1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use async_trait::async_trait;
use block_client::{BlockClient, BufferSlice, MutableBufferSlice, VmoId, WriteOptions};
use fidl_fuchsia_hardware_block as block;
use std::collections::BTreeMap;
use std::ops::Range;
use std::sync::atomic::{self, AtomicU32};
use std::sync::Mutex;

type VmoRegistry = BTreeMap<u16, zx::Vmo>;

struct Inner {
    data: Vec<u8>,
    vmo_registry: VmoRegistry,
}

/// A fake instance of BlockClient for use in tests.
pub struct FakeBlockClient {
    inner: Mutex<Inner>,
    block_size: u32,
    flush_count: AtomicU32,
}

impl FakeBlockClient {
    pub fn new(block_size: u32, block_count: usize) -> Self {
        Self {
            inner: Mutex::new(Inner {
                data: vec![0 as u8; block_size as usize * block_count],
                vmo_registry: BTreeMap::new(),
            }),
            block_size,
            flush_count: AtomicU32::new(0),
        }
    }

    pub fn flush_count(&self) -> u32 {
        self.flush_count.load(atomic::Ordering::Relaxed)
    }
}

#[async_trait]
impl BlockClient for FakeBlockClient {
    async fn attach_vmo(&self, vmo: &zx::Vmo) -> Result<VmoId, zx::Status> {
        let len = vmo.get_size()?;
        let vmo = vmo.create_child(zx::VmoChildOptions::SLICE, 0, len)?;
        let mut inner = self.inner.lock().unwrap();
        // 0 is a sentinel value
        for id in 1..u16::MAX {
            if !inner.vmo_registry.contains_key(&id) {
                inner.vmo_registry.insert(id, vmo);
                return Ok(VmoId::new(id));
            }
        }
        Err(zx::Status::NO_RESOURCES)
    }

    async fn detach_vmo(&self, vmo_id: VmoId) -> Result<(), zx::Status> {
        let mut inner = self.inner.lock().unwrap();
        let id = vmo_id.into_id();
        if let None = inner.vmo_registry.remove(&id) {
            Err(zx::Status::NOT_FOUND)
        } else {
            Ok(())
        }
    }

    async fn read_at(
        &self,
        buffer_slice: MutableBufferSlice<'_>,
        device_offset: u64,
    ) -> Result<(), zx::Status> {
        if device_offset % self.block_size as u64 != 0 {
            return Err(zx::Status::INVALID_ARGS);
        }
        let device_offset = device_offset as usize;
        let inner = &mut *self.inner.lock().unwrap();
        match buffer_slice {
            MutableBufferSlice::VmoId { vmo_id, offset, length } => {
                if offset % self.block_size as u64 != 0 {
                    return Err(zx::Status::INVALID_ARGS);
                }
                if length % self.block_size as u64 != 0 {
                    return Err(zx::Status::INVALID_ARGS);
                }
                let vmo = inner.vmo_registry.get(&vmo_id.id()).ok_or(zx::Status::INVALID_ARGS)?;
                vmo.write(&inner.data[device_offset..device_offset + length as usize], offset)?;
                Ok(())
            }
            MutableBufferSlice::Memory(slice) => {
                let len = slice.len();
                if device_offset + len > inner.data.len() {
                    return Err(zx::Status::OUT_OF_RANGE);
                }
                slice.copy_from_slice(&inner.data[device_offset..device_offset + len]);
                Ok(())
            }
        }
    }

    async fn write_at_with_opts(
        &self,
        buffer_slice: BufferSlice<'_>,
        device_offset: u64,
        _opts: WriteOptions,
    ) -> Result<(), zx::Status> {
        if device_offset % self.block_size as u64 != 0 {
            return Err(zx::Status::INVALID_ARGS);
        }
        let device_offset = device_offset as usize;
        let inner = &mut *self.inner.lock().unwrap();
        match buffer_slice {
            BufferSlice::VmoId { vmo_id, offset, length } => {
                if offset % self.block_size as u64 != 0 {
                    return Err(zx::Status::INVALID_ARGS);
                }
                if length % self.block_size as u64 != 0 {
                    return Err(zx::Status::INVALID_ARGS);
                }
                let vmo = inner.vmo_registry.get(&vmo_id.id()).ok_or(zx::Status::INVALID_ARGS)?;
                vmo.read(&mut inner.data[device_offset..device_offset + length as usize], offset)?;
                Ok(())
            }
            BufferSlice::Memory(slice) => {
                let len = slice.len();
                if device_offset + len > inner.data.len() {
                    return Err(zx::Status::OUT_OF_RANGE);
                }
                inner.data[device_offset..device_offset + len].copy_from_slice(slice);
                Ok(())
            }
        }
    }

    async fn trim(&self, range: Range<u64>) -> Result<(), zx::Status> {
        if range.start % self.block_size as u64 != 0 {
            return Err(zx::Status::INVALID_ARGS);
        }
        if range.end % self.block_size as u64 != 0 {
            return Err(zx::Status::INVALID_ARGS);
        }
        // Blast over the range to simulate it being reused.
        let inner = &mut *self.inner.lock().unwrap();
        if range.end as usize > inner.data.len() {
            return Err(zx::Status::OUT_OF_RANGE);
        }
        inner.data[range.start as usize..range.end as usize].fill(0xab);
        Ok(())
    }

    async fn flush(&self) -> Result<(), zx::Status> {
        self.flush_count.fetch_add(1, atomic::Ordering::Relaxed);
        Ok(())
    }

    async fn close(&self) -> Result<(), zx::Status> {
        Ok(())
    }

    fn block_size(&self) -> u32 {
        self.block_size
    }

    fn block_count(&self) -> u64 {
        self.inner.lock().unwrap().data.len() as u64 / self.block_size as u64
    }

    fn block_flags(&self) -> block::Flag {
        block::Flag::TRIM_SUPPORT
    }

    fn is_connected(&self) -> bool {
        true
    }
}