tokio/sync/broadcast.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
//! A multi-producer, multi-consumer broadcast queue. Each sent value is seen by
//! all consumers.
//!
//! A [`Sender`] is used to broadcast values to **all** connected [`Receiver`]
//! values. [`Sender`] handles are clone-able, allowing concurrent send and
//! receive actions. [`Sender`] and [`Receiver`] are both `Send` and `Sync` as
//! long as `T` is `Send`.
//!
//! When a value is sent, **all** [`Receiver`] handles are notified and will
//! receive the value. The value is stored once inside the channel and cloned on
//! demand for each receiver. Once all receivers have received a clone of the
//! value, the value is released from the channel.
//!
//! A channel is created by calling [`channel`], specifying the maximum number
//! of messages the channel can retain at any given time.
//!
//! New [`Receiver`] handles are created by calling [`Sender::subscribe`]. The
//! returned [`Receiver`] will receive values sent **after** the call to
//! `subscribe`.
//!
//! This channel is also suitable for the single-producer multi-consumer
//! use-case, where a single sender broadcasts values to many receivers.
//!
//! ## Lagging
//!
//! As sent messages must be retained until **all** [`Receiver`] handles receive
//! a clone, broadcast channels are susceptible to the "slow receiver" problem.
//! In this case, all but one receiver are able to receive values at the rate
//! they are sent. Because one receiver is stalled, the channel starts to fill
//! up.
//!
//! This broadcast channel implementation handles this case by setting a hard
//! upper bound on the number of values the channel may retain at any given
//! time. This upper bound is passed to the [`channel`] function as an argument.
//!
//! If a value is sent when the channel is at capacity, the oldest value
//! currently held by the channel is released. This frees up space for the new
//! value. Any receiver that has not yet seen the released value will return
//! [`RecvError::Lagged`] the next time [`recv`] is called.
//!
//! Once [`RecvError::Lagged`] is returned, the lagging receiver's position is
//! updated to the oldest value contained by the channel. The next call to
//! [`recv`] will return this value.
//!
//! This behavior enables a receiver to detect when it has lagged so far behind
//! that data has been dropped. The caller may decide how to respond to this:
//! either by aborting its task or by tolerating lost messages and resuming
//! consumption of the channel.
//!
//! ## Closing
//!
//! When **all** [`Sender`] handles have been dropped, no new values may be
//! sent. At this point, the channel is "closed". Once a receiver has received
//! all values retained by the channel, the next call to [`recv`] will return
//! with [`RecvError::Closed`].
//!
//! When a [`Receiver`] handle is dropped, any messages not read by the receiver
//! will be marked as read. If this receiver was the only one not to have read
//! that message, the message will be dropped at this point.
//!
//! [`Sender`]: crate::sync::broadcast::Sender
//! [`Sender::subscribe`]: crate::sync::broadcast::Sender::subscribe
//! [`Receiver`]: crate::sync::broadcast::Receiver
//! [`channel`]: crate::sync::broadcast::channel
//! [`RecvError::Lagged`]: crate::sync::broadcast::error::RecvError::Lagged
//! [`RecvError::Closed`]: crate::sync::broadcast::error::RecvError::Closed
//! [`recv`]: crate::sync::broadcast::Receiver::recv
//!
//! # Examples
//!
//! Basic usage
//!
//! ```
//! use tokio::sync::broadcast;
//!
//! #[tokio::main]
//! async fn main() {
//! let (tx, mut rx1) = broadcast::channel(16);
//! let mut rx2 = tx.subscribe();
//!
//! tokio::spawn(async move {
//! assert_eq!(rx1.recv().await.unwrap(), 10);
//! assert_eq!(rx1.recv().await.unwrap(), 20);
//! });
//!
//! tokio::spawn(async move {
//! assert_eq!(rx2.recv().await.unwrap(), 10);
//! assert_eq!(rx2.recv().await.unwrap(), 20);
//! });
//!
//! tx.send(10).unwrap();
//! tx.send(20).unwrap();
//! }
//! ```
//!
//! Handling lag
//!
//! ```
//! use tokio::sync::broadcast;
//!
//! #[tokio::main]
//! async fn main() {
//! let (tx, mut rx) = broadcast::channel(2);
//!
//! tx.send(10).unwrap();
//! tx.send(20).unwrap();
//! tx.send(30).unwrap();
//!
//! // The receiver lagged behind
//! assert!(rx.recv().await.is_err());
//!
//! // At this point, we can abort or continue with lost messages
//!
//! assert_eq!(20, rx.recv().await.unwrap());
//! assert_eq!(30, rx.recv().await.unwrap());
//! }
//! ```
use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::{AtomicBool, AtomicUsize};
use crate::loom::sync::{Arc, Mutex, MutexGuard, RwLock, RwLockReadGuard};
use crate::util::linked_list::{self, GuardedLinkedList, LinkedList};
use crate::util::WakeList;
use std::fmt;
use std::future::Future;
use std::marker::PhantomPinned;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst};
use std::task::{Context, Poll, Waker};
/// Sending-half of the [`broadcast`] channel.
///
/// May be used from many threads. Messages can be sent with
/// [`send`][Sender::send].
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// tokio::spawn(async move {
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// });
///
/// tokio::spawn(async move {
/// assert_eq!(rx2.recv().await.unwrap(), 10);
/// assert_eq!(rx2.recv().await.unwrap(), 20);
/// });
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// }
/// ```
///
/// [`broadcast`]: crate::sync::broadcast
pub struct Sender<T> {
shared: Arc<Shared<T>>,
}
/// Receiving-half of the [`broadcast`] channel.
///
/// Must not be used concurrently. Messages may be retrieved using
/// [`recv`][Receiver::recv].
///
/// To turn this receiver into a `Stream`, you can use the [`BroadcastStream`]
/// wrapper.
///
/// [`BroadcastStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.BroadcastStream.html
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// tokio::spawn(async move {
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// });
///
/// tokio::spawn(async move {
/// assert_eq!(rx2.recv().await.unwrap(), 10);
/// assert_eq!(rx2.recv().await.unwrap(), 20);
/// });
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// }
/// ```
///
/// [`broadcast`]: crate::sync::broadcast
pub struct Receiver<T> {
/// State shared with all receivers and senders.
shared: Arc<Shared<T>>,
/// Next position to read from
next: u64,
}
pub mod error {
//! Broadcast error types
use std::fmt;
/// Error returned by the [`send`] function on a [`Sender`].
///
/// A **send** operation can only fail if there are no active receivers,
/// implying that the message could never be received. The error contains the
/// message being sent as a payload so it can be recovered.
///
/// [`send`]: crate::sync::broadcast::Sender::send
/// [`Sender`]: crate::sync::broadcast::Sender
#[derive(Debug)]
pub struct SendError<T>(pub T);
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "channel closed")
}
}
impl<T: fmt::Debug> std::error::Error for SendError<T> {}
/// An error returned from the [`recv`] function on a [`Receiver`].
///
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`Receiver`]: crate::sync::broadcast::Receiver
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum RecvError {
/// There are no more active senders implying no further messages will ever
/// be sent.
Closed,
/// The receiver lagged too far behind. Attempting to receive again will
/// return the oldest message still retained by the channel.
///
/// Includes the number of skipped messages.
Lagged(u64),
}
impl fmt::Display for RecvError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
RecvError::Closed => write!(f, "channel closed"),
RecvError::Lagged(amt) => write!(f, "channel lagged by {}", amt),
}
}
}
impl std::error::Error for RecvError {}
/// An error returned from the [`try_recv`] function on a [`Receiver`].
///
/// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
/// [`Receiver`]: crate::sync::broadcast::Receiver
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum TryRecvError {
/// The channel is currently empty. There are still active
/// [`Sender`] handles, so data may yet become available.
///
/// [`Sender`]: crate::sync::broadcast::Sender
Empty,
/// There are no more active senders implying no further messages will ever
/// be sent.
Closed,
/// The receiver lagged too far behind and has been forcibly disconnected.
/// Attempting to receive again will return the oldest message still
/// retained by the channel.
///
/// Includes the number of skipped messages.
Lagged(u64),
}
impl fmt::Display for TryRecvError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
TryRecvError::Empty => write!(f, "channel empty"),
TryRecvError::Closed => write!(f, "channel closed"),
TryRecvError::Lagged(amt) => write!(f, "channel lagged by {}", amt),
}
}
}
impl std::error::Error for TryRecvError {}
}
use self::error::{RecvError, SendError, TryRecvError};
/// Data shared between senders and receivers.
struct Shared<T> {
/// slots in the channel.
buffer: Box<[RwLock<Slot<T>>]>,
/// Mask a position -> index.
mask: usize,
/// Tail of the queue. Includes the rx wait list.
tail: Mutex<Tail>,
/// Number of outstanding Sender handles.
num_tx: AtomicUsize,
}
/// Next position to write a value.
struct Tail {
/// Next position to write to.
pos: u64,
/// Number of active receivers.
rx_cnt: usize,
/// True if the channel is closed.
closed: bool,
/// Receivers waiting for a value.
waiters: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
}
/// Slot in the buffer.
struct Slot<T> {
/// Remaining number of receivers that are expected to see this value.
///
/// When this goes to zero, the value is released.
///
/// An atomic is used as it is mutated concurrently with the slot read lock
/// acquired.
rem: AtomicUsize,
/// Uniquely identifies the `send` stored in the slot.
pos: u64,
/// The value being broadcast.
///
/// The value is set by `send` when the write lock is held. When a reader
/// drops, `rem` is decremented. When it hits zero, the value is dropped.
val: UnsafeCell<Option<T>>,
}
/// An entry in the wait queue.
struct Waiter {
/// True if queued.
queued: AtomicBool,
/// Task waiting on the broadcast channel.
waker: Option<Waker>,
/// Intrusive linked-list pointers.
pointers: linked_list::Pointers<Waiter>,
/// Should not be `Unpin`.
_p: PhantomPinned,
}
impl Waiter {
fn new() -> Self {
Self {
queued: AtomicBool::new(false),
waker: None,
pointers: linked_list::Pointers::new(),
_p: PhantomPinned,
}
}
}
generate_addr_of_methods! {
impl<> Waiter {
unsafe fn addr_of_pointers(self: NonNull<Self>) -> NonNull<linked_list::Pointers<Waiter>> {
&self.pointers
}
}
}
struct RecvGuard<'a, T> {
slot: RwLockReadGuard<'a, Slot<T>>,
}
/// Receive a value future.
struct Recv<'a, T> {
/// Receiver being waited on.
receiver: &'a mut Receiver<T>,
/// Entry in the waiter `LinkedList`.
waiter: UnsafeCell<Waiter>,
}
unsafe impl<'a, T: Send> Send for Recv<'a, T> {}
unsafe impl<'a, T: Send> Sync for Recv<'a, T> {}
/// Max number of receivers. Reserve space to lock.
const MAX_RECEIVERS: usize = usize::MAX >> 2;
/// Create a bounded, multi-producer, multi-consumer channel where each sent
/// value is broadcasted to all active receivers.
///
/// **Note:** The actual capacity may be greater than the provided `capacity`.
///
/// All data sent on [`Sender`] will become available on every active
/// [`Receiver`] in the same order as it was sent.
///
/// The `Sender` can be cloned to `send` to the same channel from multiple
/// points in the process or it can be used concurrently from an `Arc`. New
/// `Receiver` handles are created by calling [`Sender::subscribe`].
///
/// If all [`Receiver`] handles are dropped, the `send` method will return a
/// [`SendError`]. Similarly, if all [`Sender`] handles are dropped, the [`recv`]
/// method will return a [`RecvError`].
///
/// [`Sender`]: crate::sync::broadcast::Sender
/// [`Sender::subscribe`]: crate::sync::broadcast::Sender::subscribe
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`SendError`]: crate::sync::broadcast::error::SendError
/// [`RecvError`]: crate::sync::broadcast::error::RecvError
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// tokio::spawn(async move {
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// });
///
/// tokio::spawn(async move {
/// assert_eq!(rx2.recv().await.unwrap(), 10);
/// assert_eq!(rx2.recv().await.unwrap(), 20);
/// });
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// }
/// ```
///
/// # Panics
///
/// This will panic if `capacity` is equal to `0` or larger
/// than `usize::MAX / 2`.
#[track_caller]
pub fn channel<T: Clone>(capacity: usize) -> (Sender<T>, Receiver<T>) {
// SAFETY: In the line below we are creating one extra receiver, so there will be 1 in total.
let tx = unsafe { Sender::new_with_receiver_count(1, capacity) };
let rx = Receiver {
shared: tx.shared.clone(),
next: 0,
};
(tx, rx)
}
unsafe impl<T: Send> Send for Sender<T> {}
unsafe impl<T: Send> Sync for Sender<T> {}
unsafe impl<T: Send> Send for Receiver<T> {}
unsafe impl<T: Send> Sync for Receiver<T> {}
impl<T> Sender<T> {
/// Creates the sending-half of the [`broadcast`] channel.
///
/// See the documentation of [`broadcast::channel`] for more information on this method.
///
/// [`broadcast`]: crate::sync::broadcast
/// [`broadcast::channel`]: crate::sync::broadcast::channel
#[track_caller]
pub fn new(capacity: usize) -> Self {
// SAFETY: We don't create extra receivers, so there are 0.
unsafe { Self::new_with_receiver_count(0, capacity) }
}
/// Creates the sending-half of the [`broadcast`](self) channel, and provide the receiver
/// count.
///
/// See the documentation of [`broadcast::channel`](self::channel) for more errors when
/// calling this function.
///
/// # Safety:
///
/// The caller must ensure that the amount of receivers for this Sender is correct before
/// the channel functionalities are used, the count is zero by default, as this function
/// does not create any receivers by itself.
#[track_caller]
unsafe fn new_with_receiver_count(receiver_count: usize, mut capacity: usize) -> Self {
assert!(capacity > 0, "broadcast channel capacity cannot be zero");
assert!(
capacity <= usize::MAX >> 1,
"broadcast channel capacity exceeded `usize::MAX / 2`"
);
// Round to a power of two
capacity = capacity.next_power_of_two();
let mut buffer = Vec::with_capacity(capacity);
for i in 0..capacity {
buffer.push(RwLock::new(Slot {
rem: AtomicUsize::new(0),
pos: (i as u64).wrapping_sub(capacity as u64),
val: UnsafeCell::new(None),
}));
}
let shared = Arc::new(Shared {
buffer: buffer.into_boxed_slice(),
mask: capacity - 1,
tail: Mutex::new(Tail {
pos: 0,
rx_cnt: receiver_count,
closed: false,
waiters: LinkedList::new(),
}),
num_tx: AtomicUsize::new(1),
});
Sender { shared }
}
/// Attempts to send a value to all active [`Receiver`] handles, returning
/// it back if it could not be sent.
///
/// A successful send occurs when there is at least one active [`Receiver`]
/// handle. An unsuccessful send would be one where all associated
/// [`Receiver`] handles have already been dropped.
///
/// # Return
///
/// On success, the number of subscribed [`Receiver`] handles is returned.
/// This does not mean that this number of receivers will see the message as
/// a receiver may drop or lag ([see lagging](self#lagging)) before receiving
/// the message.
///
/// # Note
///
/// A return value of `Ok` **does not** mean that the sent value will be
/// observed by all or any of the active [`Receiver`] handles. [`Receiver`]
/// handles may be dropped before receiving the sent message.
///
/// A return value of `Err` **does not** mean that future calls to `send`
/// will fail. New [`Receiver`] handles may be created by calling
/// [`subscribe`].
///
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`subscribe`]: crate::sync::broadcast::Sender::subscribe
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// tokio::spawn(async move {
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// });
///
/// tokio::spawn(async move {
/// assert_eq!(rx2.recv().await.unwrap(), 10);
/// assert_eq!(rx2.recv().await.unwrap(), 20);
/// });
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// }
/// ```
pub fn send(&self, value: T) -> Result<usize, SendError<T>> {
let mut tail = self.shared.tail.lock();
if tail.rx_cnt == 0 {
return Err(SendError(value));
}
// Position to write into
let pos = tail.pos;
let rem = tail.rx_cnt;
let idx = (pos & self.shared.mask as u64) as usize;
// Update the tail position
tail.pos = tail.pos.wrapping_add(1);
// Get the slot
let mut slot = self.shared.buffer[idx].write().unwrap();
// Track the position
slot.pos = pos;
// Set remaining receivers
slot.rem.with_mut(|v| *v = rem);
// Write the value
slot.val = UnsafeCell::new(Some(value));
// Release the slot lock before notifying the receivers.
drop(slot);
// Notify and release the mutex. This must happen after the slot lock is
// released, otherwise the writer lock bit could be cleared while another
// thread is in the critical section.
self.shared.notify_rx(tail);
Ok(rem)
}
/// Creates a new [`Receiver`] handle that will receive values sent **after**
/// this call to `subscribe`.
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, _rx) = broadcast::channel(16);
///
/// // Will not be seen
/// tx.send(10).unwrap();
///
/// let mut rx = tx.subscribe();
///
/// tx.send(20).unwrap();
///
/// let value = rx.recv().await.unwrap();
/// assert_eq!(20, value);
/// }
/// ```
pub fn subscribe(&self) -> Receiver<T> {
let shared = self.shared.clone();
new_receiver(shared)
}
/// Returns the number of queued values.
///
/// A value is queued until it has either been seen by all receivers that were alive at the time
/// it was sent, or has been evicted from the queue by subsequent sends that exceeded the
/// queue's capacity.
///
/// # Note
///
/// In contrast to [`Receiver::len`], this method only reports queued values and not values that
/// have been evicted from the queue before being seen by all receivers.
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// tx.send(30).unwrap();
///
/// assert_eq!(tx.len(), 3);
///
/// rx1.recv().await.unwrap();
///
/// // The len is still 3 since rx2 hasn't seen the first value yet.
/// assert_eq!(tx.len(), 3);
///
/// rx2.recv().await.unwrap();
///
/// assert_eq!(tx.len(), 2);
/// }
/// ```
pub fn len(&self) -> usize {
let tail = self.shared.tail.lock();
let base_idx = (tail.pos & self.shared.mask as u64) as usize;
let mut low = 0;
let mut high = self.shared.buffer.len();
while low < high {
let mid = low + (high - low) / 2;
let idx = base_idx.wrapping_add(mid) & self.shared.mask;
if self.shared.buffer[idx].read().unwrap().rem.load(SeqCst) == 0 {
low = mid + 1;
} else {
high = mid;
}
}
self.shared.buffer.len() - low
}
/// Returns true if there are no queued values.
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// assert!(tx.is_empty());
///
/// tx.send(10).unwrap();
///
/// assert!(!tx.is_empty());
///
/// rx1.recv().await.unwrap();
///
/// // The queue is still not empty since rx2 hasn't seen the value.
/// assert!(!tx.is_empty());
///
/// rx2.recv().await.unwrap();
///
/// assert!(tx.is_empty());
/// }
/// ```
pub fn is_empty(&self) -> bool {
let tail = self.shared.tail.lock();
let idx = (tail.pos.wrapping_sub(1) & self.shared.mask as u64) as usize;
self.shared.buffer[idx].read().unwrap().rem.load(SeqCst) == 0
}
/// Returns the number of active receivers.
///
/// An active receiver is a [`Receiver`] handle returned from [`channel`] or
/// [`subscribe`]. These are the handles that will receive values sent on
/// this [`Sender`].
///
/// # Note
///
/// It is not guaranteed that a sent message will reach this number of
/// receivers. Active receivers may never call [`recv`] again before
/// dropping.
///
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`Sender`]: crate::sync::broadcast::Sender
/// [`subscribe`]: crate::sync::broadcast::Sender::subscribe
/// [`channel`]: crate::sync::broadcast::channel
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, _rx1) = broadcast::channel(16);
///
/// assert_eq!(1, tx.receiver_count());
///
/// let mut _rx2 = tx.subscribe();
///
/// assert_eq!(2, tx.receiver_count());
///
/// tx.send(10).unwrap();
/// }
/// ```
pub fn receiver_count(&self) -> usize {
let tail = self.shared.tail.lock();
tail.rx_cnt
}
/// Returns `true` if senders belong to the same channel.
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, _rx) = broadcast::channel::<()>(16);
/// let tx2 = tx.clone();
///
/// assert!(tx.same_channel(&tx2));
///
/// let (tx3, _rx3) = broadcast::channel::<()>(16);
///
/// assert!(!tx3.same_channel(&tx2));
/// }
/// ```
pub fn same_channel(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.shared, &other.shared)
}
fn close_channel(&self) {
let mut tail = self.shared.tail.lock();
tail.closed = true;
self.shared.notify_rx(tail);
}
}
/// Create a new `Receiver` which reads starting from the tail.
fn new_receiver<T>(shared: Arc<Shared<T>>) -> Receiver<T> {
let mut tail = shared.tail.lock();
assert!(tail.rx_cnt != MAX_RECEIVERS, "max receivers");
tail.rx_cnt = tail.rx_cnt.checked_add(1).expect("overflow");
let next = tail.pos;
drop(tail);
Receiver { shared, next }
}
/// List used in `Shared::notify_rx`. It wraps a guarded linked list
/// and gates the access to it on the `Shared.tail` mutex. It also empties
/// the list on drop.
struct WaitersList<'a, T> {
list: GuardedLinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
is_empty: bool,
shared: &'a Shared<T>,
}
impl<'a, T> Drop for WaitersList<'a, T> {
fn drop(&mut self) {
// If the list is not empty, we unlink all waiters from it.
// We do not wake the waiters to avoid double panics.
if !self.is_empty {
let _lock_guard = self.shared.tail.lock();
while self.list.pop_back().is_some() {}
}
}
}
impl<'a, T> WaitersList<'a, T> {
fn new(
unguarded_list: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>,
guard: Pin<&'a Waiter>,
shared: &'a Shared<T>,
) -> Self {
let guard_ptr = NonNull::from(guard.get_ref());
let list = unguarded_list.into_guarded(guard_ptr);
WaitersList {
list,
is_empty: false,
shared,
}
}
/// Removes the last element from the guarded list. Modifying this list
/// requires an exclusive access to the main list in `Notify`.
fn pop_back_locked(&mut self, _tail: &mut Tail) -> Option<NonNull<Waiter>> {
let result = self.list.pop_back();
if result.is_none() {
// Save information about emptiness to avoid waiting for lock
// in the destructor.
self.is_empty = true;
}
result
}
}
impl<T> Shared<T> {
fn notify_rx<'a, 'b: 'a>(&'b self, mut tail: MutexGuard<'a, Tail>) {
// It is critical for `GuardedLinkedList` safety that the guard node is
// pinned in memory and is not dropped until the guarded list is dropped.
let guard = Waiter::new();
pin!(guard);
// We move all waiters to a secondary list. It uses a `GuardedLinkedList`
// underneath to allow every waiter to safely remove itself from it.
//
// * This list will be still guarded by the `waiters` lock.
// `NotifyWaitersList` wrapper makes sure we hold the lock to modify it.
// * This wrapper will empty the list on drop. It is critical for safety
// that we will not leave any list entry with a pointer to the local
// guard node after this function returns / panics.
let mut list = WaitersList::new(std::mem::take(&mut tail.waiters), guard.as_ref(), self);
let mut wakers = WakeList::new();
'outer: loop {
while wakers.can_push() {
match list.pop_back_locked(&mut tail) {
Some(waiter) => {
unsafe {
// Safety: accessing `waker` is safe because
// the tail lock is held.
if let Some(waker) = (*waiter.as_ptr()).waker.take() {
wakers.push(waker);
}
// Safety: `queued` is atomic.
let queued = &(*waiter.as_ptr()).queued;
// `Relaxed` suffices because the tail lock is held.
assert!(queued.load(Relaxed));
// `Release` is needed to synchronize with `Recv::drop`.
// It is critical to set this variable **after** waker
// is extracted, otherwise we may data race with `Recv::drop`.
queued.store(false, Release);
}
}
None => {
break 'outer;
}
}
}
// Release the lock before waking.
drop(tail);
// Before we acquire the lock again all sorts of things can happen:
// some waiters may remove themselves from the list and new waiters
// may be added. This is fine since at worst we will unnecessarily
// wake up waiters which will then queue themselves again.
wakers.wake_all();
// Acquire the lock again.
tail = self.tail.lock();
}
// Release the lock before waking.
drop(tail);
wakers.wake_all();
}
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Sender<T> {
let shared = self.shared.clone();
shared.num_tx.fetch_add(1, SeqCst);
Sender { shared }
}
}
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
if 1 == self.shared.num_tx.fetch_sub(1, SeqCst) {
self.close_channel();
}
}
}
impl<T> Receiver<T> {
/// Returns the number of messages that were sent into the channel and that
/// this [`Receiver`] has yet to receive.
///
/// If the returned value from `len` is larger than the next largest power of 2
/// of the capacity of the channel any call to [`recv`] will return an
/// `Err(RecvError::Lagged)` and any call to [`try_recv`] will return an
/// `Err(TryRecvError::Lagged)`, e.g. if the capacity of the channel is 10,
/// [`recv`] will start to return `Err(RecvError::Lagged)` once `len` returns
/// values larger than 16.
///
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
///
/// assert_eq!(rx1.len(), 2);
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.len(), 1);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// assert_eq!(rx1.len(), 0);
/// }
/// ```
pub fn len(&self) -> usize {
let next_send_pos = self.shared.tail.lock().pos;
(next_send_pos - self.next) as usize
}
/// Returns true if there aren't any messages in the channel that the [`Receiver`]
/// has yet to receive.
///
/// [`Receiver]: create::sync::broadcast::Receiver
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
///
/// assert!(rx1.is_empty());
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
///
/// assert!(!rx1.is_empty());
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// assert!(rx1.is_empty());
/// }
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns `true` if receivers belong to the same channel.
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = broadcast::channel::<()>(16);
/// let rx2 = tx.subscribe();
///
/// assert!(rx.same_channel(&rx2));
///
/// let (_tx3, rx3) = broadcast::channel::<()>(16);
///
/// assert!(!rx3.same_channel(&rx2));
/// }
/// ```
pub fn same_channel(&self, other: &Self) -> bool {
Arc::ptr_eq(&self.shared, &other.shared)
}
/// Locks the next value if there is one.
fn recv_ref(
&mut self,
waiter: Option<(&UnsafeCell<Waiter>, &Waker)>,
) -> Result<RecvGuard<'_, T>, TryRecvError> {
let idx = (self.next & self.shared.mask as u64) as usize;
// The slot holding the next value to read
let mut slot = self.shared.buffer[idx].read().unwrap();
if slot.pos != self.next {
// Release the `slot` lock before attempting to acquire the `tail`
// lock. This is required because `send2` acquires the tail lock
// first followed by the slot lock. Acquiring the locks in reverse
// order here would result in a potential deadlock: `recv_ref`
// acquires the `slot` lock and attempts to acquire the `tail` lock
// while `send2` acquired the `tail` lock and attempts to acquire
// the slot lock.
drop(slot);
let mut old_waker = None;
let mut tail = self.shared.tail.lock();
// Acquire slot lock again
slot = self.shared.buffer[idx].read().unwrap();
// Make sure the position did not change. This could happen in the
// unlikely event that the buffer is wrapped between dropping the
// read lock and acquiring the tail lock.
if slot.pos != self.next {
let next_pos = slot.pos.wrapping_add(self.shared.buffer.len() as u64);
if next_pos == self.next {
// At this point the channel is empty for *this* receiver. If
// it's been closed, then that's what we return, otherwise we
// set a waker and return empty.
if tail.closed {
return Err(TryRecvError::Closed);
}
// Store the waker
if let Some((waiter, waker)) = waiter {
// Safety: called while locked.
unsafe {
// Only queue if not already queued
waiter.with_mut(|ptr| {
// If there is no waker **or** if the currently
// stored waker references a **different** task,
// track the tasks' waker to be notified on
// receipt of a new value.
match (*ptr).waker {
Some(ref w) if w.will_wake(waker) => {}
_ => {
old_waker = std::mem::replace(
&mut (*ptr).waker,
Some(waker.clone()),
);
}
}
// If the waiter is not already queued, enqueue it.
// `Relaxed` order suffices: we have synchronized with
// all writers through the tail lock that we hold.
if !(*ptr).queued.load(Relaxed) {
// `Relaxed` order suffices: all the readers will
// synchronize with this write through the tail lock.
(*ptr).queued.store(true, Relaxed);
tail.waiters.push_front(NonNull::new_unchecked(&mut *ptr));
}
});
}
}
// Drop the old waker after releasing the locks.
drop(slot);
drop(tail);
drop(old_waker);
return Err(TryRecvError::Empty);
}
// At this point, the receiver has lagged behind the sender by
// more than the channel capacity. The receiver will attempt to
// catch up by skipping dropped messages and setting the
// internal cursor to the **oldest** message stored by the
// channel.
let next = tail.pos.wrapping_sub(self.shared.buffer.len() as u64);
let missed = next.wrapping_sub(self.next);
drop(tail);
// The receiver is slow but no values have been missed
if missed == 0 {
self.next = self.next.wrapping_add(1);
return Ok(RecvGuard { slot });
}
self.next = next;
return Err(TryRecvError::Lagged(missed));
}
}
self.next = self.next.wrapping_add(1);
Ok(RecvGuard { slot })
}
}
impl<T: Clone> Receiver<T> {
/// Re-subscribes to the channel starting from the current tail element.
///
/// This [`Receiver`] handle will receive a clone of all values sent
/// **after** it has resubscribed. This will not include elements that are
/// in the queue of the current receiver. Consider the following example.
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = broadcast::channel(2);
///
/// tx.send(1).unwrap();
/// let mut rx2 = rx.resubscribe();
/// tx.send(2).unwrap();
///
/// assert_eq!(rx2.recv().await.unwrap(), 2);
/// assert_eq!(rx.recv().await.unwrap(), 1);
/// }
/// ```
pub fn resubscribe(&self) -> Self {
let shared = self.shared.clone();
new_receiver(shared)
}
/// Receives the next value for this receiver.
///
/// Each [`Receiver`] handle will receive a clone of all values sent
/// **after** it has subscribed.
///
/// `Err(RecvError::Closed)` is returned when all `Sender` halves have
/// dropped, indicating that no further values can be sent on the channel.
///
/// If the [`Receiver`] handle falls behind, once the channel is full, newly
/// sent values will overwrite old values. At this point, a call to [`recv`]
/// will return with `Err(RecvError::Lagged)` and the [`Receiver`]'s
/// internal cursor is updated to point to the oldest value still held by
/// the channel. A subsequent call to [`recv`] will return this value
/// **unless** it has been since overwritten.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// channel.
///
/// [`Receiver`]: crate::sync::broadcast::Receiver
/// [`recv`]: crate::sync::broadcast::Receiver::recv
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx1) = broadcast::channel(16);
/// let mut rx2 = tx.subscribe();
///
/// tokio::spawn(async move {
/// assert_eq!(rx1.recv().await.unwrap(), 10);
/// assert_eq!(rx1.recv().await.unwrap(), 20);
/// });
///
/// tokio::spawn(async move {
/// assert_eq!(rx2.recv().await.unwrap(), 10);
/// assert_eq!(rx2.recv().await.unwrap(), 20);
/// });
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// }
/// ```
///
/// Handling lag
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = broadcast::channel(2);
///
/// tx.send(10).unwrap();
/// tx.send(20).unwrap();
/// tx.send(30).unwrap();
///
/// // The receiver lagged behind
/// assert!(rx.recv().await.is_err());
///
/// // At this point, we can abort or continue with lost messages
///
/// assert_eq!(20, rx.recv().await.unwrap());
/// assert_eq!(30, rx.recv().await.unwrap());
/// }
/// ```
pub async fn recv(&mut self) -> Result<T, RecvError> {
let fut = Recv::new(self);
fut.await
}
/// Attempts to return a pending value on this receiver without awaiting.
///
/// This is useful for a flavor of "optimistic check" before deciding to
/// await on a receiver.
///
/// Compared with [`recv`], this function has three failure cases instead of two
/// (one for closed, one for an empty buffer, one for a lagging receiver).
///
/// `Err(TryRecvError::Closed)` is returned when all `Sender` halves have
/// dropped, indicating that no further values can be sent on the channel.
///
/// If the [`Receiver`] handle falls behind, once the channel is full, newly
/// sent values will overwrite old values. At this point, a call to [`recv`]
/// will return with `Err(TryRecvError::Lagged)` and the [`Receiver`]'s
/// internal cursor is updated to point to the oldest value still held by
/// the channel. A subsequent call to [`try_recv`] will return this value
/// **unless** it has been since overwritten. If there are no values to
/// receive, `Err(TryRecvError::Empty)` is returned.
///
/// [`recv`]: crate::sync::broadcast::Receiver::recv
/// [`try_recv`]: crate::sync::broadcast::Receiver::try_recv
/// [`Receiver`]: crate::sync::broadcast::Receiver
///
/// # Examples
///
/// ```
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = broadcast::channel(16);
///
/// assert!(rx.try_recv().is_err());
///
/// tx.send(10).unwrap();
///
/// let value = rx.try_recv().unwrap();
/// assert_eq!(10, value);
/// }
/// ```
pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
let guard = self.recv_ref(None)?;
guard.clone_value().ok_or(TryRecvError::Closed)
}
/// Blocking receive to call outside of asynchronous contexts.
///
/// # Panics
///
/// This function panics if called within an asynchronous execution
/// context.
///
/// # Examples
/// ```
/// use std::thread;
/// use tokio::sync::broadcast;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = broadcast::channel(16);
///
/// let sync_code = thread::spawn(move || {
/// assert_eq!(rx.blocking_recv(), Ok(10));
/// });
///
/// let _ = tx.send(10);
/// sync_code.join().unwrap();
/// }
/// ```
pub fn blocking_recv(&mut self) -> Result<T, RecvError> {
crate::future::block_on(self.recv())
}
}
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
let mut tail = self.shared.tail.lock();
tail.rx_cnt -= 1;
let until = tail.pos;
drop(tail);
while self.next < until {
match self.recv_ref(None) {
Ok(_) => {}
// The channel is closed
Err(TryRecvError::Closed) => break,
// Ignore lagging, we will catch up
Err(TryRecvError::Lagged(..)) => {}
// Can't be empty
Err(TryRecvError::Empty) => panic!("unexpected empty broadcast channel"),
}
}
}
}
impl<'a, T> Recv<'a, T> {
fn new(receiver: &'a mut Receiver<T>) -> Recv<'a, T> {
Recv {
receiver,
waiter: UnsafeCell::new(Waiter {
queued: AtomicBool::new(false),
waker: None,
pointers: linked_list::Pointers::new(),
_p: PhantomPinned,
}),
}
}
/// A custom `project` implementation is used in place of `pin-project-lite`
/// as a custom drop implementation is needed.
fn project(self: Pin<&mut Self>) -> (&mut Receiver<T>, &UnsafeCell<Waiter>) {
unsafe {
// Safety: Receiver is Unpin
is_unpin::<&mut Receiver<T>>();
let me = self.get_unchecked_mut();
(me.receiver, &me.waiter)
}
}
}
impl<'a, T> Future for Recv<'a, T>
where
T: Clone,
{
type Output = Result<T, RecvError>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
ready!(crate::trace::trace_leaf(cx));
let (receiver, waiter) = self.project();
let guard = match receiver.recv_ref(Some((waiter, cx.waker()))) {
Ok(value) => value,
Err(TryRecvError::Empty) => return Poll::Pending,
Err(TryRecvError::Lagged(n)) => return Poll::Ready(Err(RecvError::Lagged(n))),
Err(TryRecvError::Closed) => return Poll::Ready(Err(RecvError::Closed)),
};
Poll::Ready(guard.clone_value().ok_or(RecvError::Closed))
}
}
impl<'a, T> Drop for Recv<'a, T> {
fn drop(&mut self) {
// Safety: `waiter.queued` is atomic.
// Acquire ordering is required to synchronize with
// `Shared::notify_rx` before we drop the object.
let queued = self
.waiter
.with(|ptr| unsafe { (*ptr).queued.load(Acquire) });
// If the waiter is queued, we need to unlink it from the waiters list.
// If not, no further synchronization is required, since the waiter
// is not in the list and, as such, is not shared with any other threads.
if queued {
// Acquire the tail lock. This is required for safety before accessing
// the waiter node.
let mut tail = self.receiver.shared.tail.lock();
// Safety: tail lock is held.
// `Relaxed` order suffices because we hold the tail lock.
let queued = self
.waiter
.with_mut(|ptr| unsafe { (*ptr).queued.load(Relaxed) });
if queued {
// Remove the node
//
// safety: tail lock is held and the wait node is verified to be in
// the list.
unsafe {
self.waiter.with_mut(|ptr| {
tail.waiters.remove((&mut *ptr).into());
});
}
}
}
}
}
/// # Safety
///
/// `Waiter` is forced to be !Unpin.
unsafe impl linked_list::Link for Waiter {
type Handle = NonNull<Waiter>;
type Target = Waiter;
fn as_raw(handle: &NonNull<Waiter>) -> NonNull<Waiter> {
*handle
}
unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> {
ptr
}
unsafe fn pointers(target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> {
Waiter::addr_of_pointers(target)
}
}
impl<T> fmt::Debug for Sender<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "broadcast::Sender")
}
}
impl<T> fmt::Debug for Receiver<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "broadcast::Receiver")
}
}
impl<'a, T> RecvGuard<'a, T> {
fn clone_value(&self) -> Option<T>
where
T: Clone,
{
self.slot.val.with(|ptr| unsafe { (*ptr).clone() })
}
}
impl<'a, T> Drop for RecvGuard<'a, T> {
fn drop(&mut self) {
// Decrement the remaining counter
if 1 == self.slot.rem.fetch_sub(1, SeqCst) {
// Safety: Last receiver, drop the value
self.slot.val.with_mut(|ptr| unsafe { *ptr = None });
}
}
}
fn is_unpin<T: Unpin>() {}
#[cfg(not(loom))]
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn receiver_count_on_sender_constructor() {
let sender = Sender::<i32>::new(16);
assert_eq!(sender.receiver_count(), 0);
let rx_1 = sender.subscribe();
assert_eq!(sender.receiver_count(), 1);
let rx_2 = rx_1.resubscribe();
assert_eq!(sender.receiver_count(), 2);
let rx_3 = sender.subscribe();
assert_eq!(sender.receiver_count(), 3);
drop(rx_3);
drop(rx_1);
assert_eq!(sender.receiver_count(), 1);
drop(rx_2);
assert_eq!(sender.receiver_count(), 0);
}
#[cfg(not(loom))]
#[test]
fn receiver_count_on_channel_constructor() {
let (sender, rx) = channel::<i32>(16);
assert_eq!(sender.receiver_count(), 1);
let _rx_2 = rx.resubscribe();
assert_eq!(sender.receiver_count(), 2);
}
}