netstack3_base/data_structures/
socketmap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Defines generic data structures used to implement common application socket
//! functionality for multiple protocols.
//!
//! The core of this module is the [`SocketMap`] struct. It provides a map-like
//! API for setting and getting values while maintaining extra information about
//! the number of values of certain types present in the map.

use alloc::collections::{hash_map, HashMap};
use core::fmt::Debug;
use core::hash::Hash;
use core::num::NonZeroUsize;
use either::Either;

use derivative::Derivative;

/// A type whose values can "shadow" other values of the type.
///
/// An implementation of this trait defines a relationship between values of the
/// type. For any value `s: S`, if `t` appears in
/// `IterShadows::iter_shadows(s)`, then `s` shadows `t`.
///
/// This "shadows" relationship is similar to [`PartialOrd`] in that certain
/// propreties must hold:
///
/// 1. transitivity: if `s.iter_shadows()` yields `t`, and `t.iter_shadows()`
///    yields `u`, then `s.iter_shadows()` must also yield `u`.
/// 2. anticyclic: `s` cannot shadow itself.
///
/// Produces an iterator that yields all the shadows of a given value. The order
/// of iteration is unspecified.
pub trait IterShadows {
    /// The iterator returned by `iter_shadows`.
    type IterShadows: Iterator<Item = Self>;
    /// Produces the iterator for shadow values.
    fn iter_shadows(&self) -> Self::IterShadows;
}

/// A type whose values can be used to produce "tag" values of a different type.
///
/// This can be used to provide a summary value, e.g. even or odd for an
/// integer-like type.
pub trait Tagged<A> {
    /// The tag type.
    type Tag: Copy + Eq + core::fmt::Debug;

    /// Returns the tag value for `self` at the given address.
    ///
    /// This function must be deterministic, such that calling `Tagged::tag` on
    /// the same values always returns the same tag value.
    fn tag(&self, address: &A) -> Self::Tag;
}

/// A map that stores values and summarizes tag counts.
///
/// This provides a similar insertion/removal API to [`HashMap`] for individual
/// key/value pairs. Unlike a regular `HashMap`, the key type `A` is required to
/// implement [`IterShadows`], and `V` to implement [`Tagged`].
///
/// Since `A` implements `IterShadows`, a given value `a : A` has zero or more
/// shadow values. Since the shadow relationship is transitive, we call any
/// value `v` that is reachable by following shadows of `a` one of `a`'s
/// "ancestors", and we say `a` is a "descendant" of `v`.
///
/// In addition to keys and values, this map stores the number of values
/// present in the map for all descendants of each key. These counts are
/// separated into buckets for different tags of type `V::Tag`.
#[derive(Derivative, Debug)]
#[derivative(Default(bound = ""))]
pub struct SocketMap<A: Hash + Eq, V: Tagged<A>> {
    map: HashMap<A, MapValue<V, V::Tag>>,
    len: usize,
}

#[derive(Derivative, Debug)]
#[derivative(Default(bound = ""))]
struct MapValue<V, T> {
    value: Option<V>,
    descendant_counts: DescendantCounts<T>,
}

#[derive(Derivative, Debug)]
#[derivative(Default(bound = ""))]
struct DescendantCounts<T, const INLINE_SIZE: usize = 1> {
    /// Holds unordered (tag, count) pairs.
    ///
    /// [`DescendantCounts`] maintains the invariant that tags are unique. The
    /// ordering of tags is unspecified.
    counts: smallvec::SmallVec<[(T, NonZeroUsize); INLINE_SIZE]>,
}

/// An entry for a key in a map that has a value.
///
/// This type maintains the invariant that, if an `OccupiedEntry(map, a)`
/// exists, `SocketMap::get(map, a)` is `Some(v)`, i.e. the `HashMap` that
/// [`SocketMap`] wraps contains a [`MapValue`] whose `value` field is
/// `Some(v)`.
pub struct OccupiedEntry<'a, A: Hash + Eq, V: Tagged<A>>(&'a mut SocketMap<A, V>, A);

/// An entry for a key in a map that does not have a value.
///
/// This type maintains the invariant that, if a `VacantEntry(map, a)` exists,
/// `SocketMap::get(map, a)` is `None`. This means that in the `HashMap` that
/// `SocketMap` wraps, either there is no value for key `a` or there is a
/// `MapValue` whose `value` field is `None`.
#[cfg_attr(test, derive(Debug))]
pub struct VacantEntry<'a, A: Hash + Eq, V: Tagged<A>>(&'a mut SocketMap<A, V>, A);

/// An entry in a map that can be used to manipulate the value in-place.
#[cfg_attr(test, derive(Debug))]
pub enum Entry<'a, A: Hash + Eq, V: Tagged<A>> {
    // NB: Both `OccupiedEntry` and `VacantEntry` store a reference to the map
    // and a key directly since they need access to the entire map to update
    // descendant counts. This means that any operation on them requires an
    // additional map lookup with the same key. Experimentation suggests the
    // compiler will optimize this duplicate lookup out, since it is the same
    // one done by `SocketMap::entry` to produce the `Entry` in the first place.
    /// An occupied entry.
    Occupied(OccupiedEntry<'a, A, V>),
    /// A vacant entry.
    Vacant(VacantEntry<'a, A, V>),
}

impl<A, V> SocketMap<A, V>
where
    A: IterShadows + Hash + Eq,
    V: Tagged<A>,
{
    /// Returns the number of entries in this `SocketMap`.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Gets a reference to the value associated with the given key, if any.
    pub fn get(&self, key: &A) -> Option<&V> {
        let Self { map, len: _ } = self;
        map.get(key).and_then(|MapValue { value, descendant_counts: _ }| value.as_ref())
    }

    /// Provides an [`Entry`] for the given key for in-place manipulation.
    ///
    /// This is similar to the API provided by [`HashMap::entry`]. Callers can
    /// match on the result to perform different actions depending on whether
    /// the map has a value for the key or not.
    pub fn entry(&mut self, key: A) -> Entry<'_, A, V> {
        let Self { map, len: _ } = self;
        match map.get(&key) {
            Some(MapValue { descendant_counts: _, value: Some(_) }) => {
                Entry::Occupied(OccupiedEntry(self, key))
            }
            Some(MapValue { descendant_counts: _, value: None }) | None => {
                Entry::Vacant(VacantEntry(self, key))
            }
        }
    }

    /// Removes the value for the given key if there is one.
    ///
    /// If there is a value for key `key`, removes it and returns it. Otherwise
    /// returns None.
    #[cfg(test)]
    pub fn remove(&mut self, key: &A) -> Option<V>
    where
        A: Clone,
    {
        match self.entry(key.clone()) {
            Entry::Vacant(_) => return None,
            Entry::Occupied(o) => Some(o.remove()),
        }
    }

    /// Returns counts of tags for values at keys that shadow `key`.
    ///
    /// This is equivalent to iterating over all keys in the map, filtering for
    /// those keys for which `key` is one of their shadows, then calling
    /// [`Tagged::tag`] on the value for each of those keys, and then computing
    /// the number of occurrences for each tag.
    pub fn descendant_counts(
        &self,
        key: &A,
    ) -> impl ExactSizeIterator<Item = &'_ (V::Tag, NonZeroUsize)> {
        let Self { map, len: _ } = self;
        map.get(key)
            .map(|MapValue { value: _, descendant_counts }| {
                Either::Left(descendant_counts.into_iter())
            })
            .unwrap_or(Either::Right(core::iter::empty()))
    }

    /// Returns an iterator over the keys and values in the map.
    pub fn iter(&self) -> impl Iterator<Item = (&'_ A, &'_ V)> {
        let Self { map, len: _ } = self;
        map.iter().filter_map(|(a, MapValue { value, descendant_counts: _ })| {
            value.as_ref().map(|v| (a, v))
        })
    }

    fn increment_descendant_counts(
        map: &mut HashMap<A, MapValue<V, V::Tag>>,
        shadows: A::IterShadows,
        tag: V::Tag,
    ) {
        for shadow in shadows {
            let MapValue { descendant_counts, value: _ } = map.entry(shadow).or_default();
            descendant_counts.increment(tag);
        }
    }

    fn update_descendant_counts(
        map: &mut HashMap<A, MapValue<V, V::Tag>>,
        shadows: A::IterShadows,
        old_tag: V::Tag,
        new_tag: V::Tag,
    ) {
        if old_tag != new_tag {
            for shadow in shadows {
                let counts = &mut map.get_mut(&shadow).unwrap().descendant_counts;
                counts.increment(new_tag);
                counts.decrement(old_tag);
            }
        }
    }

    fn decrement_descendant_counts(
        map: &mut HashMap<A, MapValue<V, V::Tag>>,
        shadows: A::IterShadows,
        old_tag: V::Tag,
    ) {
        for shadow in shadows {
            let mut entry = match map.entry(shadow) {
                hash_map::Entry::Occupied(o) => o,
                hash_map::Entry::Vacant(_) => unreachable!(),
            };
            let MapValue { descendant_counts, value } = entry.get_mut();
            descendant_counts.decrement(old_tag);
            if descendant_counts.is_empty() && value.is_none() {
                let _: MapValue<_, _> = entry.remove();
            }
        }
    }
}

impl<'a, K: Eq + Hash + IterShadows, V: Tagged<K>> OccupiedEntry<'a, K, V> {
    /// Gets a reference to the key for the entry.
    pub fn key(&self) -> &K {
        let Self(SocketMap { map: _, len: _ }, key) = self;
        key
    }

    /// Retrieves the value referenced by this entry.
    pub fn get(&self) -> &V {
        let Self(SocketMap { map, len: _ }, key) = self;
        let MapValue { descendant_counts: _, value } = map.get(key).unwrap();
        // unwrap() call is guaranteed safe by OccupiedEntry invariant.
        value.as_ref().unwrap()
    }

    // NB: there is no get_mut because that would allow the caller to manipulate
    // a value without updating the descendant tag counts.

    /// Runs the provided callback on the value referenced by this entry.
    ///
    /// Returns the result of the callback.
    pub fn map_mut<R>(&mut self, apply: impl FnOnce(&mut V) -> R) -> R {
        let Self(SocketMap { map, len: _ }, key) = self;
        // unwrap() calls are guaranteed safe by OccupiedEntry invariant.
        let MapValue { descendant_counts: _, value } = map.get_mut(key).unwrap();
        let value = value.as_mut().unwrap();

        let old_tag = value.tag(key);
        let r = apply(value);
        let new_tag = value.tag(key);
        SocketMap::update_descendant_counts(map, key.iter_shadows(), old_tag, new_tag);
        r
    }

    /// Extracts the underlying [`SocketMap`] reference backing this entry.
    pub fn into_map(self) -> &'a mut SocketMap<K, V> {
        let Self(socketmap, _) = self;
        socketmap
    }

    /// Removes the value from the map and returns it.
    pub fn remove(self) -> V {
        let (value, _map) = self.remove_from_map();
        value
    }

    /// Gets a reference to the backing map.
    pub fn get_map(&self) -> &SocketMap<K, V> {
        let Self(socketmap, _) = self;
        socketmap
    }

    /// Removes the value from the map and returns the value and map.
    pub fn remove_from_map(self) -> (V, &'a mut SocketMap<K, V>) {
        let Self(socketmap, key) = self;
        let SocketMap { map, len } = socketmap;
        let shadows = key.iter_shadows();
        let mut entry = match map.entry(key) {
            hash_map::Entry::Occupied(o) => o,
            hash_map::Entry::Vacant(_) => unreachable!("OccupiedEntry not occupied"),
        };
        let tag = {
            let MapValue { descendant_counts: _, value } = entry.get();
            // unwrap() is guaranteed safe by OccupiedEntry invariant.
            value.as_ref().unwrap().tag(entry.key())
        };

        let MapValue { descendant_counts, value } = entry.get_mut();
        // unwrap() is guaranteed safe by OccupiedEntry invariant.
        let value =
            value.take().expect("OccupiedEntry invariant violated: expected Some, found None");
        if descendant_counts.is_empty() {
            let _: MapValue<V, V::Tag> = entry.remove();
        }
        SocketMap::decrement_descendant_counts(map, shadows, tag);
        *len -= 1;
        (value, socketmap)
    }
}

impl<'a, K: Eq + Hash + IterShadows, V: Tagged<K>> VacantEntry<'a, K, V> {
    /// Inserts a value for the key referenced by this entry.
    ///
    /// Returns a reference to the newly-inserted value.
    pub fn insert(self, value: V) -> OccupiedEntry<'a, K, V>
    where
        K: Clone,
    {
        let Self(socket_map, key) = self;
        let SocketMap { map, len } = socket_map;
        let iter_shadows = key.iter_shadows();
        let tag = value.tag(&key);
        *len += 1;
        SocketMap::increment_descendant_counts(map, iter_shadows, tag);
        let MapValue { value: map_value, descendant_counts: _ } =
            map.entry(key.clone()).or_default();
        assert!(map_value.replace(value).is_none());
        OccupiedEntry(socket_map, key)
    }

    /// Extracts the underlying [`SocketMap`] reference backing this entry.
    pub fn into_map(self) -> &'a mut SocketMap<K, V> {
        let Self(socketmap, _) = self;
        socketmap
    }

    /// Gets the descendant counts for this entry.
    pub fn descendant_counts(&self) -> impl ExactSizeIterator<Item = &'_ (V::Tag, NonZeroUsize)> {
        let Self(socket_map, key) = self;
        socket_map.descendant_counts(&key)
    }
}

impl<'a, A: Debug + Eq + Hash, V: Tagged<A>> Debug for OccupiedEntry<'a, A, V> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let Self(_socket_map, key) = self;
        f.debug_tuple("OccupiedEntry").field(&"_").field(key).finish()
    }
}

impl<T: Eq, const INLINE_SIZE: usize> DescendantCounts<T, INLINE_SIZE> {
    const ONE: NonZeroUsize = const_unwrap::const_unwrap_option(NonZeroUsize::new(1));

    /// Increments the count for the given tag.
    fn increment(&mut self, tag: T) {
        let Self { counts } = self;
        match counts.iter_mut().find_map(|(t, count)| (t == &tag).then(|| count)) {
            Some(count) => *count = NonZeroUsize::new(count.get() + 1).unwrap(),
            None => counts.push((tag, Self::ONE)),
        }
    }

    /// Decrements the count for the given tag.
    ///
    /// # Panics
    ///
    /// Panics if there is no count for the given tag.
    fn decrement(&mut self, tag: T) {
        let Self { counts } = self;
        let (index, count) = counts
            .iter_mut()
            .enumerate()
            .find_map(|(i, (t, count))| (t == &tag).then(|| (i, count)))
            .unwrap();
        if let Some(new_count) = NonZeroUsize::new(count.get() - 1) {
            *count = new_count
        } else {
            let _: (T, NonZeroUsize) = counts.swap_remove(index);
        }
    }

    fn is_empty(&self) -> bool {
        let Self { counts } = self;
        counts.is_empty()
    }
}

impl<'d, T, const INLINE_SIZE: usize> IntoIterator for &'d DescendantCounts<T, INLINE_SIZE> {
    type Item = &'d (T, NonZeroUsize);
    type IntoIter =
        <&'d smallvec::SmallVec<[(T, NonZeroUsize); INLINE_SIZE]> as IntoIterator>::IntoIter;

    fn into_iter(self) -> Self::IntoIter {
        let DescendantCounts { counts } = self;
        counts.into_iter()
    }
}

#[cfg(test)]
mod tests {
    use alloc::vec::Vec;
    use alloc::{format, vec};

    use assert_matches::assert_matches;
    use proptest::prop_assert_eq;
    use proptest::strategy::Strategy;

    use super::*;

    trait AsMap {
        type K: Hash + Eq;
        type V;
        fn as_map(self) -> HashMap<Self::K, Self::V>;
    }

    impl<'d, K, V, I> AsMap for I
    where
        K: Hash + Eq + Clone + 'd,
        V: 'd,
        V: Clone + Into<usize>,
        I: Iterator<Item = &'d (K, V)>,
    {
        type K = K;
        type V = usize;
        fn as_map(self) -> HashMap<Self::K, Self::V> {
            self.map(|(k, v)| (k.clone(), v.clone().into())).collect()
        }
    }

    #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
    enum Address {
        A(u8),
        AB(u8, char),
        ABC(u8, char, u8),
    }
    use Address::*;

    impl IterShadows for Address {
        type IterShadows = <Vec<Address> as IntoIterator>::IntoIter;
        fn iter_shadows(&self) -> Self::IterShadows {
            match self {
                A(_) => vec![],
                AB(a, _) => vec![A(*a)],
                ABC(a, b, _) => vec![AB(*a, *b), A(*a)],
            }
            .into_iter()
        }
    }

    #[derive(Eq, PartialEq, Clone, Copy, Debug)]
    struct TV<T, V>(T, V);

    impl<T: Copy + Eq + core::fmt::Debug, V> Tagged<Address> for TV<T, V> {
        type Tag = T;

        fn tag(&self, _: &Address) -> Self::Tag {
            self.0
        }
    }

    type TestSocketMap<T> = SocketMap<Address, TV<T, u8>>;

    #[test]
    fn insert_get_remove() {
        let mut map = TestSocketMap::default();

        assert_matches!(map.entry(ABC(1, 'c', 2)), Entry::Vacant(v) => v.insert(TV(0, 32)));
        assert_eq!(map.get(&ABC(1, 'c', 2)), Some(&TV(0, 32)));

        assert_eq!(map.remove(&ABC(1, 'c', 2)), Some(TV(0, 32)));
        assert_eq!(map.get(&ABC(1, 'c', 2)), None);
    }

    #[test]
    fn insert_remove_len() {
        let mut map = TestSocketMap::default();
        let TestSocketMap { len, map: _ } = map;
        assert_eq!(len, 0);

        assert_matches!(map.entry(ABC(1, 'c', 2)), Entry::Vacant(v) => v.insert(TV(0, 32)));
        let TestSocketMap { len, map: _ } = map;
        assert_eq!(len, 1);

        assert_eq!(map.remove(&ABC(1, 'c', 2)), Some(TV(0, 32)));
        let TestSocketMap { len, map: _ } = map;
        assert_eq!(len, 0);
    }

    #[test]
    fn entry_same_key() {
        let mut map = TestSocketMap::default();

        assert_matches!(map.entry(ABC(1, 'c', 2)), Entry::Vacant(v) => v.insert(TV(0, 32)));
        let occupied = assert_matches!(map.entry(ABC(1, 'c', 2)), Entry::Occupied(o) => o);
        assert_eq!(occupied.get(), &TV(0, 32));
        let TestSocketMap { len, map: _ } = map;
        assert_eq!(len, 1);
    }

    #[test]
    fn multiple_insert_descendant_counts() {
        let mut map = TestSocketMap::default();

        assert_matches!(map.entry(ABC(1, 'c', 2)), Entry::Vacant(v) => v.insert(TV(1, 111)));
        assert_matches!(map.entry(ABC(1, 'd', 2)), Entry::Vacant(v) => v.insert(TV(2, 111)));
        assert_matches!(map.entry(AB(5, 'd')), Entry::Vacant(v) => v.insert(TV(1, 54)));
        assert_matches!(map.entry(AB(1, 'd')),  Entry::Vacant(v) => v.insert(TV(3, 56)));
        let TestSocketMap { len, map: _ } = map;
        assert_eq!(len, 4);

        assert_eq!(map.descendant_counts(&A(1)).as_map(), HashMap::from([(1, 1), (2, 1), (3, 1)]));
        assert_eq!(map.descendant_counts(&AB(1, 'c')).as_map(), HashMap::from([(1, 1)]));
        assert_eq!(map.descendant_counts(&AB(1, 'd')).as_map(), HashMap::from([(2, 1)]));

        assert_eq!(map.descendant_counts(&A(5)).as_map(), HashMap::from([(1, 1)]));

        assert_eq!(map.descendant_counts(&ABC(1, 'd', 2)).as_map(), HashMap::from([]));
        assert_eq!(map.descendant_counts(&A(2)).as_map(), HashMap::from([]));
    }

    #[test]
    fn entry_remove_no_shadows() {
        let mut map = TestSocketMap::default();

        assert_matches!(map.entry(ABC(16, 'c', 8)), Entry::Vacant(v) => v.insert(TV(3, 111)));

        let entry = assert_matches!(map.entry(ABC(16, 'c', 8)), Entry::Occupied(o) => o);
        assert_eq!(entry.remove(), TV(3, 111));
        let TestSocketMap { map, len } = map;
        assert_eq!(len, 0);
        assert_eq!(map.len(), 0);
    }

    #[test]
    fn entry_remove_with_shadows() {
        let mut map = TestSocketMap::default();

        assert_matches!(map.entry(ABC(16, 'c', 8)), Entry::Vacant(v) => v.insert(TV(2, 112)));
        assert_matches!(map.entry(AB(16, 'c')), Entry::Vacant(v) => v.insert(TV(1, 111)));
        assert_matches!(map.entry(A(16)), Entry::Vacant(v) => v.insert(TV(0, 110)));

        let entry = assert_matches!(map.entry(AB(16, 'c')), Entry::Occupied(o) => o);
        assert_eq!(entry.remove(), TV(1, 111));
        let TestSocketMap { map, len } = map;
        assert_eq!(len, 2);
        assert_eq!(map.len(), 3);
    }

    #[test]
    fn remove_ancestor_value() {
        let mut map = TestSocketMap::default();
        assert_matches!(map.entry(ABC(2, 'e', 1)), Entry::Vacant(v) => v.insert(TV(20, 100)));
        assert_matches!(map.entry(AB(2, 'e')), Entry::Vacant(v) => v.insert(TV(20, 100)));
        assert_eq!(map.remove(&AB(2, 'e')), Some(TV(20, 100)));

        assert_eq!(map.descendant_counts(&A(2)).as_map(), HashMap::from([(20, 1)]));
    }

    fn key_strategy() -> impl Strategy<Value = Address> {
        let a_strategy = 1..5u8;
        let b_strategy = proptest::char::range('a', 'e');
        let c_strategy = 1..5u8;
        (a_strategy, proptest::option::of((b_strategy, proptest::option::of(c_strategy)))).prop_map(
            |(a, b)| match b {
                None => A(a),
                Some((b, None)) => AB(a, b),
                Some((b, Some(c))) => ABC(a, b, c),
            },
        )
    }

    fn value_strategy() -> impl Strategy<Value = TV<u8, u8>> {
        (20..25u8, 100..105u8).prop_map(|(t, v)| TV(t, v))
    }

    #[derive(Debug, Copy, Clone, Eq, PartialEq)]
    enum Operation {
        Entry(Address, TV<u8, u8>),
        Remove(Address),
    }

    impl Operation {
        fn apply(
            self,
            socket_map: &mut TestSocketMap<u8>,
            reference: &mut HashMap<Address, TV<u8, u8>>,
        ) {
            match self {
                Operation::Entry(a, v) => match (socket_map.entry(a), reference.entry(a)) {
                    (Entry::Occupied(mut s), hash_map::Entry::Occupied(mut h)) => {
                        assert_eq!(s.map_mut(|value| core::mem::replace(value, v)), h.insert(v))
                    }
                    (Entry::Vacant(s), hash_map::Entry::Vacant(h)) => {
                        let _: OccupiedEntry<'_, _, _> = s.insert(v);
                        let _: &mut TV<_, _> = h.insert(v);
                    }
                    (Entry::Occupied(_), hash_map::Entry::Vacant(_)) => {
                        panic!("socketmap has a value for {:?} but reference does not", a)
                    }
                    (Entry::Vacant(_), hash_map::Entry::Occupied(_)) => {
                        panic!("socketmap has no value for {:?} but reference does", a)
                    }
                },
                Operation::Remove(a) => assert_eq!(socket_map.remove(&a), reference.remove(&a)),
            }
        }
    }

    fn operation_strategy() -> impl Strategy<Value = Operation> {
        proptest::prop_oneof!(
            (key_strategy(), value_strategy()).prop_map(|(a, v)| Operation::Entry(a, v)),
            key_strategy().prop_map(|a| Operation::Remove(a)),
        )
    }

    fn validate_map(
        map: TestSocketMap<u8>,
        reference: HashMap<Address, TV<u8, u8>>,
    ) -> Result<(), proptest::test_runner::TestCaseError> {
        let map_values: HashMap<_, _> = map.iter().map(|(a, v)| (*a, *v)).collect();
        assert_eq!(map_values, reference);
        let TestSocketMap { len, map: _ } = map;
        assert_eq!(len, reference.len());

        let TestSocketMap { map: inner_map, len: _ } = &map;
        for (key, entry) in inner_map {
            let descendant_values = map
                .iter()
                .filter(|(k, _)| k.iter_shadows().any(|s| s == *key))
                .map(|(_, value)| value);

            // Fold values into a map from tag to count.
            let expected_tag_counts = descendant_values.fold(HashMap::new(), |mut m, v| {
                *m.entry(v.tag(key)).or_default() += 1;
                m
            });

            let MapValue { descendant_counts, value: _ } = entry;
            prop_assert_eq!(
                expected_tag_counts,
                descendant_counts.into_iter().as_map(),
                "key = {:?}",
                key
            );
        }
        Ok(())
    }

    proptest::proptest! {
        #![proptest_config(proptest::test_runner::Config {
            // Add all failed seeds here.
            failure_persistence: proptest_support::failed_seeds_no_std!(),
            ..proptest::test_runner::Config::default()
        })]

        #[test]
        fn test_arbitrary_operations(operations in proptest::collection::vec(operation_strategy(), 10)) {
            let mut map = TestSocketMap::default();
            let mut reference = HashMap::new();
            for op in operations {
                op.apply(&mut map, &mut reference);
            }

            // After all operations have completed, check invariants for
            // SocketMap.
            validate_map(map, reference)?;
        }

    }
}