rkf45/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{format_err, Error};

/// Runge-Kutta Fehlberg 4(5) parameters
///
/// These are readily available in literature, e.g.
/// <https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method>.
mod rkf45_params {
    /// Number of stages
    pub const NUM_STAGES: usize = 6;

    /// Runge-Kutta matrix
    pub static A: [[f64; NUM_STAGES - 1]; NUM_STAGES - 1] = [
        [1.0 / 4.0, 0.0, 0.0, 0.0, 0.0],
        [3.0 / 32.0, 9.0 / 32.0, 0.0, 0.0, 0.0],
        [1932.0 / 2197.0, -7200.0 / 2197.0, 7296.0 / 2197.0, 0.0, 0.0],
        [439.0 / 216.0, -8.0, 3680.0 / 513.0, -845.0 / 4104.0, 0.0],
        [-8.0 / 27.0, 2.0, -3544.0 / 2565.0, 1859.0 / 4104.0, -11.0 / 40.0],
    ];

    /// 4th-order weights
    pub static B4: [f64; NUM_STAGES] =
        [25.0 / 216.0, 0.0, 1408.0 / 2565.0, 2197.0 / 4104.0, -1.0 / 5.0, 0.0];

    /// 5th-order weights
    pub static B5: [f64; NUM_STAGES] =
        [16.0 / 135.0, 0.0, 6656.0 / 12825.0, 28561.0 / 56430.0, -9.0 / 50.0, 2.0 / 55.0];

    /// Nodes
    pub static C: [f64; NUM_STAGES - 1] = [1.0 / 4.0, 3.0 / 8.0, 12.0 / 13.0, 1.0, 1.0 / 2.0];
}

/// Parameters for adaptive time-stepping logic.
///
/// These incorporate a variety of heuristics and are mostly described in Press and Teukolsky's
/// [Adaptive Stepsize Runge-Kutta Integration, Computers in Physics 6, 188
/// (1992)](https://doi.org/10.1063/1.4823060).
mod adaptive_stepping_params {
    /// Safety factor to use when modifying time steps. This makes a revised time step slightly
    /// smaller than required by formal analysis, providing margin for inaccuracy in the error
    /// estimate.
    pub static SAFETY_FACTOR: f64 = 0.9;

    /// Only refine/coarsen the time step when the ratio of estimate error to desired error
    /// crosses these thresholds. Doing so prevents excessive recalculation of time steps.
    pub static ERROR_RATIO_REFINING_THRESHOLD: f64 = 1.1;
    pub static ERROR_RATIO_COARSENING_THRESHOLD: f64 = 0.5;

    /// RKF45's local truncation (single-step) error can be written as
    ///     E(dt) = C*dt^5 + O(dt^6).
    ///
    /// Suppose the desired error D is fixed with respect to dt. Then the optimal step size
    /// approximately satisfies
    ///     C*dt_opt^5 = D  ==> dt_opt = (D / C)^(1/5).
    /// If we have attempted a time step of size dt, then we can approximate
    ///     C = E(dt) / dt^5.
    /// This yields
    ///     dt_opt = dt * (D / E(dt))^(1/5) = (E(dt) / D)^(-1/5).
    ///
    /// Suppose instead that D is proprotional to dt, so D(dt) = D1*dt. Then the optimal step size
    /// satisfies
    ///     C*dt_opt^5 = D1*dt_opt  ==>  C = (D1 / C)^(1/4).
    /// If we have attempted a time step of size dt, with estimated error E(dt) and desired error
    /// D(dt), then we observe that
    ///     D(dt) / E(dt) = (D1*dt) / (C*dt^5)
    ///     ==> D1 / C = dt^4 (D(dt) / E(dt)).
    /// Using this relationship above yields
    ///     dt_opt = dt * (D(dt) / E(dt))^(1/4) = (E(dt) / D(dt))^(-1/4).
    ///
    /// Following the guidance of Press and Teukolsky, rather than inspect the form of the desired
    /// error, we simply use the more conservative exponent depending on the situation. When
    /// refining, we will have E/D > 1. Raising to the smaller exponent (-0.25) will yield a
    /// smaller time step. Converseley, when coarsening we have E/D < 1, and the larger exponent
    /// (-0.20) will yield a smaller timestep.
    pub static REFINING_EXPONENT: f64 = -0.25;
    pub static COARSENING_EXPONENT: f64 = -0.20;

    /// Bounds for the factor used when refining/coarsening the time step, to avoid too much of
    /// a change at once.
    pub static MIN_REFINING_FACTOR: f64 = 0.2;
    pub static MAX_COARSENING_FACTOR: f64 = 5.0;
}

/// Vector operations to implement on `[f64]` for convenience.
///
/// All methods involving another [f64] expect the two slices to be of equal length. The caller
/// is responsible for ensuring this. (Practically speaking, the slices involved are from `Vec`s
/// created using the length of `rkf45_adaptive`'s input `y`.)
trait VectorOperations {
    /// Scale by a scalar.
    fn scale(&mut self, a: f64);

    /// Copy to this vector from another one. Slice lengths must be equal.
    fn copy_from(&mut self, x: &Self);

    /// Add a vector to this one. Slice lengths must be equal.
    fn add(&mut self, x: &Self);

    /// Add a scalar times another vector. Slice lengths must be equal.
    fn add_ax(&mut self, a: f64, x: &Self);

    /// Subtract a vector from this one. Slice lengths must be equal.
    fn subtract(&mut self, x: &Self);

    /// Sets all elements to zero.
    fn to_zeros(&mut self);
}

impl VectorOperations for [f64] {
    fn scale(&mut self, a: f64) {
        self.iter_mut().for_each(|p| *p = *p * a);
    }

    fn copy_from(&mut self, x: &Self) {
        self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p = *q);
    }

    fn add(&mut self, x: &Self) {
        self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p += *q);
    }

    fn add_ax(&mut self, a: f64, x: &Self) {
        self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p += a * *q);
    }

    fn subtract(&mut self, x: &Self) {
        self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p -= *q);
    }

    fn to_zeros(&mut self) {
        self.iter_mut().for_each(|p| *p = 0.0)
    }
}

/// Takes a single time step using RKF45.
///
/// Args:
/// - `y`: Slice containing solution values at the beginning of the time step. This will be
///    updated in-place.
/// - `dydt`: Function that evaluates the time derivative of `y`.
/// - `tn`: Time value at the beginning of the step.
/// - `dt`: Length of the step.
///
/// Returns:
/// - Vector estimating elementwise numerical error over this single step, and the maximum ratio of
///   estimated error to error bound.
fn rkf45_step(
    y: &mut [f64],
    dydt: &impl Fn(f64, &[f64]) -> Vec<f64>,
    tn: f64,
    dt: f64,
    error_control: &ErrorControlOptions,
) -> (Vec<f64>, f64) {
    // Work array reused by several loops below.
    let mut work = vec![0.0; y.len()];

    let mut k = Vec::with_capacity(6);
    k.push(dydt(tn, y));

    use rkf45_params as params;
    for i in 1..params::NUM_STAGES {
        work.to_zeros();
        for j in 0..i {
            work.add_ax(params::A[i - 1][j], &k[j]);
        }
        // Effectively, k[i] = dydt(tn + C[i-1] * dt, y + dt * work).
        work.scale(dt);
        work.add(&y);
        k.push(dydt(tn + params::C[i - 1] * dt, &work));
    }

    // The 5th-order solution will be used for error-estimation.
    let mut y_5th_order = y.to_vec();
    work.to_zeros();
    for i in 0..params::B5.len() {
        work.add_ax(params::B5[i], &k[i]);
    }
    y_5th_order.add_ax(dt, &work);

    // y is updated with the 4th-order solution.
    work.to_zeros();
    for i in 0..params::B4.len() {
        work.add_ax(params::B4[i], &k[i]);
    }
    y.add_ax(dt, &work);

    let mut error_estimate = y_5th_order;
    error_estimate.subtract(&y);
    error_estimate.iter_mut().for_each(|x| *x = (*x).abs());

    let mut max_error_ratio = 0.0;
    for i in 0..y.len() {
        // We use the fact that k[0] stores dydt(tn, yn).
        let error_bound = error_control.absolute_magnitude
            + error_control.relative_magnitude
                * (error_control.function_scale * y[i].abs()
                    + error_control.derivative_scale * dt * k[0][i].abs());
        max_error_ratio = f64::max(max_error_ratio, error_estimate[i] / error_bound);
    }

    (error_estimate, max_error_ratio)
}

/// Options to configure adaptive time-stepping.
pub struct AdaptiveOdeSolverOptions {
    /// Initial time for the solution.
    pub t_initial: f64,
    /// Final time for the solution.
    pub t_final: f64,
    /// Length of first attempted time step.
    pub dt_initial: f64,
    /// Parameters that determine the error bounds used to accept or reject time steps.
    pub error_control: ErrorControlOptions,
}

/// Options for computing desired error when performing adaptive time-stepping.
///
/// `rkf45_adaptive` compares its estimate to a desired error, which is computed as
/// ```
/// D = max(absolute_magnitude + relative_magnitude * (function_scale * y[i] + derivative_scale * dt * dydt[i]))
/// ```
/// where `[i]` denotes the `i`th component, and the max is taken over all components.
///
/// This form supports a variety of ways of controlling the size of the desired error
/// relative to `y` itself or to its increments.
pub struct ErrorControlOptions {
    /// Magnitude of the absolute component of desired error. Even if relative error is the primary
    /// feature of interest, this must be set to a nonzero value as a safety measure in case
    /// both y and dydt are near zero.
    pub absolute_magnitude: f64,
    /// Magnitude of the relative component of desired error.
    pub relative_magnitude: f64,
    /// Contribution of `y` to the relative component of desired error.
    pub function_scale: f64,
    /// Contribution of `y`'s increment (`dt * dydt`) to the relative component of desired error.
    pub derivative_scale: f64,
}

impl ErrorControlOptions {
    /// A simple error control option that sets the desired error to
    /// ```
    /// D = max(scale * (1 + y[i] + dt * dydt[i]))
    /// ```
    /// This has a lower bound of `scale`, but it grows proportional to `y` or `dydt` as either one
    /// becomes large.
    pub fn simple(scale: f64) -> ErrorControlOptions {
        ErrorControlOptions {
            absolute_magnitude: scale,
            relative_magnitude: scale,
            function_scale: 1.0,
            derivative_scale: 1.0,
        }
    }
}

/// Solves an initial value problem using RKF45 with adaptive time-stepping.
///
/// The method of error control and time step refinement are described in
/// Press and Teukolsky's [Adaptive Stepsize Runge-Kutta Integration, Computers in Physics 6,
/// 188 (1992)](https://doi.org/10.1063/1.4823060).
///
/// Args:
/// - `y`: Slice containing the initial value of the solution. This will be updated in-place.
/// - `dydt`: Function that evaluates the time derivative of `y`.
/// - `options`: Specifies parameters for the solver.
///
/// Returns:
/// - Vector estimating total elementwise numerical error incurred by integration.
pub fn rkf45_adaptive(
    y: &mut [f64],
    dydt: &impl Fn(f64, &[f64]) -> Vec<f64>,
    options: &AdaptiveOdeSolverOptions,
) -> Result<Vec<f64>, Error> {
    macro_rules! validate_input {
        ($x:expr) => {
            if !($x) {
                return Err(format_err!("Failed input validation: {}", stringify!($x)));
            }
        };
    }

    validate_input!(options.t_final > options.t_initial);
    validate_input!(options.dt_initial > 0.0);
    validate_input!(options.error_control.absolute_magnitude > 0.0);
    validate_input!(options.error_control.relative_magnitude >= 0.0);
    validate_input!(options.error_control.function_scale >= 0.0);
    validate_input!(options.error_control.derivative_scale >= 0.0);

    let mut t = options.t_initial;
    let mut dt = options.dt_initial;
    let mut total_error = vec![0.0; y.len()];

    let mut work = y.to_vec();
    while t < options.t_final {
        if t + dt > options.t_final {
            dt = options.t_final - t;
        }

        let (error_estimate, max_error_ratio) =
            rkf45_step(&mut work, dydt, t, dt, &options.error_control);
        use adaptive_stepping_params as params;
        if max_error_ratio < params::ERROR_RATIO_REFINING_THRESHOLD {
            // Accept the step, and update time.
            y.copy_from(&work);
            total_error.add(&error_estimate);
            t += dt;
            if max_error_ratio < params::ERROR_RATIO_COARSENING_THRESHOLD {
                // Error was particularly small, so increase step size.
                let factor = f64::min(
                    params::SAFETY_FACTOR * max_error_ratio.powf(params::COARSENING_EXPONENT),
                    params::MAX_COARSENING_FACTOR,
                );
                dt *= factor;
            }
        } else {
            // Throw out this time stemp. Revert the work array, and reduce dt.
            work.copy_from(y);
            let factor = f64::max(
                params::SAFETY_FACTOR * max_error_ratio.powf(params::REFINING_EXPONENT),
                params::MIN_REFINING_FACTOR,
            );
            dt *= factor;
        }
    }

    Ok(total_error)
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::f64::consts::PI;
    use test_util::{assert_gt, assert_lt};

    // rkf45_step requires ErrorControlOptions as an input. But when performing convergence
    // tests on that function, the options are meaningless. This is named to document that fact.
    static MEANINGLESS_OPTIONS: ErrorControlOptions = ErrorControlOptions {
        absolute_magnitude: 1e-8,
        relative_magnitude: 1e-8,
        function_scale: 1.0,
        derivative_scale: 1.0,
    };

    // Test rkf45_step on a first-order problem:
    //     y' = lambda*y, y(0)=1.
    // The exact solution is y(t)=exp(lambda*t).
    //
    // rkf45_step should be accurate up to O(dt^5) over a single time step (local truncation
    // error). Its error estimate should be accurate up to O(dt). We test both expectations
    // by the way the numerical errors decrease as dt is refined.
    #[test]
    fn test_first_order_problem_rkf45_step() {
        let lambda = -0.1;
        let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![lambda * y[0]] };
        let y_true = |t: f64| -> f64 { f64::exp(lambda * t) };

        // Record the actual error values, and the errors in estimated error values (i.e.
        // how close the estimated numerical error is to the actual numerical error) over
        // succesively-halved time steps.
        let mut actual_errors = Vec::new();
        let mut errors_in_estimated_error = Vec::new();
        for dt in &[1.0, 0.5, 0.25] {
            let mut y = [1.0];
            let estimated_error = rkf45_step(&mut y, &dydt, 0.0, *dt, &MEANINGLESS_OPTIONS).0[0];
            let actual_error = (y_true(*dt) - y[0]).abs();
            errors_in_estimated_error.push((estimated_error - actual_error).abs());
            actual_errors.push(actual_error);
        }

        // Each time dt is halved, actual_errors should shrink by roughly 1/32, and
        // errors_in_estimated_error should shrink by roughly 1/2. The factor of 1.10 allows a 10%
        // margin versus the expected convergence rate.
        assert_lt!(actual_errors[1], actual_errors[0] / 32.0 * 1.10);
        assert_lt!(actual_errors[2], actual_errors[1] / 32.0 * 1.10);
        assert_lt!(errors_in_estimated_error[1], errors_in_estimated_error[0] / 2.0 * 1.10);
        assert_lt!(errors_in_estimated_error[2], errors_in_estimated_error[1] / 2.0 * 1.10);
    }

    // Test rkf45_adaptive on the same first-order problem as above.
    //
    // This checks that we integrate to t_final with the requested degree of accuracy.
    #[test]
    fn test_first_order_problem_rkf45_adaptive() -> Result<(), Error> {
        let lambda = -0.1;
        let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![lambda * y[0]] };
        let y_true = |t: f64| -> f64 { f64::exp(lambda * t) };

        let options = AdaptiveOdeSolverOptions {
            t_initial: 0.0,
            t_final: 3.0,
            dt_initial: 0.1,
            error_control: ErrorControlOptions::simple(1e-6),
        };
        let mut y = [1.0];
        rkf45_adaptive(&mut y, &dydt, &options)?;
        let actual_error = (y_true(options.t_final) - y[0]).abs();

        // Error should be near the size specified, but not smaller than it.
        assert_lt!(actual_error, 1e-5);
        assert_gt!(actual_error, 1e-7);

        Ok(())
    }

    // Test rkf45_step for a second-order problem:
    //     y'' = -y; y(0)=1, y'(0)=0.
    // The exact solution is y(t)=cos(t).
    //
    // To apply the ODE solver, we translate this to the first-order system
    //     y[0]' = y[1]
    //     y[1]' = -y[0].
    // with initial conditions y[0](0)=1, y[1](0)=0.
    //
    // This test follows the same methodology as test_first_order_problem_rkf45_step;
    // see it for detailed documentation.
    #[test]
    fn test_second_order_problem_rkf45_step() {
        let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![y[1], -y[0]] };
        let y_true = |t: f64| -> f64 { f64::cos(t) };

        let mut actual_errors = Vec::new();
        let mut errors_in_estimated_error = Vec::new();
        for dt in &[PI / 4.0, PI / 8.0, PI / 16.0] {
            let mut y = [1.0, 0.0];
            let estimated_error = rkf45_step(&mut y, &dydt, 0.0, *dt, &MEANINGLESS_OPTIONS).0[0];
            let actual_error = (y_true(*dt) - y[0]).abs();
            errors_in_estimated_error.push((estimated_error - actual_error).abs());
            actual_errors.push(actual_error);
        }

        assert_lt!(actual_errors[1], actual_errors[0] / 32.0 * 1.10);
        assert_lt!(actual_errors[2], actual_errors[1] / 32.0 * 1.10);
        assert_lt!(errors_in_estimated_error[1], errors_in_estimated_error[0] / 2.0 * 1.10);
        assert_lt!(errors_in_estimated_error[2], errors_in_estimated_error[1] / 2.0 * 1.10);
    }

    // Test rkf45_adaptive for the same second-order problem as above.
    #[test]
    fn test_second_order_problem_rkf45_adaptive() -> Result<(), Error> {
        let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![y[1], -y[0]] };
        let y_true = |t: f64| -> f64 { f64::cos(t) };

        let options = AdaptiveOdeSolverOptions {
            t_initial: 0.0,
            t_final: 2.0 * PI,
            dt_initial: PI / 4.0,
            error_control: ErrorControlOptions::simple(1e-6),
        };
        let mut y = [1.0, 0.0];
        rkf45_adaptive(&mut y, &dydt, &options)?;
        let actual_error = (y_true(options.t_final) - y[0]).abs();

        // Error should be near the size specified, but not smaller than it.
        assert_lt!(actual_error, 1e-4);
        assert_gt!(actual_error, 1e-7);

        Ok(())
    }

    // Test rkf45_step for a third-order time-variant problem.
    //
    // This is a contrived problem with solution
    //     y(t) = cos(alpha*t^2).
    // As a third-order scalar equation,
    //     y''' + 4*alpha^2*t^2*y' + 12*alpha^2*t*y = 0; y(0)=1, y'(0)=0, y''(0)=0.
    // As a first-order system,
    //     y[0]' = y[1]
    //     y[1]' = y[2].
    //     y[2]' = -12*alpha^2*t*y[0] - 4*alpha^2*t^2*y[1]
    // with initial conditions y[0](0)=1, y[1](0)=0, y[2](0)=0.
    //
    // This test follows the same methodology as test_first_order_problem_rkf45_step;
    // see it for detailed documentation.
    #[test]
    fn test_third_order_problem_rkf45_step() {
        let alpha = 0.1;
        let square = |x: f64| -> f64 { x * x };
        let dydt = |t: f64, y: &[f64]| -> Vec<f64> {
            vec![y[1], y[2], -12.0 * square(alpha) * t * y[0] - 4.0 * square(alpha * t) * y[1]]
        };
        let y_true = |t: f64| -> f64 { f64::cos(alpha * square(t)) };

        let mut actual_errors = Vec::new();
        let mut errors_in_estimated_error = Vec::new();
        for dt in &[0.25, 0.125, 0.0625] {
            let mut y = [1.0, 0.0, 0.0];
            let estimated_error = rkf45_step(&mut y, &dydt, 0.0, *dt, &MEANINGLESS_OPTIONS).0[0];
            let actual_error = (y_true(*dt) - y[0]).abs();
            errors_in_estimated_error.push((estimated_error - actual_error).abs());
            actual_errors.push(actual_error);
        }

        assert_lt!(actual_errors[1], actual_errors[0] / 32.0 * 1.10);
        assert_lt!(actual_errors[2], actual_errors[1] / 32.0 * 1.10);
        assert_lt!(errors_in_estimated_error[1], errors_in_estimated_error[0] / 2.0 * 1.10);
        assert_lt!(errors_in_estimated_error[2], errors_in_estimated_error[1] / 2.0 * 1.10);
    }
    // This tests rkf45_adaptive for the same third-order problem as above.
    #[test]
    fn test_third_order_problem_rkf45_adaptive() -> Result<(), Error> {
        let alpha = 0.1;
        let square = |x: f64| -> f64 { x * x };
        let dydt = |t: f64, y: &[f64]| -> Vec<f64> {
            vec![y[1], y[2], -12.0 * square(alpha) * t * y[0] - 4.0 * square(alpha * t) * y[1]]
        };
        let y_true = |t: f64| -> f64 { f64::cos(alpha * square(t)) };

        let options = AdaptiveOdeSolverOptions {
            t_initial: 0.0,
            t_final: 4.0,
            dt_initial: 0.25,
            error_control: ErrorControlOptions::simple(1e-6),
        };
        let mut y = [1.0, 0.0, 0.0];
        rkf45_adaptive(&mut y, &dydt, &options)?;
        let actual_error = (y_true(options.t_final) - y[0]).abs();

        // Error should be near the size specified, but not smaller than it.
        assert_lt!(actual_error, 1e-4);
        assert_gt!(actual_error, 1e-7);

        Ok(())
    }

    // Test rkf45_adaptive on a problem with multiple time scales.
    //
    // This is the canonical use case for adaptive time-stepping. We have a problem with two time
    // scales, one that is much faster than the other. Our t_final is 1, and we suggest a single
    // step of length 1, which would be plenty for the slow time scale. However, the fast time
    // scale requires much smaller time steps, and the integrator must detect this.
    #[test]
    fn test_multiple_time_scales() -> Result<(), Error> {
        let lambda1 = 10.0;
        let lambda2 = 0.001;
        let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![-lambda1 * y[0], -lambda2 * y[1]] };
        let y_true = |t: f64| -> Vec<f64> { vec![f64::exp(-lambda1 * t), f64::exp(-lambda2 * t)] };

        let options = AdaptiveOdeSolverOptions {
            t_initial: 0.0,
            t_final: 1.0,
            dt_initial: 1.0,
            error_control: ErrorControlOptions::simple(1e-6),
        };
        let mut y = [1.0, 1.0];
        rkf45_adaptive(&mut y, &dydt, &options)?;
        let mut actual_error = y_true(options.t_final);
        actual_error.iter_mut().zip(y.iter()).for_each(|(p, q)| *p = (*p - *q).abs());

        // Our requested error scale bounds the error in both components above. The second component
        // has a much smaller error than our requested tolerance because it varies so slowly relative
        // to the first, which governs the time step selection. Hence, we don't test actual_error[1]
        // for a lower bound.
        assert_lt!(actual_error[0], 1e-5);
        assert_lt!(actual_error[1], 1e-5);
        assert_gt!(actual_error[0], 1e-7);

        Ok(())
    }

    // Test that rkf45_advance returns an error when passed invalid options.
    #[test]
    fn test_error_checks() {
        let dydt = |_t: f64, _y: &[f64]| -> Vec<f64> { vec![0.0] };

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 2.0, // Greater than t_final
                t_final: 1.0,
                dt_initial: 0.1,
                error_control: ErrorControlOptions::simple(1e-8),
            }
        )
        .is_err());

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 1.0,
                t_final: 2.0,
                dt_initial: -0.1, // Negative
                error_control: ErrorControlOptions {
                    absolute_magnitude: 1e-8,
                    relative_magnitude: 1e-8,
                    function_scale: 1.0,
                    derivative_scale: 1.0,
                }
            }
        )
        .is_err());

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 1.0,
                t_final: 2.0,
                dt_initial: 0.1,
                error_control: ErrorControlOptions {
                    absolute_magnitude: -1e-8, // Negative
                    relative_magnitude: 1e-8,
                    function_scale: 1.0,
                    derivative_scale: 1.0,
                }
            }
        )
        .is_err());

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 1.0,
                t_final: 2.0,
                dt_initial: 0.1,
                error_control: ErrorControlOptions {
                    absolute_magnitude: 1e-8,
                    relative_magnitude: -1e-8, // Negative
                    function_scale: 1.0,
                    derivative_scale: 1.0,
                }
            }
        )
        .is_err());

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 1.0,
                t_final: 2.0,
                dt_initial: 0.1,
                error_control: ErrorControlOptions {
                    absolute_magnitude: 1e-8,
                    relative_magnitude: 1e-8,
                    function_scale: -1.0, // Negative
                    derivative_scale: 1.0,
                }
            }
        )
        .is_err());

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 1.0,
                t_final: 2.0,
                dt_initial: 0.1,
                error_control: ErrorControlOptions {
                    absolute_magnitude: 1e-8,
                    relative_magnitude: 1e-8,
                    function_scale: 1.0,
                    derivative_scale: -1.0, // Negative
                }
            }
        )
        .is_err());

        assert!(rkf45_adaptive(
            &mut [1.0],
            &dydt,
            &AdaptiveOdeSolverOptions {
                t_initial: 1.0,
                t_final: 2.0,
                dt_initial: 0.1,
                error_control: ErrorControlOptions {
                    absolute_magnitude: 0.0, // Must be positive
                    relative_magnitude: 1e-8,
                    function_scale: 1.0,
                    derivative_scale: 1.0,
                }
            }
        )
        .is_err());
    }
}