) -> Self {
        // SAFETY: We don't create extra receivers, so there are 0.
        unsafe { Self::new_with_receiver_count(0, capacity) }
    }

    /// Creates the sending-half of the [`broadcast`](self) channel, and provide the receiver
    /// count.
    ///
    /// See the documentation of [`broadcast::channel`](self::channel) for more errors when
    /// calling this function.
    ///
    /// # Safety:
    ///
    /// The caller must ensure that the amount of receivers for this Sender is correct before
    /// the channel functionalities are used, the count is zero by default, as this function
    /// does not create any receivers by itself.
    #[track_caller]
    unsafe fn new_with_receiver_count(receiver_count: usize, mut capacity: usize) -> Self {
        assert!(capacity > 0, "broadcast channel capacity cannot be zero");
        assert!(
            capacity <= usize::MAX >> 1,
            "broadcast channel capacity exceeded `usize::MAX / 2`"
        );

        // Round to a power of two
        capacity = capacity.next_power_of_two();

        let mut buffer = Vec::with_capacity(capacity);

        for i in 0..capacity {
            buffer.push(RwLock::new(Slot {
                rem: AtomicUsize::new(0),
                pos: (i as u64).wrapping_sub(capacity as u64),
                val: UnsafeCell::new(None),
            }));
        }

        let shared = Arc::new(Shared {
            buffer: buffer.into_boxed_slice(),
            mask: capacity - 1,
            tail: Mutex::new(Tail {
                pos: 0,
                rx_cnt: receiver_count,
                closed: false,
                waiters: LinkedList::new(),
            }),
            num_tx: AtomicUsize::new(1),
        });

        Sender { shared }
    }

    /// Attempts to send a value to all active [`Receiver`] handles, returning
    /// it back if it could not be sent.
    ///
    /// A successful send occurs when there is at least one active [`Receiver`]
    /// handle. An unsuccessful send would be one where all associated
    /// [`Receiver`] handles have already been dropped.
    ///
    /// # Return
    ///
    /// On success, the number of subscribed [`Receiver`] handles is returned.
    /// This does not mean that this number of receivers will see the message as
    /// a receiver may drop or lag ([see lagging](self#lagging)) before receiving
    /// the message.
    ///
    /// # Note
    ///
    /// A return value of `Ok` **does not** mean that the sent value will be
    /// observed by all or any of the active [`Receiver`] handles. [`Receiver`]
    /// handles may be dropped before receiving the sent message.
    ///
    /// A return value of `Err` **does not** mean that future calls to `send`
    /// will fail. New [`Receiver`] handles may be created by calling
    /// [`subscribe`].
    ///
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`subscribe`]: crate::sync::broadcast::Sender::subscribe
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///     let mut rx2 = tx.subscribe();
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx1.recv().await.unwrap(), 10);
    ///         assert_eq!(rx1.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx2.recv().await.unwrap(), 10);
    ///         assert_eq!(rx2.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    /// }
    /// ```
    pub fn send(&self, value: T) -> Result<usize, SendError<T>> {
        let mut tail = self.shared.tail.lock();

        if tail.rx_cnt == 0 {
            return Err(SendError(value));
        }

        // Position to write into
        let pos = tail.pos;
        let rem = tail.rx_cnt;
        let idx = (pos & self.shared.mask as u64) as usize;

        // Update the tail position
        tail.pos = tail.pos.wrapping_add(1);

        // Get the slot
        let mut slot = self.shared.buffer[idx].write().unwrap();

        // Track the position
        slot.pos = pos;

        // Set remaining receivers
        slot.rem.with_mut(|v| *v = rem);

        // Write the value
        slot.val = UnsafeCell::new(Some(value));

        // Release the slot lock before notifying the receivers.
        drop(slot);

        // Notify and release the mutex. This must happen after the slot lock is
        // released, otherwise the writer lock bit could be cleared while another
        // thread is in the critical section.
        self.shared.notify_rx(tail);

        Ok(rem)
    }

    /// Creates a new [`Receiver`] handle that will receive values sent **after**
    /// this call to `subscribe`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, _rx) = broadcast::channel(16);
    ///
    ///     // Will not be seen
    ///     tx.send(10).unwrap();
    ///
    ///     let mut rx = tx.subscribe();
    ///
    ///     tx.send(20).unwrap();
    ///
    ///     let value = rx.recv().await.unwrap();
    ///     assert_eq!(20, value);
    /// }
    /// ```
    pub fn subscribe(&self) -> Receiver<T> {
        let shared = self.shared.clone();
        new_receiver(shared)
    }

    /// Returns the number of queued values.
    ///
    /// A value is queued until it has either been seen by all receivers that were alive at the time
    /// it was sent, or has been evicted from the queue by subsequent sends that exceeded the
    /// queue's capacity.
    ///
    /// # Note
    ///
    /// In contrast to [`Receiver::len`], this method only reports queued values and not values that
    /// have been evicted from the queue before being seen by all receivers.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///     let mut rx2 = tx.subscribe();
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    ///     tx.send(30).unwrap();
    ///
    ///     assert_eq!(tx.len(), 3);
    ///
    ///     rx1.recv().await.unwrap();
    ///
    ///     // The len is still 3 since rx2 hasn't seen the first value yet.
    ///     assert_eq!(tx.len(), 3);
    ///
    ///     rx2.recv().await.unwrap();
    ///
    ///     assert_eq!(tx.len(), 2);
    /// }
    /// ```
    pub fn len(&self) -> usize {
        let tail = self.shared.tail.lock();

        let base_idx = (tail.pos & self.shared.mask as u64) as usize;
        let mut low = 0;
        let mut high = self.shared.buffer.len();
        while low < high {
            let mid = low + (high - low) / 2;
            let idx = base_idx.wrapping_add(mid) & self.shared.mask;
            if self.shared.buffer[idx].read().unwrap().rem.load(SeqCst) == 0 {
                low = mid + 1;
            } else {
                high = mid;
            }
        }

        self.shared.buffer.len() - low
    }

    /// Returns true if there are no queued values.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///     let mut rx2 = tx.subscribe();
    ///
    ///     assert!(tx.is_empty());
    ///
    ///     tx.send(10).unwrap();
    ///
    ///     assert!(!tx.is_empty());
    ///
    ///     rx1.recv().await.unwrap();
    ///
    ///     // The queue is still not empty since rx2 hasn't seen the value.
    ///     assert!(!tx.is_empty());
    ///
    ///     rx2.recv().await.unwrap();
    ///
    ///     assert!(tx.is_empty());
    /// }
    /// ```
    pub fn is_empty(&self) -> bool {
        let tail = self.shared.tail.lock();

        let idx = (tail.pos.wrapping_sub(1) & self.shared.mask as u64) as usize;
        self.shared.buffer[idx].read().unwrap().rem.load(SeqCst) == 0
    }

    /// Returns the number of active receivers.
    ///
    /// An active receiver is a [`Receiver`] handle returned from [`channel`] or
    /// [`subscribe`]. These are the handles that will receive values sent on
    /// this [`Sender`].
    ///
    /// # Note
    ///
    /// It is not guaranteed that a sent message will reach this number of
    /// receivers. Active receivers may never call [`recv`] again before
    /// dropping.
    ///
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`Sender`]: crate::sync::broadcast::Sender
    /// [`subscribe`]: crate::sync::broadcast::Sender::subscribe
    /// [`channel`]: crate::sync::broadcast::channel
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, _rx1) = broadcast::channel(16);
    ///
    ///     assert_eq!(1, tx.receiver_count());
    ///
    ///     let mut _rx2 = tx.subscribe();
    ///
    ///     assert_eq!(2, tx.receiver_count());
    ///
    ///     tx.send(10).unwrap();
    /// }
    /// ```
    pub fn receiver_count(&self) -> usize {
        let tail = self.shared.tail.lock();
        tail.rx_cnt
    }

    /// Returns `true` if senders belong to the same channel.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, _rx) = broadcast::channel::<()>(16);
    ///     let tx2 = tx.clone();
    ///
    ///     assert!(tx.same_channel(&tx2));
    ///
    ///     let (tx3, _rx3) = broadcast::channel::<()>(16);
    ///
    ///     assert!(!tx3.same_channel(&tx2));
    /// }
    /// ```
    pub fn same_channel(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.shared, &other.shared)
    }

    fn close_channel(&self) {
        let mut tail = self.shared.tail.lock();
        tail.closed = true;

        self.shared.notify_rx(tail);
    }
}

/// Create a new `Receiver` which reads starting from the tail.
fn new_receiver<T>(shared: Arc<Shared<T>>) -> Receiver<T> {
    let mut tail = shared.tail.lock();

    assert!(tail.rx_cnt != MAX_RECEIVERS, "max receivers");

    tail.rx_cnt = tail.rx_cnt.checked_add(1).expect("overflow");

    let next = tail.pos;

    drop(tail);

    Receiver { shared, next }
}

/// List used in `Shared::notify_rx`. It wraps a guarded linked list
/// and gates the access to it on the `Shared.tail` mutex. It also empties
/// the list on drop.
struct WaitersList<'a, T> {
    list: GuardedLinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
    is_empty: bool,
    shared: &'a Shared<T>,
}

impl<'a, T> Drop for WaitersList<'a, T> {
    fn drop(&mut self) {
        // If the list is not empty, we unlink all waiters from it.
        // We do not wake the waiters to avoid double panics.
        if !self.is_empty {
            let _lock_guard = self.shared.tail.lock();
            while self.list.pop_back().is_some() {}
        }
    }
}

impl<'a, T> WaitersList<'a, T> {
    fn new(
        unguarded_list: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
        guard: Pin<&'a Waiter>,
        shared: &'a Shared<T>,
    ) -> Self {
        let guard_ptr = NonNull::from(guard.get_ref());
        let list = unguarded_list.into_guarded(guard_ptr);
        WaitersList {
            list,
            is_empty: false,
            shared,
        }
    }

    /// Removes the last element from the guarded list. Modifying this list
    /// requires an exclusive access to the main list in `Notify`.
    fn pop_back_locked(&mut self, _tail: &mut Tail) -> Option<NonNull<Waiter>> {
        let result = self.list.pop_back();
        if result.is_none() {
            // Save information about emptiness to avoid waiting for lock
            // in the destructor.
            self.is_empty = true;
        }
        result
    }
}

impl<T> Shared<T> {
    fn notify_rx<'a, 'b: 'a>(&'b self, mut tail: MutexGuard<'a, Tail>) {
        // It is critical for `GuardedLinkedList` safety that the guard node is
        // pinned in memory and is not dropped until the guarded list is dropped.
        let guard = Waiter::new();
        pin!(guard);

        // We move all waiters to a secondary list. It uses a `GuardedLinkedList`
        // underneath to allow every waiter to safely remove itself from it.
        //
        // * This list will be still guarded by the `waiters` lock.
        //   `NotifyWaitersList` wrapper makes sure we hold the lock to modify it.
        // * This wrapper will empty the list on drop. It is critical for safety
        //   that we will not leave any list entry with a pointer to the local
        //   guard node after this function returns / panics.
        let mut list = WaitersList::new(std::mem::take(&mut tail.waiters), guard.as_ref(), self);

        let mut wakers = WakeList::new();
        'outer: loop {
            while wakers.can_push() {
                match list.pop_back_locked(&mut tail) {
                    Some(waiter) => {
                        unsafe {
                            // Safety: accessing `waker` is safe because
                            // the tail lock is held.
                            if let Some(waker) = (*waiter.as_ptr()).waker.take() {
                                wakers.push(waker);
                            }

                            // Safety: `queued` is atomic.
                            let queued = &(*waiter.as_ptr()).queued;
                            // `Relaxed` suffices because the tail lock is held.
                            assert!(queued.load(Relaxed));
                            // `Release` is needed to synchronize with `Recv::drop`.
                            // It is critical to set this variable **after** waker
                            // is extracted, otherwise we may data race with `Recv::drop`.
                            queued.store(false, Release);
                        }
                    }
                    None => {
                        break 'outer;
                    }
                }
            }

            // Release the lock before waking.
            drop(tail);

            // Before we acquire the lock again all sorts of things can happen:
            // some waiters may remove themselves from the list and new waiters
            // may be added. This is fine since at worst we will unnecessarily
            // wake up waiters which will then queue themselves again.

            wakers.wake_all();

            // Acquire the lock again.
            tail = self.tail.lock();
        }

        // Release the lock before waking.
        drop(tail);

        wakers.wake_all();
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        let shared = self.shared.clone();
        shared.num_tx.fetch_add(1, SeqCst);

        Sender { shared }
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        if 1 == self.shared.num_tx.fetch_sub(1, SeqCst) {
            self.close_channel();
        }
    }
}

impl<T> Receiver<T> {
    /// Returns the number of messages that were sent into the channel and that
    /// this [`Receiver`] has yet to receive.
    ///
    /// If the returned value from `len` is larger than the next largest power of 2
    /// of the capacity of the channel any call to [`recv`] will return an
    /// `Err(RecvError::Lagged)` and any call to [`try_recv`] will return an
    /// `Err(TryRecvError::Lagged)`, e.g. if the capacity of the channel is 10,
    /// [`recv`] will start to return `Err(RecvError::Lagged)` once `len` returns
    /// values larger than 16.
    ///
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    /// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    ///
    ///     assert_eq!(rx1.len(), 2);
    ///     assert_eq!(rx1.recv().await.unwrap(), 10);
    ///     assert_eq!(rx1.len(), 1);
    ///     assert_eq!(rx1.recv().await.unwrap(), 20);
    ///     assert_eq!(rx1.len(), 0);
    /// }
    /// ```
    pub fn len(&self) -> usize {
        let next_send_pos = self.shared.tail.lock().pos;
        (next_send_pos - self.next) as usize
    }

    /// Returns true if there aren't any messages in the channel that the [`Receiver`]
    /// has yet to receive.
    ///
    /// [`Receiver]: create::sync::broadcast::Receiver
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///
    ///     assert!(rx1.is_empty());
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    ///
    ///     assert!(!rx1.is_empty());
    ///     assert_eq!(rx1.recv().await.unwrap(), 10);
    ///     assert_eq!(rx1.recv().await.unwrap(), 20);
    ///     assert!(rx1.is_empty());
    /// }
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns `true` if receivers belong to the same channel.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, rx) = broadcast::channel::<()>(16);
    ///     let rx2 = tx.subscribe();
    ///
    ///     assert!(rx.same_channel(&rx2));
    ///
    ///     let (_tx3, rx3) = broadcast::channel::<()>(16);
    ///
    ///     assert!(!rx3.same_channel(&rx2));
    /// }
    /// ```
    pub fn same_channel(&self, other: &Self) -> bool {
        Arc::ptr_eq(&self.shared, &other.shared)
    }

    /// Locks the next value if there is one.
    fn recv_ref(
        &mut self,
        waiter: Option<(&UnsafeCell<Waiter>, &Waker)>,
    ) -> Result<RecvGuard<'_, T>, TryRecvError> {
        let idx = (self.next & self.shared.mask as u64) as usize;

        // The slot holding the next value to read
        let mut slot = self.shared.buffer[idx].read().unwrap();

        if slot.pos != self.next {
            // Release the `slot` lock before attempting to acquire the `tail`
            // lock. This is required because `send2` acquires the tail lock
            // first followed by the slot lock. Acquiring the locks in reverse
            // order here would result in a potential deadlock: `recv_ref`
            // acquires the `slot` lock and attempts to acquire the `tail` lock
            // while `send2` acquired the `tail` lock and attempts to acquire
            // the slot lock.
            drop(slot);

            let mut old_waker = None;

            let mut tail = self.shared.tail.lock();

            // Acquire slot lock again
            slot = self.shared.buffer[idx].read().unwrap();

            // Make sure the position did not change. This could happen in the
            // unlikely event that the buffer is wrapped between dropping the
            // read lock and acquiring the tail lock.
            if slot.pos != self.next {
                let next_pos = slot.pos.wrapping_add(self.shared.buffer.len() as u64);

                if next_pos == self.next {
                    // At this point the channel is empty for *this* receiver. If
                    // it's been closed, then that's what we return, otherwise we
                    // set a waker and return empty.
                    if tail.closed {
                        return Err(TryRecvError::Closed);
                    }

                    // Store the waker
                    if let Some((waiter, waker)) = waiter {
                        // Safety: called while locked.
                        unsafe {
                            // Only queue if not already queued
                            waiter.with_mut(|ptr| {
                                // If there is no waker **or** if the currently
                                // stored waker references a **different** task,
                                // track the tasks' waker to be notified on
                                // receipt of a new value.
                                match (*ptr).waker {
                                    Some(ref w) if w.will_wake(waker) => {}
                                    _ => {
                                        old_waker = std::mem::replace(
                                            &mut (*ptr).waker,
                                            Some(waker.clone()),
                                        );
                                    }
                                }

                                // If the waiter is not already queued, enqueue it.
                                // `Relaxed` order suffices: we have synchronized with
                                // all writers through the tail lock that we hold.
                                if !(*ptr).queued.load(Relaxed) {
                                    // `Relaxed` order suffices: all the readers will
                                    // synchronize with this write through the tail lock.
                                    (*ptr).queued.store(true, Relaxed);
                                    tail.waiters.push_front(NonNull::new_unchecked(&mut *ptr));
                                }
                            });
                        }
                    }

                    // Drop the old waker after releasing the locks.
                    drop(slot);
                    drop(tail);
                    drop(old_waker);

                    return Err(TryRecvError::Empty);
                }

                // At this point, the receiver has lagged behind the sender by
                // more than the channel capacity. The receiver will attempt to
                // catch up by skipping dropped messages and setting the
                // internal cursor to the **oldest** message stored by the
                // channel.
                let next = tail.pos.wrapping_sub(self.shared.buffer.len() as u64);

                let missed = next.wrapping_sub(self.next);

                drop(tail);

                // The receiver is slow but no values have been missed
                if missed == 0 {
                    self.next = self.next.wrapping_add(1);

                    return Ok(RecvGuard { slot });
                }

                self.next = next;

                return Err(TryRecvError::Lagged(missed));
            }
        }

        self.next = self.next.wrapping_add(1);

        Ok(RecvGuard { slot })
    }
}

impl<T: Clone> Receiver<T> {
    /// Re-subscribes to the channel starting from the current tail element.
    ///
    /// This [`Receiver`] handle will receive a clone of all values sent
    /// **after** it has resubscribed. This will not include elements that are
    /// in the queue of the current receiver. Consider the following example.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///   let (tx, mut rx) = broadcast::channel(2);
    ///
    ///   tx.send(1).unwrap();
    ///   let mut rx2 = rx.resubscribe();
    ///   tx.send(2).unwrap();
    ///
    ///   assert_eq!(rx2.recv().await.unwrap(), 2);
    ///   assert_eq!(rx.recv().await.unwrap(), 1);
    /// }
    /// ```
    pub fn resubscribe(&self) -> Self {
        let shared = self.shared.clone();
        new_receiver(shared)
    }
    /// Receives the next value for this receiver.
    ///
    /// Each [`Receiver`] handle will receive a clone of all values sent
    /// **after** it has subscribed.
    ///
    /// `Err(RecvError::Closed)` is returned when all `Sender` halves have
    /// dropped, indicating that no further values can be sent on the channel.
    ///
    /// If the [`Receiver`] handle falls behind, once the channel is full, newly
    /// sent values will overwrite old values. At this point, a call to [`recv`]
    /// will return with `Err(RecvError::Lagged)` and the [`Receiver`]'s
    /// internal cursor is updated to point to the oldest value still held by
    /// the channel. A subsequent call to [`recv`] will return this value
    /// **unless** it has been since overwritten.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `recv` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, it is guaranteed that no messages were received on this
    /// channel.
    ///
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx1) = broadcast::channel(16);
    ///     let mut rx2 = tx.subscribe();
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx1.recv().await.unwrap(), 10);
    ///         assert_eq!(rx1.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tokio::spawn(async move {
    ///         assert_eq!(rx2.recv().await.unwrap(), 10);
    ///         assert_eq!(rx2.recv().await.unwrap(), 20);
    ///     });
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    /// }
    /// ```
    ///
    /// Handling lag
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = broadcast::channel(2);
    ///
    ///     tx.send(10).unwrap();
    ///     tx.send(20).unwrap();
    ///     tx.send(30).unwrap();
    ///
    ///     // The receiver lagged behind
    ///     assert!(rx.recv().await.is_err());
    ///
    ///     // At this point, we can abort or continue with lost messages
    ///
    ///     assert_eq!(20, rx.recv().await.unwrap());
    ///     assert_eq!(30, rx.recv().await.unwrap());
    /// }
    /// ```
    pub async fn recv(&mut self) -> Result<T, RecvError> {
        let fut = Recv::new(self);
        fut.await
    }

    /// Attempts to return a pending value on this receiver without awaiting.
    ///
    /// This is useful for a flavor of "optimistic check" before deciding to
    /// await on a receiver.
    ///
    /// Compared with [`recv`], this function has three failure cases instead of two
    /// (one for closed, one for an empty buffer, one for a lagging receiver).
    ///
    /// `Err(TryRecvError::Closed)` is returned when all `Sender` halves have
    /// dropped, indicating that no further values can be sent on the channel.
    ///
    /// If the [`Receiver`] handle falls behind, once the channel is full, newly
    /// sent values will overwrite old values. At this point, a call to [`recv`]
    /// will return with `Err(TryRecvError::Lagged)` and the [`Receiver`]'s
    /// internal cursor is updated to point to the oldest value still held by
    /// the channel. A subsequent call to [`try_recv`] will return this value
    /// **unless** it has been since overwritten. If there are no values to
    /// receive, `Err(TryRecvError::Empty)` is returned.
    ///
    /// [`recv`]: crate::sync::broadcast::Receiver::recv
    /// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
    /// [`Receiver`]: crate::sync::broadcast::Receiver
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = broadcast::channel(16);
    ///
    ///     assert!(rx.try_recv().is_err());
    ///
    ///     tx.send(10).unwrap();
    ///
    ///     let value = rx.try_recv().unwrap();
    ///     assert_eq!(10, value);
    /// }
    /// ```
    pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
        let guard = self.recv_ref(None)?;
        guard.clone_value().ok_or(TryRecvError::Closed)
    }

    /// Blocking receive to call outside of asynchronous contexts.
    ///
    /// # Panics
    ///
    /// This function panics if called within an asynchronous execution
    /// context.
    ///
    /// # Examples
    /// ```
    /// use std::thread;
    /// use tokio::sync::broadcast;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = broadcast::channel(16);
    ///
    ///     let sync_code = thread::spawn(move || {
    ///         assert_eq!(rx.blocking_recv(), Ok(10));
    ///     });
    ///
    ///     let _ = tx.send(10);
    ///     sync_code.join().unwrap();
    /// }
    /// ```
    pub fn blocking_recv(&mut self) -> Result<T, RecvError> {
        crate::future::block_on(self.recv())
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        let mut tail = self.shared.tail.lock();

        tail.rx_cnt -= 1;
        let until = tail.pos;

        drop(tail);

        while self.next < until {
            match self.recv_ref(None) {
                Ok(_) => {}
                // The channel is closed
                Err(TryRecvError::Closed) => break,
                // Ignore lagging, we will catch up
                Err(TryRecvError::Lagged(..)) => {}
                // Can't be empty
                Err(TryRecvError::Empty) => panic!("unexpected empty broadcast channel"),
            }
        }
    }
}

impl<'a, T> Recv<'a, T> {
    fn new(receiver: &'a mut Receiver<T>) -> Recv<'a, T> {
        Recv {
            receiver,
            waiter: UnsafeCell::new(Waiter {
                queued: AtomicBool::new(false),
                waker: None,
                pointers: linked_list::Pointers::new(),
                _p: PhantomPinned,
            }),
        }
    }

    /// A custom `project` implementation is used in place of `pin-project-lite`
    /// as a custom drop implementation is needed.
    fn project(self: Pin<&mut Self>) -> (&mut Receiver<T>, &UnsafeCell<Waiter>) {
        unsafe {
            // Safety: Receiver is Unpin
            is_unpin::<&mut Receiver<T>>();

            let me = self.get_unchecked_mut();
            (me.receiver, &me.waiter)
        }
    }
}

impl<'a, T> Future for Recv<'a, T>
where
    T: Clone,
{
    type Output = Result<T, RecvError>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
        ready!(crate::trace::trace_leaf(cx));

        let (receiver, waiter) = self.project();

        let guard = match receiver.recv_ref(Some((waiter, cx.waker()))) {
            Ok(value) => value,
            Err(TryRecvError::Empty) => return Poll::Pending,
            Err(TryRecvError::Lagged(n)) => return Poll::Ready(Err(RecvError::Lagged(n))),
            Err(TryRecvError::Closed) => return Poll::Ready(Err(RecvError::Closed)),
        };

        Poll::Ready(guard.clone_value().ok_or(RecvError::Closed))
    }
}

impl<'a, T> Drop for Recv<'a, T> {
    fn drop(&mut self) {
        // Safety: `waiter.queued` is atomic.
        // Acquire ordering is required to synchronize with
        // `Shared::notify_rx` before we drop the object.
        let queued = self
            .waiter
            .with(|ptr| unsafe { (*ptr).queued.load(Acquire) });

        // If the waiter is queued, we need to unlink it from the waiters list.
        // If not, no further synchronization is required, since the waiter
        // is not in the list and, as such, is not shared with any other threads.
        if queued {
            // Acquire the tail lock. This is required for safety before accessing
            // the waiter node.
            let mut tail = self.receiver.shared.tail.lock();

            // Safety: tail lock is held.
            // `Relaxed` order suffices because we hold the tail lock.
            let queued = self
                .waiter
                .with_mut(|ptr| unsafe { (*ptr).queued.load(Relaxed) });

            if queued {
                // Remove the node
                //
                // safety: tail lock is held and the wait node is verified to be in
                // the list.
                unsafe {
                    self.waiter.with_mut(|ptr| {
                        tail.waiters.remove((&mut *ptr).into());
                    });
                }
            }
        }
    }
}

/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
    type Handle = NonNull<Waiter>;
    type Target = Waiter;

    fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
        *handle
    }

    unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
        ptr
    }

    unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
        Waiter::addr_of_pointers(target)
    }
}

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "broadcast::Sender")
    }
}

impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "broadcast::Receiver")
    }
}

impl<'a, T> RecvGuard<'a, T> {
    fn clone_value(&self) -> Option<T>
    where
        T: Clone,
    {
        self.slot.val.with(|ptr| unsafe { (*ptr).clone() })
    }
}

impl<'a, T> Drop for RecvGuard<'a, T> {
    fn drop(&mut self) {
        // Decrement the remaining counter
        if 1 == self.slot.rem.fetch_sub(1, SeqCst) {
            // Safety: Last receiver, drop the value
            self.slot.val.with_mut(|ptr| unsafe { *ptr = None });
        }
    }
}

fn is_unpin<T: Unpin>() {}

#[cfg(not(loom))]
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn receiver_count_on_sender_constructor() {
        let sender = Sender::<i32>::new(16);
        assert_eq!(sender.receiver_count(), 0);

        let rx_1 = sender.subscribe();
        assert_eq!(sender.receiver_count(), 1);

        let rx_2 = rx_1.resubscribe();
        assert_eq!(sender.receiver_count(), 2);

        let rx_3 = sender.subscribe();
        assert_eq!(sender.receiver_count(), 3);

        drop(rx_3);
        drop(rx_1);
        assert_eq!(sender.receiver_count(), 1);

        drop(rx_2);
        assert_eq!(sender.receiver_count(), 0);
    }

    #[cfg(not(loom))]
    #[test]
    fn receiver_count_on_channel_constructor() {
        let (sender, rx) = channel::<i32>(16);
        assert_eq!(sender.receiver_count(), 1);

        let _rx_2 = rx.resubscribe();
        assert_eq!(sender.receiver_count(), 2);
    }
}