1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use anyhow::{format_err, Error};
/// Runge-Kutta Fehlberg 4(5) parameters
///
/// These are readily available in literature, e.g.
/// <https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method>.
mod rkf45_params {
/// Number of stages
pub const NUM_STAGES: usize = 6;
/// Runge-Kutta matrix
pub static A: [[f64; NUM_STAGES - 1]; NUM_STAGES - 1] = [
[1.0 / 4.0, 0.0, 0.0, 0.0, 0.0],
[3.0 / 32.0, 9.0 / 32.0, 0.0, 0.0, 0.0],
[1932.0 / 2197.0, -7200.0 / 2197.0, 7296.0 / 2197.0, 0.0, 0.0],
[439.0 / 216.0, -8.0, 3680.0 / 513.0, -845.0 / 4104.0, 0.0],
[-8.0 / 27.0, 2.0, -3544.0 / 2565.0, 1859.0 / 4104.0, -11.0 / 40.0],
];
/// 4th-order weights
pub static B4: [f64; NUM_STAGES] =
[25.0 / 216.0, 0.0, 1408.0 / 2565.0, 2197.0 / 4104.0, -1.0 / 5.0, 0.0];
/// 5th-order weights
pub static B5: [f64; NUM_STAGES] =
[16.0 / 135.0, 0.0, 6656.0 / 12825.0, 28561.0 / 56430.0, -9.0 / 50.0, 2.0 / 55.0];
/// Nodes
pub static C: [f64; NUM_STAGES - 1] = [1.0 / 4.0, 3.0 / 8.0, 12.0 / 13.0, 1.0, 1.0 / 2.0];
}
/// Parameters for adaptive time-stepping logic.
///
/// These incorporate a variety of heuristics and are mostly described in Press and Teukolsky's
/// [Adaptive Stepsize Runge-Kutta Integration, Computers in Physics 6, 188
/// (1992)](https://doi.org/10.1063/1.4823060).
mod adaptive_stepping_params {
/// Safety factor to use when modifying time steps. This makes a revised time step slightly
/// smaller than required by formal analysis, providing margin for inaccuracy in the error
/// estimate.
pub static SAFETY_FACTOR: f64 = 0.9;
/// Only refine/coarsen the time step when the ratio of estimate error to desired error
/// crosses these thresholds. Doing so prevents excessive recalculation of time steps.
pub static ERROR_RATIO_REFINING_THRESHOLD: f64 = 1.1;
pub static ERROR_RATIO_COARSENING_THRESHOLD: f64 = 0.5;
/// RKF45's local truncation (single-step) error can be written as
/// E(dt) = C*dt^5 + O(dt^6).
///
/// Suppose the desired error D is fixed with respect to dt. Then the optimal step size
/// approximately satisfies
/// C*dt_opt^5 = D ==> dt_opt = (D / C)^(1/5).
/// If we have attempted a time step of size dt, then we can approximate
/// C = E(dt) / dt^5.
/// This yields
/// dt_opt = dt * (D / E(dt))^(1/5) = (E(dt) / D)^(-1/5).
///
/// Suppose instead that D is proprotional to dt, so D(dt) = D1*dt. Then the optimal step size
/// satisfies
/// C*dt_opt^5 = D1*dt_opt ==> C = (D1 / C)^(1/4).
/// If we have attempted a time step of size dt, with estimated error E(dt) and desired error
/// D(dt), then we observe that
/// D(dt) / E(dt) = (D1*dt) / (C*dt^5)
/// ==> D1 / C = dt^4 (D(dt) / E(dt)).
/// Using this relationship above yields
/// dt_opt = dt * (D(dt) / E(dt))^(1/4) = (E(dt) / D(dt))^(-1/4).
///
/// Following the guidance of Press and Teukolsky, rather than inspect the form of the desired
/// error, we simply use the more conservative exponent depending on the situation. When
/// refining, we will have E/D > 1. Raising to the smaller exponent (-0.25) will yield a
/// smaller time step. Converseley, when coarsening we have E/D < 1, and the larger exponent
/// (-0.20) will yield a smaller timestep.
pub static REFINING_EXPONENT: f64 = -0.25;
pub static COARSENING_EXPONENT: f64 = -0.20;
/// Bounds for the factor used when refining/coarsening the time step, to avoid too much of
/// a change at once.
pub static MIN_REFINING_FACTOR: f64 = 0.2;
pub static MAX_COARSENING_FACTOR: f64 = 5.0;
}
/// Vector operations to implement on `[f64]` for convenience.
///
/// All methods involving another [f64] expect the two slices to be of equal length. The caller
/// is responsible for ensuring this. (Practically speaking, the slices involved are from `Vec`s
/// created using the length of `rkf45_adaptive`'s input `y`.)
trait VectorOperations {
/// Scale by a scalar.
fn scale(&mut self, a: f64);
/// Copy to this vector from another one. Slice lengths must be equal.
fn copy_from(&mut self, x: &Self);
/// Add a vector to this one. Slice lengths must be equal.
fn add(&mut self, x: &Self);
/// Add a scalar times another vector. Slice lengths must be equal.
fn add_ax(&mut self, a: f64, x: &Self);
/// Subtract a vector from this one. Slice lengths must be equal.
fn subtract(&mut self, x: &Self);
/// Sets all elements to zero.
fn to_zeros(&mut self);
}
impl VectorOperations for [f64] {
fn scale(&mut self, a: f64) {
self.iter_mut().for_each(|p| *p = *p * a);
}
fn copy_from(&mut self, x: &Self) {
self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p = *q);
}
fn add(&mut self, x: &Self) {
self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p += *q);
}
fn add_ax(&mut self, a: f64, x: &Self) {
self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p += a * *q);
}
fn subtract(&mut self, x: &Self) {
self.iter_mut().zip(x.iter()).for_each(|(p, q)| *p -= *q);
}
fn to_zeros(&mut self) {
self.iter_mut().for_each(|p| *p = 0.0)
}
}
/// Takes a single time step using RKF45.
///
/// Args:
/// - `y`: Slice containing solution values at the beginning of the time step. This will be
/// updated in-place.
/// - `dydt`: Function that evaluates the time derivative of `y`.
/// - `tn`: Time value at the beginning of the step.
/// - `dt`: Length of the step.
///
/// Returns:
/// - Vector estimating elementwise numerical error over this single step, and the maximum ratio of
/// estimated error to error bound.
fn rkf45_step(
y: &mut [f64],
dydt: &impl Fn(f64, &[f64]) -> Vec<f64>,
tn: f64,
dt: f64,
error_control: &ErrorControlOptions,
) -> (Vec<f64>, f64) {
// Work array reused by several loops below.
let mut work = vec![0.0; y.len()];
let mut k = Vec::with_capacity(6);
k.push(dydt(tn, y));
use rkf45_params as params;
for i in 1..params::NUM_STAGES {
work.to_zeros();
for j in 0..i {
work.add_ax(params::A[i - 1][j], &k[j]);
}
// Effectively, k[i] = dydt(tn + C[i-1] * dt, y + dt * work).
work.scale(dt);
work.add(&y);
k.push(dydt(tn + params::C[i - 1] * dt, &work));
}
// The 5th-order solution will be used for error-estimation.
let mut y_5th_order = y.to_vec();
work.to_zeros();
for i in 0..params::B5.len() {
work.add_ax(params::B5[i], &k[i]);
}
y_5th_order.add_ax(dt, &work);
// y is updated with the 4th-order solution.
work.to_zeros();
for i in 0..params::B4.len() {
work.add_ax(params::B4[i], &k[i]);
}
y.add_ax(dt, &work);
let mut error_estimate = y_5th_order;
error_estimate.subtract(&y);
error_estimate.iter_mut().for_each(|x| *x = (*x).abs());
let mut max_error_ratio = 0.0;
for i in 0..y.len() {
// We use the fact that k[0] stores dydt(tn, yn).
let error_bound = error_control.absolute_magnitude
+ error_control.relative_magnitude
* (error_control.function_scale * y[i].abs()
+ error_control.derivative_scale * dt * k[0][i].abs());
max_error_ratio = f64::max(max_error_ratio, error_estimate[i] / error_bound);
}
(error_estimate, max_error_ratio)
}
/// Options to configure adaptive time-stepping.
pub struct AdaptiveOdeSolverOptions {
/// Initial time for the solution.
pub t_initial: f64,
/// Final time for the solution.
pub t_final: f64,
/// Length of first attempted time step.
pub dt_initial: f64,
/// Parameters that determine the error bounds used to accept or reject time steps.
pub error_control: ErrorControlOptions,
}
/// Options for computing desired error when performing adaptive time-stepping.
///
/// `rkf45_adaptive` compares its estimate to a desired error, which is computed as
/// ```
/// D = max(absolute_magnitude + relative_magnitude * (function_scale * y[i] + derivative_scale * dt * dydt[i]))
/// ```
/// where `[i]` denotes the `i`th component, and the max is taken over all components.
///
/// This form supports a variety of ways of controlling the size of the desired error
/// relative to `y` itself or to its increments.
pub struct ErrorControlOptions {
/// Magnitude of the absolute component of desired error. Even if relative error is the primary
/// feature of interest, this must be set to a nonzero value as a safety measure in case
/// both y and dydt are near zero.
pub absolute_magnitude: f64,
/// Magnitude of the relative component of desired error.
pub relative_magnitude: f64,
/// Contribution of `y` to the relative component of desired error.
pub function_scale: f64,
/// Contribution of `y`'s increment (`dt * dydt`) to the relative component of desired error.
pub derivative_scale: f64,
}
impl ErrorControlOptions {
/// A simple error control option that sets the desired error to
/// ```
/// D = max(scale * (1 + y[i] + dt * dydt[i]))
/// ```
/// This has a lower bound of `scale`, but it grows proportional to `y` or `dydt` as either one
/// becomes large.
pub fn simple(scale: f64) -> ErrorControlOptions {
ErrorControlOptions {
absolute_magnitude: scale,
relative_magnitude: scale,
function_scale: 1.0,
derivative_scale: 1.0,
}
}
}
/// Solves an initial value problem using RKF45 with adaptive time-stepping.
///
/// The method of error control and time step refinement are described in
/// Press and Teukolsky's [Adaptive Stepsize Runge-Kutta Integration, Computers in Physics 6,
/// 188 (1992)](https://doi.org/10.1063/1.4823060).
///
/// Args:
/// - `y`: Slice containing the initial value of the solution. This will be updated in-place.
/// - `dydt`: Function that evaluates the time derivative of `y`.
/// - `options`: Specifies parameters for the solver.
///
/// Returns:
/// - Vector estimating total elementwise numerical error incurred by integration.
pub fn rkf45_adaptive(
y: &mut [f64],
dydt: &impl Fn(f64, &[f64]) -> Vec<f64>,
options: &AdaptiveOdeSolverOptions,
) -> Result<Vec<f64>, Error> {
macro_rules! validate_input {
($x:expr) => {
if !($x) {
return Err(format_err!("Failed input validation: {}", stringify!($x)));
}
};
}
validate_input!(options.t_final > options.t_initial);
validate_input!(options.dt_initial > 0.0);
validate_input!(options.error_control.absolute_magnitude > 0.0);
validate_input!(options.error_control.relative_magnitude >= 0.0);
validate_input!(options.error_control.function_scale >= 0.0);
validate_input!(options.error_control.derivative_scale >= 0.0);
let mut t = options.t_initial;
let mut dt = options.dt_initial;
let mut total_error = vec![0.0; y.len()];
let mut work = y.to_vec();
while t < options.t_final {
if t + dt > options.t_final {
dt = options.t_final - t;
}
let (error_estimate, max_error_ratio) =
rkf45_step(&mut work, dydt, t, dt, &options.error_control);
use adaptive_stepping_params as params;
if max_error_ratio < params::ERROR_RATIO_REFINING_THRESHOLD {
// Accept the step, and update time.
y.copy_from(&work);
total_error.add(&error_estimate);
t += dt;
if max_error_ratio < params::ERROR_RATIO_COARSENING_THRESHOLD {
// Error was particularly small, so increase step size.
let factor = f64::min(
params::SAFETY_FACTOR * max_error_ratio.powf(params::COARSENING_EXPONENT),
params::MAX_COARSENING_FACTOR,
);
dt *= factor;
}
} else {
// Throw out this time stemp. Revert the work array, and reduce dt.
work.copy_from(y);
let factor = f64::max(
params::SAFETY_FACTOR * max_error_ratio.powf(params::REFINING_EXPONENT),
params::MIN_REFINING_FACTOR,
);
dt *= factor;
}
}
Ok(total_error)
}
#[cfg(test)]
mod tests {
use super::*;
use std::f64::consts::PI;
use test_util::{assert_gt, assert_lt};
// rkf45_step requires ErrorControlOptions as an input. But when performing convergence
// tests on that function, the options are meaningless. This is named to document that fact.
static MEANINGLESS_OPTIONS: ErrorControlOptions = ErrorControlOptions {
absolute_magnitude: 1e-8,
relative_magnitude: 1e-8,
function_scale: 1.0,
derivative_scale: 1.0,
};
// Test rkf45_step on a first-order problem:
// y' = lambda*y, y(0)=1.
// The exact solution is y(t)=exp(lambda*t).
//
// rkf45_step should be accurate up to O(dt^5) over a single time step (local truncation
// error). Its error estimate should be accurate up to O(dt). We test both expectations
// by the way the numerical errors decrease as dt is refined.
#[test]
fn test_first_order_problem_rkf45_step() {
let lambda = -0.1;
let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![lambda * y[0]] };
let y_true = |t: f64| -> f64 { f64::exp(lambda * t) };
// Record the actual error values, and the errors in estimated error values (i.e.
// how close the estimated numerical error is to the actual numerical error) over
// succesively-halved time steps.
let mut actual_errors = Vec::new();
let mut errors_in_estimated_error = Vec::new();
for dt in &[1.0, 0.5, 0.25] {
let mut y = [1.0];
let estimated_error = rkf45_step(&mut y, &dydt, 0.0, *dt, &MEANINGLESS_OPTIONS).0[0];
let actual_error = (y_true(*dt) - y[0]).abs();
errors_in_estimated_error.push((estimated_error - actual_error).abs());
actual_errors.push(actual_error);
}
// Each time dt is halved, actual_errors should shrink by roughly 1/32, and
// errors_in_estimated_error should shrink by roughly 1/2. The factor of 1.10 allows a 10%
// margin versus the expected convergence rate.
assert_lt!(actual_errors[1], actual_errors[0] / 32.0 * 1.10);
assert_lt!(actual_errors[2], actual_errors[1] / 32.0 * 1.10);
assert_lt!(errors_in_estimated_error[1], errors_in_estimated_error[0] / 2.0 * 1.10);
assert_lt!(errors_in_estimated_error[2], errors_in_estimated_error[1] / 2.0 * 1.10);
}
// Test rkf45_adaptive on the same first-order problem as above.
//
// This checks that we integrate to t_final with the requested degree of accuracy.
#[test]
fn test_first_order_problem_rkf45_adaptive() -> Result<(), Error> {
let lambda = -0.1;
let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![lambda * y[0]] };
let y_true = |t: f64| -> f64 { f64::exp(lambda * t) };
let options = AdaptiveOdeSolverOptions {
t_initial: 0.0,
t_final: 3.0,
dt_initial: 0.1,
error_control: ErrorControlOptions::simple(1e-6),
};
let mut y = [1.0];
rkf45_adaptive(&mut y, &dydt, &options)?;
let actual_error = (y_true(options.t_final) - y[0]).abs();
// Error should be near the size specified, but not smaller than it.
assert_lt!(actual_error, 1e-5);
assert_gt!(actual_error, 1e-7);
Ok(())
}
// Test rkf45_step for a second-order problem:
// y'' = -y; y(0)=1, y'(0)=0.
// The exact solution is y(t)=cos(t).
//
// To apply the ODE solver, we translate this to the first-order system
// y[0]' = y[1]
// y[1]' = -y[0].
// with initial conditions y[0](0)=1, y[1](0)=0.
//
// This test follows the same methodology as test_first_order_problem_rkf45_step;
// see it for detailed documentation.
#[test]
fn test_second_order_problem_rkf45_step() {
let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![y[1], -y[0]] };
let y_true = |t: f64| -> f64 { f64::cos(t) };
let mut actual_errors = Vec::new();
let mut errors_in_estimated_error = Vec::new();
for dt in &[PI / 4.0, PI / 8.0, PI / 16.0] {
let mut y = [1.0, 0.0];
let estimated_error = rkf45_step(&mut y, &dydt, 0.0, *dt, &MEANINGLESS_OPTIONS).0[0];
let actual_error = (y_true(*dt) - y[0]).abs();
errors_in_estimated_error.push((estimated_error - actual_error).abs());
actual_errors.push(actual_error);
}
assert_lt!(actual_errors[1], actual_errors[0] / 32.0 * 1.10);
assert_lt!(actual_errors[2], actual_errors[1] / 32.0 * 1.10);
assert_lt!(errors_in_estimated_error[1], errors_in_estimated_error[0] / 2.0 * 1.10);
assert_lt!(errors_in_estimated_error[2], errors_in_estimated_error[1] / 2.0 * 1.10);
}
// Test rkf45_adaptive for the same second-order problem as above.
#[test]
fn test_second_order_problem_rkf45_adaptive() -> Result<(), Error> {
let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![y[1], -y[0]] };
let y_true = |t: f64| -> f64 { f64::cos(t) };
let options = AdaptiveOdeSolverOptions {
t_initial: 0.0,
t_final: 2.0 * PI,
dt_initial: PI / 4.0,
error_control: ErrorControlOptions::simple(1e-6),
};
let mut y = [1.0, 0.0];
rkf45_adaptive(&mut y, &dydt, &options)?;
let actual_error = (y_true(options.t_final) - y[0]).abs();
// Error should be near the size specified, but not smaller than it.
assert_lt!(actual_error, 1e-4);
assert_gt!(actual_error, 1e-7);
Ok(())
}
// Test rkf45_step for a third-order time-variant problem.
//
// This is a contrived problem with solution
// y(t) = cos(alpha*t^2).
// As a third-order scalar equation,
// y''' + 4*alpha^2*t^2*y' + 12*alpha^2*t*y = 0; y(0)=1, y'(0)=0, y''(0)=0.
// As a first-order system,
// y[0]' = y[1]
// y[1]' = y[2].
// y[2]' = -12*alpha^2*t*y[0] - 4*alpha^2*t^2*y[1]
// with initial conditions y[0](0)=1, y[1](0)=0, y[2](0)=0.
//
// This test follows the same methodology as test_first_order_problem_rkf45_step;
// see it for detailed documentation.
#[test]
fn test_third_order_problem_rkf45_step() {
let alpha = 0.1;
let square = |x: f64| -> f64 { x * x };
let dydt = |t: f64, y: &[f64]| -> Vec<f64> {
vec![y[1], y[2], -12.0 * square(alpha) * t * y[0] - 4.0 * square(alpha * t) * y[1]]
};
let y_true = |t: f64| -> f64 { f64::cos(alpha * square(t)) };
let mut actual_errors = Vec::new();
let mut errors_in_estimated_error = Vec::new();
for dt in &[0.25, 0.125, 0.0625] {
let mut y = [1.0, 0.0, 0.0];
let estimated_error = rkf45_step(&mut y, &dydt, 0.0, *dt, &MEANINGLESS_OPTIONS).0[0];
let actual_error = (y_true(*dt) - y[0]).abs();
errors_in_estimated_error.push((estimated_error - actual_error).abs());
actual_errors.push(actual_error);
}
assert_lt!(actual_errors[1], actual_errors[0] / 32.0 * 1.10);
assert_lt!(actual_errors[2], actual_errors[1] / 32.0 * 1.10);
assert_lt!(errors_in_estimated_error[1], errors_in_estimated_error[0] / 2.0 * 1.10);
assert_lt!(errors_in_estimated_error[2], errors_in_estimated_error[1] / 2.0 * 1.10);
}
// This tests rkf45_adaptive for the same third-order problem as above.
#[test]
fn test_third_order_problem_rkf45_adaptive() -> Result<(), Error> {
let alpha = 0.1;
let square = |x: f64| -> f64 { x * x };
let dydt = |t: f64, y: &[f64]| -> Vec<f64> {
vec![y[1], y[2], -12.0 * square(alpha) * t * y[0] - 4.0 * square(alpha * t) * y[1]]
};
let y_true = |t: f64| -> f64 { f64::cos(alpha * square(t)) };
let options = AdaptiveOdeSolverOptions {
t_initial: 0.0,
t_final: 4.0,
dt_initial: 0.25,
error_control: ErrorControlOptions::simple(1e-6),
};
let mut y = [1.0, 0.0, 0.0];
rkf45_adaptive(&mut y, &dydt, &options)?;
let actual_error = (y_true(options.t_final) - y[0]).abs();
// Error should be near the size specified, but not smaller than it.
assert_lt!(actual_error, 1e-4);
assert_gt!(actual_error, 1e-7);
Ok(())
}
// Test rkf45_adaptive on a problem with multiple time scales.
//
// This is the canonical use case for adaptive time-stepping. We have a problem with two time
// scales, one that is much faster than the other. Our t_final is 1, and we suggest a single
// step of length 1, which would be plenty for the slow time scale. However, the fast time
// scale requires much smaller time steps, and the integrator must detect this.
#[test]
fn test_multiple_time_scales() -> Result<(), Error> {
let lambda1 = 10.0;
let lambda2 = 0.001;
let dydt = |_t: f64, y: &[f64]| -> Vec<f64> { vec![-lambda1 * y[0], -lambda2 * y[1]] };
let y_true = |t: f64| -> Vec<f64> { vec![f64::exp(-lambda1 * t), f64::exp(-lambda2 * t)] };
let options = AdaptiveOdeSolverOptions {
t_initial: 0.0,
t_final: 1.0,
dt_initial: 1.0,
error_control: ErrorControlOptions::simple(1e-6),
};
let mut y = [1.0, 1.0];
rkf45_adaptive(&mut y, &dydt, &options)?;
let mut actual_error = y_true(options.t_final);
actual_error.iter_mut().zip(y.iter()).for_each(|(p, q)| *p = (*p - *q).abs());
// Our requested error scale bounds the error in both components above. The second component
// has a much smaller error than our requested tolerance because it varies so slowly relative
// to the first, which governs the time step selection. Hence, we don't test actual_error[1]
// for a lower bound.
assert_lt!(actual_error[0], 1e-5);
assert_lt!(actual_error[1], 1e-5);
assert_gt!(actual_error[0], 1e-7);
Ok(())
}
// Test that rkf45_advance returns an error when passed invalid options.
#[test]
fn test_error_checks() {
let dydt = |_t: f64, _y: &[f64]| -> Vec<f64> { vec![0.0] };
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 2.0, // Greater than t_final
t_final: 1.0,
dt_initial: 0.1,
error_control: ErrorControlOptions::simple(1e-8),
}
)
.is_err());
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 1.0,
t_final: 2.0,
dt_initial: -0.1, // Negative
error_control: ErrorControlOptions {
absolute_magnitude: 1e-8,
relative_magnitude: 1e-8,
function_scale: 1.0,
derivative_scale: 1.0,
}
}
)
.is_err());
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 1.0,
t_final: 2.0,
dt_initial: 0.1,
error_control: ErrorControlOptions {
absolute_magnitude: -1e-8, // Negative
relative_magnitude: 1e-8,
function_scale: 1.0,
derivative_scale: 1.0,
}
}
)
.is_err());
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 1.0,
t_final: 2.0,
dt_initial: 0.1,
error_control: ErrorControlOptions {
absolute_magnitude: 1e-8,
relative_magnitude: -1e-8, // Negative
function_scale: 1.0,
derivative_scale: 1.0,
}
}
)
.is_err());
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 1.0,
t_final: 2.0,
dt_initial: 0.1,
error_control: ErrorControlOptions {
absolute_magnitude: 1e-8,
relative_magnitude: 1e-8,
function_scale: -1.0, // Negative
derivative_scale: 1.0,
}
}
)
.is_err());
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 1.0,
t_final: 2.0,
dt_initial: 0.1,
error_control: ErrorControlOptions {
absolute_magnitude: 1e-8,
relative_magnitude: 1e-8,
function_scale: 1.0,
derivative_scale: -1.0, // Negative
}
}
)
.is_err());
assert!(rkf45_adaptive(
&mut [1.0],
&dydt,
&AdaptiveOdeSolverOptions {
t_initial: 1.0,
t_final: 2.0,
dt_initial: 0.1,
error_control: ErrorControlOptions {
absolute_magnitude: 0.0, // Must be positive
relative_magnitude: 1e-8,
function_scale: 1.0,
derivative_scale: 1.0,
}
}
)
.is_err());
}
}