packet/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Parsing and serialization of (network) packets.
//!
//! `packet` is a library to help with the parsing and serialization of nested
//! packets. Network packets are the most common use case, but it supports any
//! packet structure with headers, footers, and nesting.
//!
//! # Model
//!
//! The core components of `packet` are the various buffer traits (`XxxBuffer`
//! and `XxxBufferMut`). A buffer is a byte buffer with a prefix, a body, and a
//! suffix. The size of the buffer is referred to as its "capacity", and the
//! size of the body is referred to as its "length". Depending on which traits
//! are implemented, the body of the buffer may be able to shrink or grow as
//! allowed by the capacity as packets are parsed or serialized.
//!
//! ## Parsing
//!
//! When parsing packets, the body of the buffer stores the next packet to be
//! parsed. When a packet is parsed from the buffer, any headers, footers, and
//! padding are "consumed" from the buffer. Thus, after a packet has been
//! parsed, the body of the buffer is equal to the body of the packet, and the
//! next call to `parse` will pick up where the previous call left off, parsing
//! the next encapsulated packet.
//!
//! Packet objects - the Rust objects which are the result of a successful
//! parsing operation - are advised to simply keep references into the buffer
//! for the header, footer, and body. This avoids any unnecessary copying.
//!
//! For example, consider the following packet structure, in which a TCP segment
//! is encapsulated in an IPv4 packet, which is encapsulated in an Ethernet
//! frame. In this example, we omit the Ethernet Frame Check Sequence (FCS)
//! footer. If there were any footers, they would be treated the same as
//! headers, except that they would be consumed from the end and working towards
//! the beginning, as opposed to headers, which are consumed from the beginning
//! and working towards the end.
//!
//! Also note that, in order to satisfy Ethernet's minimum body size
//! requirement, padding is added after the IPv4 packet. The IPv4 packet and
//! padding together are considered the body of the Ethernet frame. If we were
//! to include the Ethernet FCS footer in this example, it would go after the
//! padding.
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-----------------|-------------------|--------------------|-----|
//!   Ethernet header      IPv4 header         TCP segment      Padding
//! ```
//!
//! At first, the buffer's body would be equal to the bytes of the Ethernet
//! frame (although depending on how the buffer was initialized, it might have
//! extra capacity in addition to the body):
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-----------------|-------------------|--------------------|-----|
//!   Ethernet header      IPv4 header         TCP segment      Padding
//!
//! |----------------------------------------------------------------|
//!                             Buffer Body
//! ```
//!
//! First, the Ethernet frame is parsed. This results in a hypothetical
//! `EthernetFrame` object (this library does not provide any concrete parsing
//! implementations) with references into the buffer, and updates the body of
//! the buffer to be equal to the body of the Ethernet frame:
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-----------------|----------------------------------------------|
//!   Ethernet header                  Ethernet body
//!          |                                 |
//!          +--------------------------+      |
//!                                     |      |
//!                   EthernetFrame { header, body }
//!
//! |-----------------|----------------------------------------------|
//!    buffer prefix                   buffer body
//! ```
//!
//! The `EthernetFrame` object mutably borrows the buffer. So long as it exists,
//! the buffer cannot be used directly (although the `EthernetFrame` object may
//! be used to access or modify the contents of the buffer). In order to parse
//! the body of the Ethernet frame, we have to drop the `EthernetFrame` object
//! so that we can call methods on the buffer again. \[1\]
//!
//! After dropping the `EthernetFrame` object, the IPv4 packet is parsed. Recall
//! that the Ethernet body contains both the IPv4 packet and some padding. Since
//! IPv4 packets encode their own length, the IPv4 packet parser is able to
//! detect that some of the bytes it's operating on are padding bytes. It is the
//! parser's responsibility to consume and discard these bytes so that they are
//! not erroneously treated as part of the IPv4 packet's body in subsequent
//! parsings.
//!
//! This parsing results in a hypothetical `Ipv4Packet` object with references
//! into the buffer, and updates the body of the buffer to be equal to the body
//! of the IPv4 packet:
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-----------------|-------------------|--------------------|-----|
//!                        IPv4 header          IPv4 body
//!                             |                   |
//!                             +-----------+       |
//!                                         |       |
//!                          Ipv4Packet { header, body }
//!
//! |-------------------------------------|--------------------|-----|
//!              buffer prefix                 buffer body       buffer suffix
//! ```
//!
//! We can continue this process as long as we like, repeatedly parsing
//! subsequent packet bodies until there are no more packets to parse.
//!
//! \[1\] It is also possible to treat the `EthernetFrame`'s `body` field as a
//! buffer and parse from it directly. However, this has the disadvantage that
//! if parsing is spread across multiple functions, the functions which parse
//! the inner packets only see part of the buffer, and so if they wish to later
//! re-use the buffer for serializing new packets (see the "Serialization"
//! section of this documentation), they are limited to doing so in a smaller
//! buffer, making it more likely that a new buffer will need to be allocated.
//!
//! ## Serialization
//!
//! In this section, we will illustrate serialization using the same packet
//! structure that was used to illustrate parsing - a TCP segment in an IPv4
//! packet in an Ethernet frame.
//!
//! Serialization comprises two tasks:
//! - First, given a buffer with sufficient capacity, and part of the packet
//!   already serialized, serialize the next layer of the packet. For example,
//!   given a buffer with a TCP segment already serialized in it, serialize the
//!   IPv4 header, resulting in an IPv4 packet containing a TCP segment.
//! - Second, given a description of a nested sequence of packets, figure out
//!   the constraints that a buffer must satisfy in order to be able to fit the
//!   entire sequence, and allocate a buffer which satisfies those constraints.
//!   This buffer is then used to serialize one layer at a time, as described in
//!   the previous bullet.
//!
//! ### Serializing into a buffer
//!
//! The [`PacketBuilder`] trait is implemented by types which are capable of
//! serializing a new layer of a packet into an existing buffer. For example, we
//! might define an `Ipv4PacketBuilder` type, which describes the source IP
//! address, destination IP address, and any other metadata required to generate
//! the header of an IPv4 packet. Importantly, a `PacketBuilder` does *not*
//! define any encapsulated packets. In order to construct a TCP segment in an
//! IPv4 packet, we would need a separate `TcpSegmentBuilder` to describe the
//! TCP segment.
//!
//! A `PacketBuilder` exposes the number of bytes it requires for headers,
//! footers, and minimum and maximum body lengths via the `constraints` method.
//! It serializes via the `serialize` method.
//!
//! In order to serialize a `PacketBuilder`, a [`SerializeTarget`] must first be
//! constructed. A `SerializeTarget` is a view into a buffer used for
//! serialization, and it is initialized with the proper number of bytes for the
//! header, footer, and body. The number of bytes required for these is
//! discovered through calls to the `PacketBuilder`'s `constraints` method.
//!
//! The `PacketBuilder`'s `serialize` method serializes the headers and footers
//! of the packet into the buffer. It expects that the `SerializeTarget` is
//! initialized with a body equal to the body which will be encapsulated. For
//! example, imagine that we are trying to serialize a TCP segment in an IPv4
//! packet in an Ethernet frame, and that, so far, we have only serialized the
//! TCP segment:
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-------------------------------------|--------------------|-----|
//!                                             TCP segment
//!
//! |-------------------------------------|--------------------|-----|
//!              buffer prefix                 buffer body       buffer suffix
//! ```
//!
//! Note that the buffer's body is currently equal to the TCP segment, and the
//! contents of the body are already initialized to the segment's contents.
//!
//! Given an `Ipv4PacketBuilder`, we call the appropriate methods to discover
//! that it requires 20 bytes for its header. Thus, we modify the buffer by
//! extending the body by 20 bytes, and constructing a `SerializeTarget` whose
//! header references the newly-added 20 bytes, and whose body references the
//! old contents of the body, corresponding to the TCP segment.
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-----------------|-------------------|--------------------|-----|
//!                        IPv4 header          IPv4 body
//!                             |                   |
//!                             +-----------+       |
//!                                         |       |
//!                      SerializeTarget { header, body }
//!
//! |-----------------|----------------------------------------|-----|
//!    buffer prefix                 buffer body                 buffer suffix
//! ```
//!
//! We then pass the `SerializeTarget` to a call to the `Ipv4PacketBuilder`'s
//! `serialize` method, and it serializes the IPv4 header in the space provided.
//! When the call to `serialize` returns, the `SerializeTarget` and
//! `Ipv4PacketBuilder` have been discarded, and the buffer's body is now equal
//! to the bytes of the IPv4 packet.
//!
//! ```text
//! |-------------------------------------|++++++++++++++++++++|-----| TCP segment
//! |-----------------|++++++++++++++++++++++++++++++++++++++++|-----| IPv4 packet
//! |++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++| Ethernet frame
//!
//! |-----------------|----------------------------------------|-----|
//!                                  IPv4 packet
//!
//! |-----------------|----------------------------------------|-----|
//!    buffer prefix                 buffer body                 buffer suffix
//! ```
//!
//! Now, we are ready to repeat the same process with the Ethernet layer of the
//! packet.
//!
//! ### Constructing a buffer for serialization
//!
//! Now that we know how, given a buffer with a subset of a packet serialized
//! into it, we can serialize the next layer of the packet, we need to figure
//! out how to construct such a buffer in the first place.
//!
//! The primary challenge here is that we need to be able to commit to what
//! we're going to serialize before we actually serialize it. For example,
//! consider sending a TCP segment to the network. From the perspective of the
//! TCP module of our code, we don't know how large the buffer needs to be
//! because don't know what packet layers our TCP segment will be encapsulated
//! inside of. If the IP layer decides to route our segment over an Ethernet
//! link, then we'll need to have a buffer large enough for a TCP segment in an
//! IPv4 packet in an Ethernet segment. If, on the other hand, the IP layer
//! decides to route our segment through a GRE tunnel, then we'll need to have a
//! buffer large enough for a TCP segment in an IPv4 packet in a GRE packet in
//! an IP packet in an Ethernet segment.
//!
//! We accomplish this commit-before-serializing via the [`Serializer`] trait. A
//! `Serializer` describes a packet which can be serialized in the future, but
//! which has not yet been serialized. Unlike a `PacketBuilder`, a `Serializer`
//! describes all layers of a packet up to a certain point. For example, a
//! `Serializer` might describe a TCP segment, or it might describe a TCP
//! segment in an IP packet, or it might describe a TCP segment in an IP packet
//! in an Ethernet frame, etc.
//!
//! #### Constructing a `Serializer`
//!
//! `Serializer`s are recursive - a `Serializer` combined with a `PacketBuilder`
//! yields a new `Serializer` which describes encapsulating the original
//! `Serializer` in a new packet layer. For example, a `Serializer` describing a
//! TCP segment combined with an `Ipv4PacketBuilder` yields a `Serializer` which
//! describes a TCP segment in an IPv4 packet. Concretely, given a `Serializer`,
//! `s`, and a `PacketBuilder`, `b`, a new `Serializer` can be constructed by
//! calling `s.encapsulate(b)`. The [`Serializer::encapsulate`] method consumes
//! both the `Serializer` and the `PacketBuilder` by value, and returns a new
//! `Serializer`.
//!
//! Note that, while `Serializer`s are passed around by value, they are only as
//! large in memory as the `PacketBuilder`s they're constructed from, and those
//! should, in most cases, be quite small. If size is a concern, the
//! `PacketBuilder` trait can be implemented for a reference type (e.g.,
//! `&Ipv4PacketBuilder`), and references passed around instead of values.
//!
//! #### Constructing a buffer from a `Serializer`
//!
//! If `Serializer`s are constructed by starting at the innermost packet layer
//! and working outwards, adding packet layers, then in order to turn a
//! `Serializer` into a buffer, they are consumed by starting at the outermost
//! packet layer and working inwards.
//!
//! In order to construct a buffer, the [`Serializer::serialize`] method is
//! provided. It takes a [`NestedPacketBuilder`], which describes one or more
//! encapsulating packet layers. For example, when serializing a TCP segment in
//! an IP packet in an Ethernet frame, the `serialize` call on the IP packet
//! `Serializer` would be given a `NestedPacketBuilder` describing the Ethernet
//! frame. This call would then compute a new `NestedPacketBuilder` describing
//! the combined IP packet and Ethernet frame, and would pass this to a call to
//! `serialize` on the TCP segment `Serializer`.
//!
//! When the innermost call to `serialize` is reached, it is that call's
//! responsibility to produce a buffer which satisfies the constraints passed to
//! it, and to initialize that buffer's body with the contents of its packet.
//! For example, the TCP segment `Serializer` from the preceding example would
//! need to produce a buffer with 38 bytes of prefix for the IP and Ethernet
//! headers, and whose body was initialized to the bytes of the TCP segment.
//!
//! We can now see how `Serializer`s and `PacketBuilder`s compose - the buffer
//! returned from a call to `serialize` satisfies the requirements of the
//! `PacketBuilder::serialize` method - its body is initialized to the packet to
//! be encapsulated, and enough prefix and suffix space exist to serialize this
//! layer's header and footer. For example, the call to `Serializer::serialize`
//! on the TCP segment serializer would return a buffer with 38 bytes of prefix
//! and a body initialized to the bytes of the TCP segment. The call to
//! `Serializer::serialize` on the IP packet would then pass this buffer to a
//! call to `PacketBuilder::serialize` on its `Ipv4PacketBuilder`, resulting in
//! a buffer with 18 bytes of prefix and a body initialized to the bytes of the
//! entire IP packet. This buffer would then be suitable to return from the call
//! to `Serializer::serialize`, allowing the Ethernet layer to continue
//! operating on the buffer, and so on.
//!
//! Note in particular that, throughout this entire process of constructing
//! `Serializer`s and `PacketBuilder`s and then consuming them, a buffer is only
//! allocated once, and each byte of the packet is only serialized once. No
//! temporary buffers or copying between buffers are required.
//!
//! #### Reusing buffers
//!
//! Another important property of the `Serializer` trait is that it can be
//! implemented by buffers. Since buffers contain prefixes, bodies, and
//! suffixes, and since the `Serializer::serialize` method consumes the
//! `Serializer` by value and returns a buffer by value, a buffer is itself a
//! valid `Serializer`. When `serialize` is called, so long as it already
//! satisfies the constraints requested, it can simply return itself by value.
//! If the constraints are not satisfied, it may need to produce a different
//! buffer through some user-defined mechanism (see the [`BufferProvider`] trait
//! for details).
//!
//! This allows existing buffers to be reused in many cases. For example,
//! consider receiving a packet in a buffer, and then responding to that packet
//! with a new packet. The buffer that the original packet was stored in can be
//! used to serialize the new packet, avoiding any unnecessary allocation.

/// Emits method impls for [`FragmentedBuffer`] which assume that the type is
/// a contiguous buffer which implements [`AsRef`].
macro_rules! fragmented_buffer_method_impls {
    () => {
        fn len(&self) -> usize {
            self.as_ref().len()
        }

        fn with_bytes<R, F>(&self, f: F) -> R
        where
            F: for<'macro_a, 'macro_b> FnOnce(FragmentedBytes<'macro_a, 'macro_b>) -> R,
        {
            let mut bs = [AsRef::<[u8]>::as_ref(self)];
            f(FragmentedBytes::new(&mut bs))
        }

        fn to_flattened_vec(&self) -> Vec<u8> {
            self.as_ref().to_vec()
        }
    };
}

/// Emits method impls for [`FragmentedBufferMut`] which assume that the type is
/// a contiguous buffer which implements [`AsMut`].
macro_rules! fragmented_buffer_mut_method_impls {
    () => {
        fn with_bytes_mut<R, F>(&mut self, f: F) -> R
        where
            F: for<'macro_a, 'macro_b> FnOnce(FragmentedBytesMut<'macro_a, 'macro_b>) -> R,
        {
            let mut bs = [AsMut::<[u8]>::as_mut(self)];
            f(FragmentedBytesMut::new(&mut bs))
        }

        fn zero_range<R>(&mut self, range: R)
        where
            R: RangeBounds<usize>,
        {
            let len = FragmentedBuffer::len(self);
            let range = crate::canonicalize_range(len, &range);
            crate::zero(&mut self.as_mut()[range.start..range.end]);
        }

        fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize) {
            self.as_mut().copy_within(src, dest);
        }
    };
}

mod fragmented;
pub mod records;
pub mod serialize;
mod util;

pub use crate::fragmented::*;
pub use crate::serialize::*;
pub use crate::util::*;

use std::convert::Infallible as Never;
use std::ops::{Bound, Range, RangeBounds};
use std::{cmp, mem};

use zerocopy::{
    FromBytes, FromZeros as _, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice,
    SplitByteSliceMut, Unaligned,
};

/// A buffer that may be fragmented in multiple parts which are discontiguous in
/// memory.
pub trait FragmentedBuffer {
    /// Gets the total length, in bytes, of this `FragmentedBuffer`.
    fn len(&self) -> usize;

    /// Returns `true` if this `FragmentedBuffer` is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Invokes a callback on a view into this buffer's contents as
    /// [`FragmentedBytes`].
    fn with_bytes<R, F>(&self, f: F) -> R
    where
        F: for<'a, 'b> FnOnce(FragmentedBytes<'a, 'b>) -> R;

    /// Returns a flattened version of this buffer, copying its contents into a
    /// [`Vec`].
    fn to_flattened_vec(&self) -> Vec<u8> {
        self.with_bytes(|b| b.to_flattened_vec())
    }
}

/// A [`FragmentedBuffer`] with mutable access to its contents.
pub trait FragmentedBufferMut: FragmentedBuffer {
    /// Invokes a callback on a mutable view into this buffer's contents as
    /// [`FragmentedBytesMut`].
    fn with_bytes_mut<R, F>(&mut self, f: F) -> R
    where
        F: for<'a, 'b> FnOnce(FragmentedBytesMut<'a, 'b>) -> R;

    /// Sets all bytes in `range` to zero.
    ///
    /// # Panics
    ///
    /// Panics if the provided `range` is not within the bounds of this
    /// `FragmentedBufferMut`, or if the range is nonsensical (the end precedes
    /// the start).
    fn zero_range<R>(&mut self, range: R)
    where
        R: RangeBounds<usize>,
    {
        let len = self.len();
        let range = canonicalize_range(len, &range);
        self.with_bytes_mut(|mut b| {
            zero_iter(b.iter_mut().skip(range.start).take(range.end - range.start))
        })
    }

    /// Copies elements from one part of the `FragmentedBufferMut` to another
    /// part of itself.
    ///
    /// `src` is the range within `self` to copy from. `dst` is the starting
    /// index of the range within `self` to copy to, which will have the same
    /// length as `src`. The two ranges may overlap. The ends of the two ranges
    /// must be less than or equal to `self.len()`.
    ///
    /// # Panics
    ///
    /// Panics if either the source or destination range is out of bounds, or if
    /// `src` is nonsensical (its end precedes its start).
    fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dst: usize) {
        self.with_bytes_mut(|mut b| b.copy_within(src, dst));
    }

    /// Copies all the bytes from another `FragmentedBuffer` `other` into
    /// `self`.
    ///
    /// # Panics
    ///
    /// Panics if `self.len() != other.len()`.
    fn copy_from<B: FragmentedBuffer>(&mut self, other: &B) {
        self.with_bytes_mut(|dst| {
            other.with_bytes(|src| {
                let dst = dst.try_into_contiguous();
                let src = src.try_into_contiguous();
                match (dst, src) {
                    (Ok(dst), Ok(src)) => {
                        dst.copy_from_slice(src);
                    }
                    (Ok(dst), Err(src)) => {
                        src.copy_into_slice(dst);
                    }
                    (Err(mut dst), Ok(src)) => {
                        dst.copy_from_slice(src);
                    }
                    (Err(mut dst), Err(src)) => {
                        dst.copy_from(&src);
                    }
                }
            });
        });
    }
}

/// A buffer that is contiguous in memory.
///
/// If the implementing type is a buffer which exposes a prefix and a suffix,
/// the [`AsRef`] implementation provides access only to the body. If [`AsMut`]
/// is also implemented, it must provide access to the same bytes as [`AsRef`].
pub trait ContiguousBuffer: FragmentedBuffer + AsRef<[u8]> {}

/// A mutable buffer that is contiguous in memory.
///
/// If the implementing type is a buffer which exposes a prefix and a suffix,
/// the [`AsMut`] implementation provides access only to the body.
///
/// `ContiguousBufferMut` is shorthand for `ContiguousBuffer +
/// FragmentedBufferMut + AsMut<[u8]>`.
pub trait ContiguousBufferMut: ContiguousBuffer + FragmentedBufferMut + AsMut<[u8]> {}
impl<B: ContiguousBuffer + FragmentedBufferMut + AsMut<[u8]>> ContiguousBufferMut for B {}

/// A buffer that can reduce its size.
///
/// A `ShrinkBuffer` is a buffer that can be reduced in size without the
/// guarantee that the prefix or suffix will be retained. This is typically
/// sufficient for parsing, but not for serialization.
///
/// # Notable implementations
///
/// `ShrinkBuffer` is implemented for byte slices - `&[u8]` and `&mut [u8]`.
/// These types do not implement [`GrowBuffer`]; once bytes are consumed from
/// their bodies, those bytes are discarded and cannot be recovered.
pub trait ShrinkBuffer: FragmentedBuffer {
    /// Shrinks the front of the body towards the end of the buffer.
    ///
    /// `shrink_front` consumes the `n` left-most bytes of the body, and adds
    /// them to the prefix.
    ///
    /// # Panics
    ///
    /// Panics if `n` is larger than the body.
    fn shrink_front(&mut self, n: usize);

    /// Shrinks the buffer to be no larger than `len` bytes, consuming from the
    /// front.
    ///
    /// `shrink_front_to` consumes as many of the left-most bytes of the body as
    /// necessary to ensure that the buffer is no longer than `len` bytes. It
    /// adds any bytes consumed to the prefix. If the body is already not longer
    /// than `len` bytes, `shrink_front_to` does nothing.
    fn shrink_front_to(&mut self, len: usize) {
        let old_len = self.len();
        let new_len = cmp::min(old_len, len);
        self.shrink_front(old_len - new_len);
    }

    /// Shrinks the back of the body towards the beginning of the buffer.
    ///
    /// `shrink_back` consumes the `n` right-most bytes of the body, and adds
    /// them to the suffix.
    ///
    /// # Panics
    ///
    /// Panics if `n` is larger than the body.
    fn shrink_back(&mut self, n: usize);

    /// Shrinks the buffer to be no larger than `len` bytes, consuming from the
    /// back.
    ///
    /// `shrink_back_to` consumes as many of the right-most bytes of the body as
    /// necessary to ensure that the buffer is no longer than `len` bytes.
    /// It adds any bytes consumed to the suffix. If the body is already no
    /// longer than `len` bytes, `shrink_back_to` does nothing.
    fn shrink_back_to(&mut self, len: usize) {
        let old_len = self.len();
        let new_len = cmp::min(old_len, len);
        self.shrink_back(old_len - new_len);
    }

    /// Shrinks the body.
    ///
    /// `shrink` shrinks the body to be equal to `range` of the previous body.
    /// Any bytes preceding the range are added to the prefix, and any bytes
    /// following the range are added to the suffix.
    ///
    /// # Panics
    ///
    /// Panics if `range` is out of bounds of the body, or if the range
    /// is nonsensical (the end precedes the start).
    fn shrink<R: RangeBounds<usize>>(&mut self, range: R) {
        let len = self.len();
        let range = canonicalize_range(len, &range);
        self.shrink_front(range.start);
        self.shrink_back(len - range.end);
    }
}

/// A byte buffer used for parsing.
///
/// A `ParseBuffer` is a [`ContiguousBuffer`] that can shrink in size.
///
/// While a `ParseBuffer` allows the ranges covered by its prefix, body, and
/// suffix to be modified, it only provides immutable access to their contents.
/// For mutable access, see [`ParseBufferMut`].
///
/// # Notable implementations
///
/// `ParseBuffer` is implemented for byte slices - `&[u8]` and `&mut [u8]`.
/// These types do not implement [`GrowBuffer`]; once bytes are consumed from
/// their bodies, those bytes are discarded and cannot be recovered.
pub trait ParseBuffer: ShrinkBuffer + ContiguousBuffer {
    /// Parses a packet from the body.
    ///
    /// `parse` parses a packet from the body by invoking [`P::parse`] on a
    /// [`BufferView`] into this buffer. Any bytes consumed from the
    /// `BufferView` are also consumed from the body, and added to the prefix or
    /// suffix. After `parse` has returned, the buffer's body will contain only
    /// those bytes which were not consumed by the call to `P::parse`.
    ///
    /// See the [`BufferView`] and [`ParsablePacket`] documentation for more
    /// details.
    ///
    /// [`P::parse`]: ParsablePacket::parse
    fn parse<'a, P: ParsablePacket<&'a [u8], ()>>(&'a mut self) -> Result<P, P::Error> {
        self.parse_with(())
    }

    /// Parses a packet with arguments.
    ///
    /// `parse_with` is like [`parse`], but it accepts arguments to pass to
    /// [`P::parse`].
    ///
    /// [`parse`]: ParseBuffer::parse
    /// [`P::parse`]: ParsablePacket::parse
    fn parse_with<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error>;
}

/// A [`ParseBuffer`] which provides mutable access to its contents.
///
/// While a [`ParseBuffer`] allows the ranges covered by its prefix, body, and
/// suffix to be modified, it only provides immutable access to their contents.
/// A `ParseBufferMut`, on the other hand, provides mutable access to the
/// contents of its prefix, body, and suffix.
///
/// # Notable implementations
///
/// `ParseBufferMut` is implemented for mutable byte slices - `&mut [u8]`.
/// Mutable byte slices do not implement [`GrowBuffer`] or [`GrowBufferMut`];
/// once bytes are consumed from their bodies, those bytes are discarded and
/// cannot be recovered.
pub trait ParseBufferMut: ParseBuffer + ContiguousBufferMut {
    /// Parses a mutable packet from the body.
    ///
    /// `parse_mut` is like [`ParseBuffer::parse`], but instead of calling
    /// [`P::parse`] on a [`BufferView`], it calls [`P::parse_mut`] on a
    /// [`BufferViewMut`]. The effect is that the parsed packet can contain
    /// mutable references to the buffer. This can be useful if you want to
    /// modify parsed packets in-place.
    ///
    /// Depending on the implementation of [`P::parse_mut`], the contents
    /// of the buffer may be modified during parsing.
    ///
    /// See the [`BufferViewMut`] and [`ParsablePacket`] documentation for more
    /// details.
    ///
    /// [`P::parse`]: ParsablePacket::parse
    /// [`P::parse_mut`]: ParsablePacket::parse_mut
    fn parse_mut<'a, P: ParsablePacket<&'a mut [u8], ()>>(&'a mut self) -> Result<P, P::Error> {
        self.parse_with_mut(())
    }

    /// Parses a mutable packet with arguments.
    ///
    /// `parse_with_mut` is like [`parse_mut`], but it accepts arguments to pass
    /// to [`P::parse_mut`].
    ///
    /// [`parse_mut`]: ParseBufferMut::parse_mut
    /// [`P::parse_mut`]: ParsablePacket::parse_mut
    fn parse_with_mut<'a, ParseArgs, P: ParsablePacket<&'a mut [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error>;
}

/// A buffer that can grow its body by taking space from its prefix and suffix.
///
/// A `GrowBuffer` is a byte buffer with a prefix, a body, and a suffix. The
/// size of the buffer is referred to as its "capacity", and the size of the
/// body is referred to as its "length". The body of the buffer can shrink or
/// grow as allowed by the capacity as packets are parsed or serialized.
///
/// A `GrowBuffer` guarantees never to discard bytes from the prefix or suffix,
/// which is an important requirement for serialization. \[1\] For parsing, this
/// guarantee is not needed. The subset of methods which do not require this
/// guarantee are defined in the [`ShrinkBuffer`] trait, which does not have
/// this requirement.
///
/// While a `GrowBuffer` allows the ranges covered by its prefix, body, and
/// suffix to be modified, it only provides immutable access to their contents.
/// For mutable access, see [`GrowBufferMut`].
///
/// If a type implements `GrowBuffer`, then its implementations of the methods
/// on [`FragmentedBuffer`] provide access only to the buffer's body. In
/// particular, [`len`] returns the body's length, [`with_bytes`] provides
/// access to the body, and [`to_flattened_vec`] returns a copy of the body.
///
/// \[1\] If `GrowBuffer`s could shrink their prefix or suffix, then it would
/// not be possible to guarantee that a call to [`undo_parse`] wouldn't panic.
/// `undo_parse` is used when retaining previously-parsed packets for
/// serialization, which is useful in scenarios such as packet forwarding.
///
/// [`len`]: FragmentedBuffer::len
/// [`with_bytes`]: FragmentedBuffer::with_bytes
/// [`to_flattened_vec`]: FragmentedBuffer::to_flattened_vec
/// [`undo_parse`]: GrowBuffer::undo_parse
pub trait GrowBuffer: FragmentedBuffer {
    /// Gets a view into the parts of this `GrowBuffer`.
    ///
    /// Calls `f`, passing the prefix, body, and suffix as arguments (in that
    /// order).
    fn with_parts<O, F>(&self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O;

    /// The capacity of the buffer.
    ///
    /// `b.capacity()` is equivalent to `b.prefix_len() + b.len() +
    /// b.suffix_len()`.
    fn capacity(&self) -> usize {
        self.with_parts(|prefix, body, suffix| prefix.len() + body.len() + suffix.len())
    }

    /// The length of the prefix.
    fn prefix_len(&self) -> usize {
        self.with_parts(|prefix, _body, _suffix| prefix.len())
    }

    /// The length of the suffix.
    fn suffix_len(&self) -> usize {
        self.with_parts(|_prefix, _body, suffix| suffix.len())
    }

    /// Grows the front of the body towards Growf the buffer.
    ///
    /// `grow_front` consumes the right-most `n` bytes of the prefix, and adds
    /// them to the body.
    ///
    /// # Panics
    ///
    /// Panics if `n` is larger than the prefix.
    fn grow_front(&mut self, n: usize);

    /// Grows the back of the body towards the end of the buffer.
    ///
    /// `grow_back` consumes the left-most `n` bytes of the suffix, and adds
    /// them to the body.
    ///
    /// # Panics
    ///
    /// Panics if `n` is larger than the suffix.
    fn grow_back(&mut self, n: usize);

    /// Resets the body to be equal to the entire buffer.
    ///
    /// `reset` consumes the entire prefix and suffix, adding them to the body.
    fn reset(&mut self) {
        self.grow_front(self.prefix_len());
        self.grow_back(self.suffix_len());
    }

    /// Undoes the effects of a previous parse in preparation for serialization.
    ///
    /// `undo_parse` undoes the effects of having previously parsed a packet by
    /// consuming the appropriate number of bytes from the prefix and suffix.
    /// After a call to `undo_parse`, the buffer's body will contain the bytes
    /// of the previously-parsed packet, including any headers or footers. This
    /// allows a previously-parsed packet to be used in serialization.
    ///
    /// `undo_parse` takes a [`ParseMetadata`], which can be obtained from
    /// [`ParsablePacket::parse_metadata`].
    ///
    /// `undo_parse` must always be called starting with the most recently
    /// parsed packet, followed by the second most recently parsed packet, and
    /// so on. Otherwise, it may panic, and in any case, almost certainly won't
    /// produce the desired buffer contents.
    ///
    /// # Padding
    ///
    /// If, during parsing, a packet encountered post-packet padding that was
    /// discarded (see the documentation on [`ParsablePacket::parse`]), calling
    /// `undo_parse` on the `ParseMetadata` from that packet will not undo the
    /// effects of consuming and discarding that padding. The reason for this is
    /// that the padding is not considered part of the packet itself (the body
    /// it was parsed from can be thought of comprising the packet and
    /// post-packet padding back-to-back).
    ///
    /// Calling `undo_parse` on the next encapsulating packet (the one whose
    /// body contained the padding) will undo those effects.
    ///
    /// # Panics
    ///
    /// `undo_parse` may panic if called in the wrong order. See the first
    /// section of this documentation for details.
    fn undo_parse(&mut self, meta: ParseMetadata) {
        if self.len() < meta.body_len {
            // There were padding bytes which were stripped when parsing the
            // encapsulated packet. We need to add them back in order to restore
            // the original packet.
            let len = self.len();
            self.grow_back(meta.body_len - len);
        }
        self.grow_front(meta.header_len);
        self.grow_back(meta.footer_len);
    }
}

/// A [`GrowBuffer`] which provides mutable access to its contents.
///
/// While a [`GrowBuffer`] allows the ranges covered by its prefix, body, and
/// suffix to be modified, it only provides immutable access to their contents.
/// A `GrowBufferMut`, on the other hand, provides mutable access to the
/// contents of its prefix, body, and suffix.
pub trait GrowBufferMut: GrowBuffer + FragmentedBufferMut {
    /// Gets a mutable view into the parts of this `GrowBufferMut`.
    ///
    /// Calls `f`, passing the prefix, body, and suffix as arguments (in that
    /// order).
    fn with_parts_mut<O, F>(&mut self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O;

    /// Extends the front of the body towards the beginning of the buffer,
    /// zeroing the new bytes.
    ///
    /// `grow_front_zero` calls [`GrowBuffer::grow_front`] and sets the
    /// newly-added bytes to 0. This can be useful when serializing to ensure
    /// that the contents of packets previously stored in the buffer are not
    /// leaked.
    fn grow_front_zero(&mut self, n: usize) {
        self.grow_front(n);
        self.zero_range(..n);
    }

    /// Extends the back of the body towards the end of the buffer, zeroing the
    /// new bytes.
    ///
    /// `grow_back_zero` calls [`GrowBuffer::grow_back`] and sets the
    /// newly-added bytes to 0. This can be useful when serializing to ensure
    /// that the contents of packets previously stored in the buffer are not
    /// leaked.
    fn grow_back_zero(&mut self, n: usize) {
        let old_len = self.len();
        self.grow_back(n);
        self.zero_range(old_len..);
    }

    /// Resets the body to be equal to the entire buffer, zeroing the new bytes.
    ///
    /// Like [`GrowBuffer::reset`], `reset_zero` consumes the entire prefix and
    /// suffix, adding them to the body. It sets these bytes to 0. This can be
    /// useful when serializing to ensure that the contents of packets
    /// previously stored in the buffer are not leaked.
    fn reset_zero(&mut self) {
        self.grow_front_zero(self.prefix_len());
        self.grow_back_zero(self.suffix_len());
    }

    /// Serializes a packet in the buffer.
    ///
    /// *This method is usually called by this crate during the serialization of
    /// a [`Serializer`], not directly by the user.*
    ///
    /// `serialize` serializes the packet described by `builder` into the
    /// buffer. The body of the buffer is used as the body of the packet, and
    /// the prefix and suffix of the buffer are used to serialize the packet's
    /// header and footer.
    ///
    /// If `builder` has a minimum body size which is larger than the current
    /// body, then `serialize` first grows the body to the right (towards the
    /// end of the buffer) with padding bytes in order to meet the minimum body
    /// size. This is transparent to the `builder` - it always just sees a body
    /// which meets the minimum body size requirement.
    ///
    /// The added padding is zeroed in order to avoid leaking the contents of
    /// packets previously stored in the buffer.
    ///
    /// # Panics
    ///
    /// `serialize` panics if there are not enough prefix or suffix bytes to
    /// serialize the packet. In particular, `b.serialize(builder)` with `c =
    /// builder.constraints()` panics if either of the following hold:
    /// - `b.prefix_len() < c.header_len()`
    /// - `b.len() + b.suffix_len() < c.min_body_bytes() + c.footer_len()`
    #[doc(hidden)]
    fn serialize<B: PacketBuilder>(&mut self, builder: B) {
        let c = builder.constraints();
        if self.len() < c.min_body_len() {
            // The body isn't large enough to satisfy the minimum body length
            // requirement, so we add padding.

            // SECURITY: Use _zero to ensure we zero padding bytes to prevent
            // leaking information from packets previously stored in this
            // buffer.
            let len = self.len();
            self.grow_back_zero(c.min_body_len() - len);
        }

        // These aren't necessary for correctness (grow_xxx_zero will panic
        // under the same conditions that these assertions will fail), but they
        // provide nicer error messages for debugging.
        debug_assert!(
            self.prefix_len() >= c.header_len(),
            "prefix ({} bytes) too small to serialize header ({} bytes)",
            self.prefix_len(),
            c.header_len()
        );
        debug_assert!(
            self.suffix_len() >= c.footer_len(),
            "suffix ({} bytes) too small to serialize footer ({} bytes)",
            self.suffix_len(),
            c.footer_len()
        );

        self.with_parts_mut(|prefix, body, suffix| {
            let header = prefix.len() - c.header_len();
            let header = &mut prefix[header..];
            let footer = &mut suffix[..c.footer_len()];
            // SECURITY: zero here is technically unnecessary since it's
            // PacketBuilder::serialize's responsibility to zero/initialize the
            // header and footer, but we do it anyway to hedge against
            // non-compliant PacketBuilder::serialize implementations. If this
            // becomes a performance issue, we can revisit it, but the optimizer
            // will probably take care of it for us.
            zero(header);
            zero(footer);
            builder.serialize(&mut SerializeTarget { header, footer }, body);
        });

        self.grow_front(c.header_len());
        self.grow_back(c.footer_len());
    }
}

/// A byte buffer that can be serialized into multiple times.
///
/// `ReusableBuffer` is a shorthand for `GrowBufferMut + ShrinkBuffer`. A
/// `ReusableBuffer` can be serialized into multiple times - the
/// [`ShrinkBuffer`] implementation allows the buffer's capacity to be reclaimed
/// for a new serialization pass.
pub trait ReusableBuffer: GrowBufferMut + ShrinkBuffer {}
impl<B> ReusableBuffer for B where B: GrowBufferMut + ShrinkBuffer {}

/// A byte buffer used for parsing that can grow back to its original size.
///
/// `Buffer` owns its backing memory and so implies `GrowBuffer + ParseBuffer`.
/// A `Buffer` can be used for parsing (via [`ParseBuffer`]) and then grow back
/// to its original size (via [`GrowBuffer`]). Since it owns the backing memory,
/// it also provides the ability to provide both a parsed and un-parsed view
/// into a packet via [`Buffer::parse_with_view`].
pub trait Buffer: GrowBuffer + ParseBuffer {
    /// Like [`ParseBuffer::parse_with`] but additionally provides an
    /// un-structured view into the parsed data on successful parsing.
    fn parse_with_view<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<(P, &'a [u8]), P::Error>;
}

/// A byte buffer used for parsing and serialization.
///
/// `BufferMut` is a shorthand for `GrowBufferMut + ParseBufferMut`. A
/// `BufferMut` can be used for parsing (via [`ParseBufferMut`]) and
/// serialization (via [`GrowBufferMut`]).
pub trait BufferMut: GrowBufferMut + ParseBufferMut + Buffer {}
impl<B> BufferMut for B where B: GrowBufferMut + ParseBufferMut + Buffer {}

/// An empty buffer.
///
/// An `EmptyBuf` is a buffer with 0 bytes of length or capacity. It implements
/// all of the buffer traits (`XxxBuffer` and `XxxBufferMut`) and both buffer
/// view traits ([`BufferView`] and [`BufferViewMut`]).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct EmptyBuf;

impl AsRef<[u8]> for EmptyBuf {
    #[inline]
    fn as_ref(&self) -> &[u8] {
        &[]
    }
}
impl AsMut<[u8]> for EmptyBuf {
    #[inline]
    fn as_mut(&mut self) -> &mut [u8] {
        &mut []
    }
}
impl FragmentedBuffer for EmptyBuf {
    fragmented_buffer_method_impls!();
}
impl FragmentedBufferMut for EmptyBuf {
    fragmented_buffer_mut_method_impls!();
}
impl ContiguousBuffer for EmptyBuf {}
impl ShrinkBuffer for EmptyBuf {
    #[inline]
    fn shrink_front(&mut self, n: usize) {
        assert_eq!(n, 0);
    }
    #[inline]
    fn shrink_back(&mut self, n: usize) {
        assert_eq!(n, 0);
    }
}
impl ParseBuffer for EmptyBuf {
    #[inline]
    fn parse_with<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        P::parse(EmptyBuf, args)
    }
}
impl ParseBufferMut for EmptyBuf {
    #[inline]
    fn parse_with_mut<'a, ParseArgs, P: ParsablePacket<&'a mut [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        P::parse_mut(EmptyBuf, args)
    }
}
impl GrowBuffer for EmptyBuf {
    #[inline]
    fn with_parts<O, F>(&self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
    {
        f(&[], FragmentedBytes::new_empty(), &[])
    }
    #[inline]
    fn grow_front(&mut self, n: usize) {
        assert_eq!(n, 0);
    }
    #[inline]
    fn grow_back(&mut self, n: usize) {
        assert_eq!(n, 0);
    }
}
impl GrowBufferMut for EmptyBuf {
    fn with_parts_mut<O, F>(&mut self, f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
    {
        f(&mut [], FragmentedBytesMut::new_empty(), &mut [])
    }
}
impl<'a> BufferView<&'a [u8]> for EmptyBuf {
    #[inline]
    fn len(&self) -> usize {
        0
    }
    #[inline]
    fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
        if n > 0 {
            return None;
        }
        Some(&[])
    }
    #[inline]
    fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
        if n > 0 {
            return None;
        }
        Some(&[])
    }
    #[inline]
    fn into_rest(self) -> &'a [u8] {
        &[]
    }
}
impl<'a> BufferView<&'a mut [u8]> for EmptyBuf {
    #[inline]
    fn len(&self) -> usize {
        0
    }
    #[inline]
    fn take_front(&mut self, n: usize) -> Option<&'a mut [u8]> {
        if n > 0 {
            return None;
        }
        Some(&mut [])
    }
    #[inline]
    fn take_back(&mut self, n: usize) -> Option<&'a mut [u8]> {
        if n > 0 {
            return None;
        }
        Some(&mut [])
    }
    #[inline]
    fn into_rest(self) -> &'a mut [u8] {
        &mut []
    }
}
impl<'a> BufferViewMut<&'a mut [u8]> for EmptyBuf {}
impl Buffer for EmptyBuf {
    fn parse_with_view<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
        &'a mut self,
        args: ParseArgs,
    ) -> Result<(P, &'a [u8]), P::Error> {
        self.parse_with(args).map(|r| (r, [].as_slice()))
    }
}

impl FragmentedBuffer for Never {
    fn len(&self) -> usize {
        match *self {}
    }

    fn with_bytes<R, F>(&self, _f: F) -> R
    where
        F: for<'a, 'b> FnOnce(FragmentedBytes<'a, 'b>) -> R,
    {
        match *self {}
    }
}
impl FragmentedBufferMut for Never {
    fn with_bytes_mut<R, F>(&mut self, _f: F) -> R
    where
        F: for<'a, 'b> FnOnce(FragmentedBytesMut<'a, 'b>) -> R,
    {
        match *self {}
    }
}
impl ShrinkBuffer for Never {
    fn shrink_front(&mut self, _n: usize) {}
    fn shrink_back(&mut self, _n: usize) {}
}
impl GrowBuffer for Never {
    fn with_parts<O, F>(&self, _f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
    {
        match *self {}
    }
    fn grow_front(&mut self, _n: usize) {}
    fn grow_back(&mut self, _n: usize) {}
}
impl GrowBufferMut for Never {
    fn with_parts_mut<O, F>(&mut self, _f: F) -> O
    where
        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
    {
        match *self {}
    }
}

/// A view into a [`ShrinkBuffer`].
///
/// A `BufferView` borrows a `ShrinkBuffer`, and provides methods to consume
/// bytes from the buffer's body. It is primarily intended to be used for
/// parsing, although it provides methods which are useful for serialization as
/// well.
///
/// A `BufferView` only provides immutable access to the contents of the buffer.
/// For mutable access, see [`BufferViewMut`].
///
/// # Notable implementations
///
/// `BufferView` is implemented for mutable references to byte slices (`&mut
/// &[u8]` and `&mut &mut [u8]`).
pub trait BufferView<B: SplitByteSlice>: Sized + AsRef<[u8]> {
    /// The length of the buffer's body.
    fn len(&self) -> usize {
        self.as_ref().len()
    }

    /// Is the buffer's body empty?
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Takes `n` bytes from the front of the buffer's body.
    ///
    /// `take_front` consumes `n` bytes from the front of the buffer's body.
    /// After a successful call to `take_front(n)`, the body is `n` bytes
    /// shorter and, if `Self: GrowBuffer`, the prefix is `n` bytes longer. If
    /// the body is not at least `n` bytes in length, `take_front` returns
    /// `None`.
    fn take_front(&mut self, n: usize) -> Option<B>;

    /// Takes `n` bytes from the back of the buffer's body.
    ///
    /// `take_back` consumes `n` bytes from the back of the buffer's body. After
    /// a successful call to `take_back(n)`, the body is `n` bytes shorter and,
    /// if `Self: GrowBuffer`, the suffix is `n` bytes longer. If the body is
    /// not at least `n` bytes in length, `take_back` returns `None`.
    fn take_back(&mut self, n: usize) -> Option<B>;

    /// Takes the rest of the buffer's body from the front.
    ///
    /// `take_rest_front` consumes the rest of the bytes from the buffer's body.
    /// After a call to `take_rest_front`, the body is empty and, if `Self:
    /// GrowBuffer`, the bytes which were previously in the body are now in the
    /// prefix.
    fn take_rest_front(&mut self) -> B {
        let len = self.len();
        self.take_front(len).unwrap()
    }

    /// Takes the rest of the buffer's body from the back.
    ///
    /// `take_rest_back` consumes the rest of the bytes from the buffer's body.
    /// After a call to `take_rest_back`, the body is empty and, if `Self:
    /// GrowBuffer`, the bytes which were previously in the body are now in the
    /// suffix.
    fn take_rest_back(&mut self) -> B {
        let len = self.len();
        self.take_back(len).unwrap()
    }

    /// Takes a single byte of the buffer's body from the front.
    ///
    /// `take_byte_front` consumes a single byte from the from of the buffer's
    /// body. It's equivalent to calling `take_front(1)` and copying out the
    /// single byte on successful return.
    fn take_byte_front(&mut self) -> Option<u8> {
        self.take_front(1).map(|x| x[0])
    }

    /// Takes a single byte of the buffer's body from the back.
    ///
    /// `take_byte_back` consumes a single byte from the fron of the buffer's
    /// body. It's equivalent to calling `take_back(1)` and copying out the
    /// single byte on successful return.
    fn take_byte_back(&mut self) -> Option<u8> {
        self.take_back(1).map(|x| x[0])
    }

    /// Converts this view into a reference to the buffer's body.
    ///
    /// `into_rest` consumes this `BufferView` by value, and returns a reference
    /// to the buffer's body. Unlike `take_rest`, the body is not consumed - it
    /// is left unchanged.
    fn into_rest(self) -> B;

    /// Peeks at an object at the front of the buffer's body.
    ///
    /// `peek_obj_front` peeks at `size_of::<T>()` bytes at the front of the
    /// buffer's body, and interprets them as a `T`. Unlike `take_obj_front`,
    /// `peek_obj_front` does not modify the body. If the body is not at least
    /// `size_of::<T>()` bytes in length, `peek_obj_front` returns `None`.
    fn peek_obj_front<T>(&mut self) -> Option<&T>
    where
        T: FromBytes + KnownLayout + Immutable + Unaligned,
    {
        Some(Ref::into_ref(Ref::<_, T>::from_prefix((&*self).as_ref()).ok()?.0))
    }

    /// Takes an object from the front of the buffer's body.
    ///
    /// `take_obj_front` consumes `size_of::<T>()` bytes from the front of the
    /// buffer's body, and interprets them as a `T`. After a successful call to
    /// `take_obj_front::<T>()`, the body is `size_of::<T>()` bytes shorter and,
    /// if `Self: GrowBuffer`, the prefix is `size_of::<T>()` bytes longer. If
    /// the body is not at least `size_of::<T>()` bytes in length,
    /// `take_obj_front` returns `None`.
    fn take_obj_front<T>(&mut self) -> Option<Ref<B, T>>
    where
        T: KnownLayout + Immutable + Unaligned,
    {
        let bytes = self.take_front(mem::size_of::<T>())?;
        // unaligned_from_bytes only returns None if there aren't enough bytes
        Some(Ref::from_bytes(bytes).unwrap())
    }

    /// Takes a slice of objects from the front of the buffer's body.
    ///
    /// `take_slice_front` consumes `n * size_of::<T>()` bytes from the front of
    /// the buffer's body, and interprets them as a `[T]` with `n` elements.
    /// After a successful call to `take_slice_front::<T>()`, the body is `n *
    /// size_of::<T>()` bytes shorter and, if `Self: GrowBuffer`, the prefix is
    /// `n * size_of::<T>()` bytes longer. If the body is not at least `n *
    /// size_of::<T>()` bytes in length, `take_slice_front` returns `None`.
    ///
    /// # Panics
    ///
    /// Panics if `T` is a zero-sized type.
    fn take_slice_front<T>(&mut self, n: usize) -> Option<Ref<B, [T]>>
    where
        T: Immutable + Unaligned,
    {
        let bytes = self.take_front(n * mem::size_of::<T>())?;
        // `unaligned_from_bytes` will return `None` only if `bytes.len()` is
        // not a multiple of `mem::size_of::<T>()`.
        Some(Ref::from_bytes(bytes).unwrap())
    }

    /// Peeks at an object at the back of the buffer's body.
    ///
    /// `peek_obj_back` peeks at `size_of::<T>()` bytes at the back of the
    /// buffer's body, and interprets them as a `T`. Unlike `take_obj_back`,
    /// `peek_obj_back` does not modify the body. If the body is not at least
    /// `size_of::<T>()` bytes in length, `peek_obj_back` returns `None`.
    fn peek_obj_back<T>(&mut self) -> Option<&T>
    where
        T: FromBytes + KnownLayout + Immutable + Unaligned,
    {
        Some(Ref::into_ref(Ref::<_, T>::from_suffix((&*self).as_ref()).ok()?.1))
    }

    /// Takes an object from the back of the buffer's body.
    ///
    /// `take_obj_back` consumes `size_of::<T>()` bytes from the back of the
    /// buffer's body, and interprets them as a `T`. After a successful call to
    /// `take_obj_back::<T>()`, the body is `size_of::<T>()` bytes shorter and,
    /// if `Self: GrowBuffer`, the suffix is `size_of::<T>()` bytes longer. If
    /// the body is not at least `size_of::<T>()` bytes in length,
    /// `take_obj_back` returns `None`.
    fn take_obj_back<T>(&mut self) -> Option<Ref<B, T>>
    where
        T: Immutable + KnownLayout + Unaligned,
    {
        let bytes = self.take_back(mem::size_of::<T>())?;
        // unaligned_from_bytes only returns None if there aren't enough bytes
        Some(Ref::from_bytes(bytes).unwrap())
    }

    /// Takes a slice of objects from the back of the buffer's body.
    ///
    /// `take_slice_back` consumes `n * size_of::<T>()` bytes from the back of
    /// the buffer's body, and interprets them as a `[T]` with `n` elements.
    /// After a successful call to `take_slice_back::<T>()`, the body is `n *
    /// size_of::<T>()` bytes shorter and, if `Self: GrowBuffer`, the suffix is
    /// `n * size_of::<T>()` bytes longer. If the body is not at least `n *
    /// size_of::<T>()` bytes in length, `take_slice_back` returns `None`.
    ///
    /// # Panics
    ///
    /// Panics if `T` is a zero-sized type.
    fn take_slice_back<T>(&mut self, n: usize) -> Option<Ref<B, [T]>>
    where
        T: Immutable + Unaligned,
    {
        let bytes = self.take_back(n * mem::size_of::<T>())?;
        // `unaligned_from_bytes` will return `None` only if `bytes.len()` is
        // not a multiple of `mem::size_of::<T>()`.
        Some(Ref::from_bytes(bytes).unwrap())
    }
}

/// A mutable view into a `Buffer`.
///
/// A `BufferViewMut` is a [`BufferView`] which provides mutable access to the
/// contents of the buffer.
///
/// # Notable implementations
///
/// `BufferViewMut` is implemented for `&mut &mut [u8]`.
pub trait BufferViewMut<B: SplitByteSliceMut>: BufferView<B> + AsMut<[u8]> {
    /// Takes `n` bytes from the front of the buffer's body and zeroes them.
    ///
    /// `take_front_zero` is like [`BufferView::take_front`], except that it
    /// zeroes the bytes before returning them. This can be useful when
    /// serializing to ensure that the contents of packets previously stored in
    /// the buffer are not leaked.
    fn take_front_zero(&mut self, n: usize) -> Option<B> {
        self.take_front(n).map(|mut buf| {
            zero(buf.deref_mut());
            buf
        })
    }

    /// Takes `n` bytes from the back of the buffer's body and zeroes them.
    ///
    /// `take_back_zero` is like [`BufferView::take_back`], except that it
    /// zeroes the bytes before returning them. This can be useful when
    /// serializing to ensure that the contents of packets previously stored in
    /// the buffer are not leaked.
    fn take_back_zero(&mut self, n: usize) -> Option<B> {
        self.take_back(n).map(|mut buf| {
            zero(buf.deref_mut());
            buf
        })
    }

    /// Takes the rest of the buffer's body from the front and zeroes it.
    ///
    /// `take_rest_front_zero` is like [`BufferView::take_rest_front`], except
    /// that it zeroes the bytes before returning them. This can be useful when
    /// serializing to ensure that the contents of packets previously stored in
    /// the buffer are not leaked.
    fn take_rest_front_zero(mut self) -> B {
        let len = self.len();
        self.take_front_zero(len).unwrap()
    }

    /// Takes the rest of the buffer's body from the back and zeroes it.
    ///
    /// `take_rest_back_zero` is like [`BufferView::take_rest_back`], except
    /// that it zeroes the bytes before returning them. This can be useful when
    /// serializing to ensure that the contents of packets previously stored in
    /// the buffer are not leaked.
    fn take_rest_back_zero(mut self) -> B {
        let len = self.len();
        self.take_front_zero(len).unwrap()
    }

    /// Converts this view into a reference to the buffer's body, and zeroes it.
    ///
    /// `into_rest_zero` is like [`BufferView::into_rest`], except that it
    /// zeroes the bytes before returning them. This can be useful when
    /// serializing to ensure that the contents of packets previously stored in
    /// the buffer are not leaked.
    fn into_rest_zero(self) -> B {
        let mut bytes = self.into_rest();
        zero(&mut bytes);
        bytes
    }

    /// Takes an object from the front of the buffer's body and zeroes it.
    ///
    /// `take_obj_front_zero` is like [`BufferView::take_obj_front`], except
    /// that it zeroes the bytes before converting them to a `T`. This can be
    /// useful when serializing to ensure that the contents of packets
    /// previously stored in the buffer are not leaked.
    fn take_obj_front_zero<T>(&mut self) -> Option<Ref<B, T>>
    where
        T: KnownLayout + Immutable + Unaligned,
    {
        let bytes = self.take_front(mem::size_of::<T>())?;
        // unaligned_from_bytes only returns None if there aren't enough bytes
        let mut obj: Ref<_, _> = Ref::from_bytes(bytes).unwrap();
        Ref::bytes_mut(&mut obj).zero();
        Some(obj)
    }

    /// Takes an object from the back of the buffer's body and zeroes it.
    ///
    /// `take_obj_back_zero` is like [`BufferView::take_obj_back`], except that
    /// it zeroes the bytes before converting them to a `T`. This can be useful
    /// when serializing to ensure that the contents of packets previously
    /// stored in the buffer are not leaked.
    fn take_obj_back_zero<T>(&mut self) -> Option<Ref<B, T>>
    where
        T: KnownLayout + Immutable + Unaligned,
    {
        let bytes = self.take_back(mem::size_of::<T>())?;
        // unaligned_from_bytes only returns None if there aren't enough bytes
        let mut obj: Ref<_, _> = Ref::from_bytes(bytes).unwrap();
        Ref::bytes_mut(&mut obj).zero();
        Some(obj)
    }

    /// Writes an object to the front of the buffer's body, consuming the bytes.
    ///
    /// `write_obj_front` consumes `size_of_val(obj)` bytes from the front of
    /// the buffer's body, and overwrites them with `obj`. After a successful
    /// call to `write_obj_front(obj)`, the body is `size_of_val(obj)` bytes
    /// shorter and, if `Self: GrowBuffer`, the prefix is `size_of_val(obj)`
    /// bytes longer. If the body is not at least `size_of_val(obj)` bytes in
    /// length, `write_obj_front` returns `None`.
    fn write_obj_front<T>(&mut self, obj: &T) -> Option<()>
    where
        T: ?Sized + IntoBytes + Immutable,
    {
        let mut bytes = self.take_front(mem::size_of_val(obj))?;
        bytes.copy_from_slice(obj.as_bytes());
        Some(())
    }

    /// Writes an object to the back of the buffer's body, consuming the bytes.
    ///
    /// `write_obj_back` consumes `size_of_val(obj)` bytes from the back of the
    /// buffer's body, and overwrites them with `obj`. After a successful call
    /// to `write_obj_back(obj)`, the body is `size_of_val(obj)` bytes shorter
    /// and, if `Self: GrowBuffer`, the suffix is `size_of_val(obj)` bytes
    /// longer. If the body is not at least `size_of_val(obj)` bytes in length,
    /// `write_obj_back` returns `None`.
    fn write_obj_back<T>(&mut self, obj: &T) -> Option<()>
    where
        T: ?Sized + IntoBytes + Immutable,
    {
        let mut bytes = self.take_back(mem::size_of_val(obj))?;
        bytes.copy_from_slice(obj.as_bytes());
        Some(())
    }
}

// NOTE on undo_parse algorithm: It's important that ParseMetadata only describe
// the packet itself, and not any padding. This is because the user might call
// undo_parse on a packet only once, and then serialize that packet inside of
// another packet with a lower minimum body length requirement than the one it
// was encapsulated in during parsing. In this case, if we were to include
// padding, we would spuriously serialize an unnecessarily large body. Omitting
// the padding is required for this reason. It is acceptable because, using the
// body_len field of the encapsulating packet's ParseMetadata, it is possible
// for undo_parse to reconstruct how many padding bytes there were if it needs
// to.
//
// undo_parse also needs to differentiate between bytes which were consumed from
// the beginning and end of the buffer. For normal packets this is easy -
// headers are consumed from the beginning, and footers from the end. For inner
// packets, which do not have a header/footer distinction (at least from the
// perspective of this crate), we arbitrarily decide that all bytes are consumed
// from the beginning. So long as ParsablePacket implementations obey this
// requirement, undo_parse will work properly. In order to support this,
// ParseMetadata::from_inner_packet constructs a ParseMetadata in which the only
// non-zero field is header_len.

/// Metadata about a previously-parsed packet used to undo its parsing.
///
/// See [`GrowBuffer::undo_parse`] for more details.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct ParseMetadata {
    header_len: usize,
    body_len: usize,
    footer_len: usize,
}

impl ParseMetadata {
    /// Constructs a new `ParseMetadata` from information about a packet.
    pub fn from_packet(header_len: usize, body_len: usize, footer_len: usize) -> ParseMetadata {
        ParseMetadata { header_len, body_len, footer_len }
    }

    /// Constructs a new `ParseMetadata` from information about an inner packet.
    ///
    /// Since inner packets do not have a header/body/footer distinction (at
    /// least from the perspective of the utilities in this crate), we
    /// arbitrarily produce a `ParseMetadata` with a header length and no body
    /// or footer lengths. Thus, `from_inner_packet(len)` is equivalent to
    /// `from_packet(len, 0, 0)`.
    pub fn from_inner_packet(len: usize) -> ParseMetadata {
        ParseMetadata { header_len: len, body_len: 0, footer_len: 0 }
    }

    /// Gets the header length.
    ///
    /// `header_len` returns the length of the header of the packet described by
    /// this `ParseMetadata`.
    pub fn header_len(&self) -> usize {
        self.header_len
    }

    /// Gets the body length.
    ///
    /// `body_len` returns the length of the body of the packet described by
    /// this `ParseMetadata`.
    pub fn body_len(&self) -> usize {
        self.body_len
    }

    /// Gets the footer length.
    ///
    /// `footer_len` returns the length of the footer of the packet described by
    /// this `ParseMetadata`.
    pub fn footer_len(&self) -> usize {
        self.footer_len
    }
}

/// A packet which can be parsed from a buffer.
///
/// A `ParsablePacket` is a packet which can be parsed from the body of a
/// buffer. For performance reasons, it is recommended that as much of the
/// packet object as possible be stored as references into the body in order to
/// avoid copying.
pub trait ParsablePacket<B: SplitByteSlice, ParseArgs>: Sized {
    /// The type of errors returned from [`parse`] and [`parse_mut`].
    ///
    /// [`parse`]: ParsablePacket::parse
    /// [`parse_mut`]: ParsablePacket::parse_mut
    type Error;

    /// Parses a packet from a buffer.
    ///
    /// Given a view into a buffer, `parse` parses a packet by consuming bytes
    /// from the buffer's body. This works slightly differently for normal
    /// packets and inner packets (those which do not contain other packets).
    ///
    /// ## Packets
    ///
    /// When parsing a packet which contains another packet, the outer packet's
    /// header and footer should be consumed from the beginning and end of the
    /// buffer's body respectively. The packet's body should be constructed from
    /// a reference to the buffer's body (i.e., [`BufferView::into_rest`]), but
    /// the buffer's body should not be consumed. This allows the next
    /// encapsulated packet to be parsed from the remaining buffer body. See the
    /// crate documentation for more details.
    ///
    /// ## Inner Packets
    ///
    /// When parsing packets which do not contain other packets, the entire
    /// packet's contents should be consumed from the beginning of the buffer's
    /// body. The buffer's body should be empty after `parse` has returned.
    ///
    /// # Padding
    ///
    /// There may be post-packet padding (coming after the entire packet,
    /// including any footer) which was added in order to satisfy the minimum
    /// body length requirement of an encapsulating packet. If the packet
    /// currently being parsed describes its own length (and thus, it's possible
    /// to determine whether there's any padding), `parse` is required to
    /// consume any post-packet padding from the buffer's suffix. If this
    /// invariant is not upheld, future calls to [`ParseBuffer::parse`] or
    /// [`GrowBuffer::undo_parse`] may behave incorrectly.
    ///
    /// Pre-packet padding is not supported; if a protocol supports such
    /// padding, it must be handled in a way that is transparent to this API. In
    /// particular, that means that the [`parse_metadata`] method must treat that
    /// padding as part of the packet.
    ///
    /// [`parse_metadata`]: ParsablePacket::parse_metadata
    fn parse<BV: BufferView<B>>(buffer: BV, args: ParseArgs) -> Result<Self, Self::Error>;

    /// Parses a packet from a mutable buffer.
    ///
    /// `parse_mut` is like [`parse`], except that it operates on a mutable
    /// buffer view.
    ///
    /// [`parse`]: ParsablePacket::parse
    fn parse_mut<BV: BufferViewMut<B>>(buffer: BV, args: ParseArgs) -> Result<Self, Self::Error>
    where
        B: SplitByteSliceMut,
    {
        Self::parse(buffer, args)
    }

    /// Gets metadata about this packet required by [`GrowBuffer::undo_parse`].
    ///
    /// The returned [`ParseMetadata`] records the number of header and footer
    /// bytes consumed by this packet during parsing, and the number of bytes
    /// left in the body (not consumed from the buffer). For packets which
    /// encapsulate other packets, the header length must be equal to the number
    /// of bytes consumed from the prefix, and the footer length must be equal
    /// to the number of bytes consumed from the suffix. For inner packets, use
    /// [`ParseMetadata::from_inner_packet`].
    ///
    /// There is one exception: if any post-packet padding was consumed from the
    /// suffix, this should not be included, as it is not considered part of the
    /// packet. For example, consider a packet with 8 bytes of footer followed
    /// by 8 bytes of post-packet padding. Parsing this packet would consume 16
    /// bytes from the suffix, but calling `parse_metadata` on the resulting
    /// object would return a `ParseMetadata` with only 8 bytes of footer.
    fn parse_metadata(&self) -> ParseMetadata;
}

fn zero_iter<'a, I: Iterator<Item = &'a mut u8>>(bytes: I) {
    for byte in bytes {
        *byte = 0;
    }
}

fn zero(bytes: &mut [u8]) {
    for byte in bytes.iter_mut() {
        *byte = 0;
    }
}
impl<'a> FragmentedBuffer for &'a [u8] {
    fragmented_buffer_method_impls!();
}
impl<'a> ContiguousBuffer for &'a [u8] {}
impl<'a> ShrinkBuffer for &'a [u8] {
    fn shrink_front(&mut self, n: usize) {
        let _: &[u8] = take_front(self, n);
    }
    fn shrink_back(&mut self, n: usize) {
        let _: &[u8] = take_back(self, n);
    }
}
impl<'a> ParseBuffer for &'a [u8] {
    fn parse_with<'b, ParseArgs, P: ParsablePacket<&'b [u8], ParseArgs>>(
        &'b mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        // A `&'b mut &'a [u8]` wrapper which implements `BufferView<&'b [u8]>`
        // instead of `BufferView<&'a [u8]>`. This is needed thanks to fact that
        // `P: ParsablePacket` has the lifetime `'b`, not `'a`.
        struct ByteSlice<'a, 'b>(&'b mut &'a [u8]);

        impl<'a, 'b> AsRef<[u8]> for ByteSlice<'a, 'b> {
            fn as_ref(&self) -> &[u8] {
                &self.0
            }
        }

        impl<'b, 'a: 'b> BufferView<&'b [u8]> for ByteSlice<'a, 'b> {
            fn len(&self) -> usize {
                <[u8]>::len(self.0)
            }
            fn take_front(&mut self, n: usize) -> Option<&'b [u8]> {
                if self.0.len() < n {
                    return None;
                }
                Some(take_front(self.0, n))
            }
            fn take_back(&mut self, n: usize) -> Option<&'b [u8]> {
                if self.0.len() < n {
                    return None;
                }
                Some(take_back(self.0, n))
            }
            fn into_rest(self) -> &'b [u8] {
                self.0
            }
        }

        P::parse(ByteSlice(self), args)
    }
}
impl<'a> FragmentedBuffer for &'a mut [u8] {
    fragmented_buffer_method_impls!();
}
impl<'a> FragmentedBufferMut for &'a mut [u8] {
    fragmented_buffer_mut_method_impls!();
}
impl<'a> ContiguousBuffer for &'a mut [u8] {}
impl<'a> ShrinkBuffer for &'a mut [u8] {
    fn shrink_front(&mut self, n: usize) {
        let _: &[u8] = take_front_mut(self, n);
    }
    fn shrink_back(&mut self, n: usize) {
        let _: &[u8] = take_back_mut(self, n);
    }
}
impl<'a> ParseBuffer for &'a mut [u8] {
    fn parse_with<'b, ParseArgs, P: ParsablePacket<&'b [u8], ParseArgs>>(
        &'b mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        P::parse(self, args)
    }
}

impl<'a> ParseBufferMut for &'a mut [u8] {
    fn parse_with_mut<'b, ParseArgs, P: ParsablePacket<&'b mut [u8], ParseArgs>>(
        &'b mut self,
        args: ParseArgs,
    ) -> Result<P, P::Error> {
        P::parse_mut(self, args)
    }
}

impl<'b, 'a: 'b> BufferView<&'a [u8]> for &'b mut &'a [u8] {
    fn len(&self) -> usize {
        <[u8]>::len(self)
    }
    fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.len() < n {
            return None;
        }
        Some(take_front(self, n))
    }
    fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.len() < n {
            return None;
        }
        Some(take_back(self, n))
    }
    fn into_rest(self) -> &'a [u8] {
        self
    }
}

impl<'b, 'a: 'b> BufferView<&'b [u8]> for &'b mut &'a mut [u8] {
    fn len(&self) -> usize {
        <[u8]>::len(self)
    }
    fn take_front(&mut self, n: usize) -> Option<&'b [u8]> {
        if <[u8]>::len(self) < n {
            return None;
        }
        Some(take_front_mut(self, n))
    }
    fn take_back(&mut self, n: usize) -> Option<&'b [u8]> {
        if <[u8]>::len(self) < n {
            return None;
        }
        Some(take_back_mut(self, n))
    }
    fn into_rest(self) -> &'b [u8] {
        self
    }
}

impl<'b, 'a: 'b> BufferView<&'b mut [u8]> for &'b mut &'a mut [u8] {
    fn len(&self) -> usize {
        <[u8]>::len(self)
    }
    fn take_front(&mut self, n: usize) -> Option<&'b mut [u8]> {
        if <[u8]>::len(self) < n {
            return None;
        }
        Some(take_front_mut(self, n))
    }
    fn take_back(&mut self, n: usize) -> Option<&'b mut [u8]> {
        if <[u8]>::len(self) < n {
            return None;
        }
        Some(take_back_mut(self, n))
    }
    fn into_rest(self) -> &'b mut [u8] {
        self
    }
}

impl<'b, 'a: 'b> BufferViewMut<&'b mut [u8]> for &'b mut &'a mut [u8] {}

/// A [`BufferViewMut`] into a `&mut [u8]`.
///
/// This type is useful for instantiating a mutable view into a slice that can
/// be used for parsing, where any parsing that is done only affects this view
/// and therefore need not be "undone" later.
///
/// Note that `BufferViewMut<&mut [u8]>` is also implemented for &mut &mut [u8]
/// (a mutable reference to a mutable byte slice), but this can be problematic
/// if you need to materialize an *owned* type that implements `BufferViewMut`,
/// in order to pass it to a function, for example, so that it does not hold a
/// reference to a temporary value.
pub struct SliceBufViewMut<'a>(&'a mut [u8]);

impl<'a> SliceBufViewMut<'a> {
    pub fn new(buf: &'a mut [u8]) -> Self {
        Self(buf)
    }
}

impl<'a> BufferView<&'a mut [u8]> for SliceBufViewMut<'a> {
    fn take_front(&mut self, n: usize) -> Option<&'a mut [u8]> {
        let Self(buf) = self;
        if <[u8]>::len(buf) < n {
            return None;
        }
        Some(take_front_mut(buf, n))
    }

    fn take_back(&mut self, n: usize) -> Option<&'a mut [u8]> {
        let Self(buf) = self;
        if <[u8]>::len(buf) < n {
            return None;
        }
        Some(take_back_mut(buf, n))
    }

    fn into_rest(self) -> &'a mut [u8] {
        self.0
    }
}

impl<'a> BufferViewMut<&'a mut [u8]> for SliceBufViewMut<'a> {}

impl<'a> AsRef<[u8]> for SliceBufViewMut<'a> {
    fn as_ref(&self) -> &[u8] {
        self.0
    }
}

impl<'a> AsMut<[u8]> for SliceBufViewMut<'a> {
    fn as_mut(&mut self) -> &mut [u8] {
        self.0
    }
}

fn take_front<'a>(bytes: &mut &'a [u8], n: usize) -> &'a [u8] {
    let (prefix, rest) = mem::replace(bytes, &[]).split_at(n);
    *bytes = rest;
    prefix
}

fn take_back<'a>(bytes: &mut &'a [u8], n: usize) -> &'a [u8] {
    let split = bytes.len() - n;
    let (rest, suffix) = mem::replace(bytes, &[]).split_at(split);
    *bytes = rest;
    suffix
}

fn take_front_mut<'a>(bytes: &mut &'a mut [u8], n: usize) -> &'a mut [u8] {
    let (prefix, rest) = mem::replace(bytes, &mut []).split_at_mut(n);
    *bytes = rest;
    prefix
}

fn take_back_mut<'a>(bytes: &mut &'a mut [u8], n: usize) -> &'a mut [u8] {
    let split = <[u8]>::len(bytes) - n;
    let (rest, suffix) = mem::replace(bytes, &mut []).split_at_mut(split);
    *bytes = rest;
    suffix
}

// Returns the inclusive-exclusive equivalent of the bound, verifying that it is
// in range of `len`, and panicking if it is not or if the range is nonsensical.
fn canonicalize_range<R: RangeBounds<usize>>(len: usize, range: &R) -> Range<usize> {
    let lower = canonicalize_lower_bound(range.start_bound());
    let upper = canonicalize_upper_bound(len, range.end_bound()).expect("range out of bounds");
    assert!(lower <= upper, "invalid range: upper bound precedes lower bound");
    lower..upper
}

// Returns the inclusive equivalent of the bound.
fn canonicalize_lower_bound(bound: Bound<&usize>) -> usize {
    match bound {
        Bound::Included(x) => *x,
        Bound::Excluded(x) => *x + 1,
        Bound::Unbounded => 0,
    }
}

// Returns the exclusive equivalent of the bound, verifying that it is in range
// of `len`.
fn canonicalize_upper_bound(len: usize, bound: Bound<&usize>) -> Option<usize> {
    let bound = match bound {
        Bound::Included(x) => *x + 1,
        Bound::Excluded(x) => *x,
        Bound::Unbounded => len,
    };
    if bound > len {
        return None;
    }
    Some(bound)
}

mod sealed {
    pub trait Sealed {}
}

#[cfg(test)]
mod tests {
    use super::*;

    // Call test_buffer, test_buffer_view, and test_buffer_view_post for each of
    // the Buffer types. Call test_parse_buffer and test_buffer_view for each of
    // the ParseBuffer types.

    #[test]
    fn test_byte_slice_impl_buffer() {
        let mut avoid_leaks = Vec::new();
        test_parse_buffer::<&[u8], _>(|len| {
            let v = ascending(len);
            // Requires that |avoid_leaks| outlives this reference. In this case, we know
            // |test_parse_buffer| does not retain the reference beyond its run.
            let s = unsafe { std::slice::from_raw_parts(v.as_ptr(), v.len()) };
            let () = avoid_leaks.push(v);
            s
        });
        let buf = ascending(10);
        let mut buf: &[u8] = buf.as_ref();
        test_buffer_view::<&[u8], _>(&mut buf);
    }

    #[test]
    fn test_byte_slice_mut_impl_buffer() {
        let mut avoid_leaks = Vec::new();
        test_parse_buffer::<&mut [u8], _>(|len| {
            let mut v = ascending(len);
            // Requires that |avoid_leaks| outlives this reference. In this case, we know
            // |test_parse_buffer| does not retain the reference beyond its run.
            let s = unsafe { std::slice::from_raw_parts_mut(v.as_mut_ptr(), v.len()) };
            let () = avoid_leaks.push(v);
            s
        });
        let mut buf = ascending(10);
        let mut buf: &mut [u8] = buf.as_mut();
        test_buffer_view::<&mut [u8], _>(&mut buf);
    }

    #[test]
    fn test_either_impl_buffer() {
        macro_rules! test_either {
            ($variant:ident) => {
                test_buffer::<Either<Buf<Vec<u8>>, Buf<Vec<u8>>>, _>(|len| {
                    Either::$variant(Buf::new(ascending(len), ..))
                });
                // Test call to `Buf::buffer_view` which returns a
                // `BufferView`.
                let mut buf: Either<Buf<Vec<u8>>, Buf<Vec<u8>>> =
                    Either::$variant(Buf::new(ascending(10), ..));
                test_buffer_view(match &mut buf {
                    Either::$variant(buf) => buf.buffer_view(),
                    _ => unreachable!(),
                });
                test_buffer_view_post(&buf, true);
                // Test call to `Buf::buffer_view_mut` which returns a
                // `BufferViewMut`.
                let mut buf: Either<Buf<Vec<u8>>, Buf<Vec<u8>>> =
                    Either::$variant(Buf::new(ascending(10), ..));
                test_buffer_view_mut(match &mut buf {
                    Either::$variant(buf) => buf.buffer_view_mut(),
                    _ => unreachable!(),
                });
                test_buffer_view_mut_post(&buf, true);
            };
        }

        test_either!(A);
        test_either!(B);
    }

    #[test]
    fn test_slice_buf_view_mut() {
        let mut buf = ascending(10);

        test_buffer_view(SliceBufViewMut::new(&mut buf));
        test_buffer_view_mut(SliceBufViewMut::new(&mut buf));
    }

    #[test]
    fn test_buf_impl_buffer() {
        test_buffer(|len| Buf::new(ascending(len), ..));
        let mut buf = Buf::new(ascending(10), ..);
        test_buffer_view(buf.buffer_view());
        test_buffer_view_post(&buf, true);
    }

    fn ascending(n: u8) -> Vec<u8> {
        (0..n).collect::<Vec<u8>>()
    }

    // This test performs a number of shrinking operations (for ParseBuffer
    // implementations) followed by their equivalent growing operations (for
    // Buffer implementations only), and at each step, verifies various
    // properties of the buffer. The shrinking part of the test is in
    // test_parse_buffer_inner, while test_buffer calls test_parse_buffer_inner
    // and then performs the growing part of the test.

    // When shrinking, we keep two buffers - 'at_once' and 'separately', and for
    // each test case, we do the following:
    // - shrink the 'at_once' buffer with the 'shrink' field
    // - shrink_front the 'separately' buffer with the 'front' field
    // - shrink_back the 'separately' buffer with the 'back' field
    //
    // When growing, we only keep one buffer from the shrinking phase, and for
    // each test case, we do the following:
    // - grow_front the buffer with the 'front' field
    // - grow_back the buffer with the 'back' field
    //
    // After each action, we verify that the len and contents are as expected.
    // For Buffers, we also verify the cap, prefix, and suffix.
    struct TestCase {
        shrink: Range<usize>,
        front: usize, // shrink or grow the front of the body
        back: usize,  // shrink or grow the back of the body
        cap: usize,
        len: usize,
        pfx: usize,
        sfx: usize,
        contents: &'static [u8],
    }
    #[rustfmt::skip]
    const TEST_CASES: &[TestCase] = &[
        TestCase { shrink: 0..10, front: 0, back: 0, cap: 10, len: 10, pfx: 0, sfx: 0, contents: &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], },
        TestCase { shrink: 2..10, front: 2, back: 0, cap: 10, len: 8,  pfx: 2, sfx: 0, contents: &[2, 3, 4, 5, 6, 7, 8, 9], },
        TestCase { shrink: 0..8,  front: 0, back: 0, cap: 10, len: 8,  pfx: 2, sfx: 0, contents: &[2, 3, 4, 5, 6, 7, 8, 9], },
        TestCase { shrink: 0..6,  front: 0, back: 2, cap: 10, len: 6,  pfx: 2, sfx: 2, contents: &[2, 3, 4, 5, 6, 7], },
        TestCase { shrink: 2..4,  front: 2, back: 2, cap: 10, len: 2,  pfx: 4, sfx: 4, contents: &[4, 5], },
    ];

    // Test a ParseBuffer implementation. 'new_buf' is a function which
    // constructs a buffer of length n, and initializes its contents to [0, 1,
    // 2, ..., n -1].
    fn test_parse_buffer<B: ParseBuffer, N: FnMut(u8) -> B>(new_buf: N) {
        let _: B = test_parse_buffer_inner(new_buf, |buf, _, len, _, _, contents| {
            assert_eq!(buf.len(), len);
            assert_eq!(buf.as_ref(), contents);
        });
    }

    // Code common to test_parse_buffer and test_buffer. 'assert' is a function
    // which takes a buffer, and verifies that its capacity, length, prefix,
    // suffix, and contents are equal to the arguments (in that order). For
    // ParseBuffers, the capacity, prefix, and suffix arguments are irrelevant,
    // and ignored.
    //
    // When the test is done, test_parse_buffer_inner returns one of the buffers
    // it used for testing so that test_buffer can do further testing on it. Its
    // prefix, body, and suffix will be [0, 1, 2, 3], [4, 5], and [6, 7, 8, 9]
    // respectively.
    fn test_parse_buffer_inner<
        B: ParseBuffer,
        N: FnMut(u8) -> B,
        A: Fn(&B, usize, usize, usize, usize, &[u8]),
    >(
        mut new_buf: N,
        assert: A,
    ) -> B {
        let mut at_once = new_buf(10);
        let mut separately = new_buf(10);
        for tc in TEST_CASES {
            at_once.shrink(tc.shrink.clone());
            separately.shrink_front(tc.front);
            separately.shrink_back(tc.back);
            assert(&at_once, tc.cap, tc.len, tc.pfx, tc.sfx, tc.contents);
            assert(&separately, tc.cap, tc.len, tc.pfx, tc.sfx, tc.contents);
        }
        at_once
    }

    // Test a Buffer implementation. 'new_buf' is a function which constructs a
    // buffer of length and capacity n, and initializes its contents to [0, 1,
    // 2, ..., n - 1].
    fn test_buffer<B: Buffer, F: Fn(u8) -> B>(new_buf: F) {
        fn assert<B: Buffer>(
            buf: &B,
            cap: usize,
            len: usize,
            pfx: usize,
            sfx: usize,
            contents: &[u8],
        ) {
            assert_eq!(buf.len(), len);
            assert_eq!(buf.capacity(), cap);
            assert_eq!(buf.prefix_len(), pfx);
            assert_eq!(buf.suffix_len(), sfx);
            assert_eq!(buf.as_ref(), contents);
        }

        let mut buf = test_parse_buffer_inner(new_buf, assert);
        buf.reset();
        assert(&buf, 10, 10, 0, 0, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]);
        buf.shrink_front(4);
        buf.shrink_back(4);
        assert(&buf, 10, 2, 4, 4, &[4, 5][..]);

        for tc in TEST_CASES.iter().rev() {
            assert(&buf, tc.cap, tc.len, tc.pfx, tc.sfx, tc.contents);
            buf.grow_front(tc.front);
            buf.grow_back(tc.back);
        }
    }

    // Test a BufferView implementation. Call with a view into a buffer with no
    // extra capacity whose body contains [0, 1, ..., 9]. After the call
    // returns, call test_buffer_view_post on the buffer.
    fn test_buffer_view<B: SplitByteSlice, BV: BufferView<B>>(mut view: BV) {
        assert_eq!(view.len(), 10);
        assert_eq!(view.take_front(1).unwrap().as_ref(), &[0][..]);
        assert_eq!(view.len(), 9);
        assert_eq!(view.take_back(1).unwrap().as_ref(), &[9][..]);
        assert_eq!(view.len(), 8);
        assert_eq!(view.peek_obj_front::<[u8; 2]>().unwrap(), &[1, 2]);
        assert_eq!(view.take_obj_front::<[u8; 2]>().unwrap().as_ref(), [1, 2]);
        assert_eq!(view.len(), 6);
        assert_eq!(view.peek_obj_back::<[u8; 2]>().unwrap(), &[7, 8]);
        assert_eq!(view.take_obj_back::<[u8; 2]>().unwrap().as_ref(), [7, 8]);
        assert_eq!(view.len(), 4);
        assert!(view.take_front(5).is_none());
        assert_eq!(view.len(), 4);
        assert!(view.take_back(5).is_none());
        assert_eq!(view.len(), 4);
        assert_eq!(view.into_rest().as_ref(), &[3, 4, 5, 6][..]);
    }

    // Test a BufferViewMut implementation. Call with a mutable view into a buffer
    // with no extra capacity whose body contains [0, 1, ..., 9]. After the call
    // returns, call test_buffer_view_post on the buffer.
    fn test_buffer_view_mut<B: SplitByteSliceMut, BV: BufferViewMut<B>>(mut view: BV) {
        assert_eq!(view.len(), 10);
        assert_eq!(view.as_mut()[0], 0);
        assert_eq!(view.take_front_zero(1).unwrap().as_ref(), &[0][..]);
        assert_eq!(view.len(), 9);
        assert_eq!(view.as_mut()[0], 1);
        assert_eq!(view.take_front_zero(1).unwrap().as_ref(), &[0][..]);
        assert_eq!(view.len(), 8);
        assert_eq!(view.as_mut()[7], 9);
        assert_eq!(view.take_back_zero(1).unwrap().as_ref(), &[0][..]);
        assert_eq!(view.len(), 7);
        assert_eq!(&view.as_mut()[0..2], &[2, 3][..]);
        assert_eq!(view.peek_obj_front::<[u8; 2]>().unwrap(), &[2, 3]);
        assert_eq!(view.take_obj_front_zero::<[u8; 2]>().unwrap().as_ref(), &[0, 0][..]);
        assert_eq!(view.len(), 5);
        assert_eq!(&view.as_mut()[3..5], &[7, 8][..]);
        assert_eq!(view.peek_obj_back::<[u8; 2]>().unwrap(), &[7, 8]);
        assert_eq!(view.take_obj_back_zero::<[u8; 2]>().unwrap().as_ref(), &[0, 0][..]);
        assert_eq!(view.write_obj_front(&[0u8]), Some(()));
        assert_eq!(view.as_mut(), &[5, 6][..]);
        assert_eq!(view.write_obj_back(&[0u8]), Some(()));
        assert_eq!(view.as_mut(), &[5][..]);
        assert!(view.take_front_zero(2).is_none());
        assert_eq!(view.len(), 1);
        assert!(view.take_back_zero(2).is_none());
        assert_eq!(view.len(), 1);
        assert_eq!(view.as_mut(), &[5][..]);
        assert_eq!(view.into_rest_zero().as_ref(), &[0][..]);
    }

    // Post-verification to test a BufferView implementation. Call after
    // test_buffer_view.
    fn test_buffer_view_post<B: Buffer>(buffer: &B, preserves_cap: bool) {
        assert_eq!(buffer.as_ref(), &[3, 4, 5, 6][..]);
        if preserves_cap {
            assert_eq!(buffer.prefix_len(), 3);
            assert_eq!(buffer.suffix_len(), 3);
        }
    }

    // Post-verification to test a BufferViewMut implementation. Call after
    // test_buffer_view_mut.
    fn test_buffer_view_mut_post<B: Buffer>(buffer: &B, preserves_cap: bool) {
        assert_eq!(buffer.as_ref(), &[0][..]);
        if preserves_cap {
            assert_eq!(buffer.prefix_len(), 5);
            assert_eq!(buffer.suffix_len(), 4);
        }
    }

    #[test]
    fn test_buffer_view_from_buffer() {
        // This test is specifically designed to verify that implementations of
        // ParseBuffer::parse properly construct a BufferView, and that that
        // BufferView properly updates the underlying buffer. It was inspired by
        // the bug with Change-Id Ifeab21fba0f7ba94d1a12756d4e83782002e4e1e.

        // This ParsablePacket implementation takes the contents it expects as a
        // parse argument and validates the BufferView[Mut] against it. It consumes
        // one byte from the front and one byte from the back to ensure that that
        // functionality works as well. For a mutable buffer, the implementation also
        // modifies the bytes that were consumed so tests can make sure that the
        // `parse_mut` function was actually called and that the bytes are mutable.
        struct TestParsablePacket {}
        impl<B: SplitByteSlice> ParsablePacket<B, &[u8]> for TestParsablePacket {
            type Error = ();
            fn parse<BV: BufferView<B>>(
                mut buffer: BV,
                args: &[u8],
            ) -> Result<TestParsablePacket, ()> {
                assert_eq!(buffer.as_ref(), args);
                let _: B = buffer.take_front(1).unwrap();
                let _: B = buffer.take_back(1).unwrap();
                Ok(TestParsablePacket {})
            }

            fn parse_mut<BV: BufferViewMut<B>>(
                mut buffer: BV,
                args: &[u8],
            ) -> Result<TestParsablePacket, ()>
            where
                B: SplitByteSliceMut,
            {
                assert_eq!(buffer.as_ref(), args);
                buffer.take_front(1).unwrap().as_mut()[0] += 1;
                buffer.take_back(1).unwrap().as_mut()[0] += 2;
                Ok(TestParsablePacket {})
            }

            fn parse_metadata(&self) -> ParseMetadata {
                unimplemented!()
            }
        }

        // immutable byte slices

        let mut buf = &[0, 1, 2, 3, 4, 5, 6, 7][..];
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[0, 1, 2, 3, 4, 5, 6, 7]).unwrap();
        // test that, after parsing, the bytes consumed are consumed permanently
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();

        // test that different temporary values do not affect one another and
        // also that slicing works properly (in that the elements outside of the
        // slice are not exposed in the BufferView[Mut]; this is fairly obvious
        // for slices, but less obvious for Buf, which we test below)
        let buf = &[0, 1, 2, 3, 4, 5, 6, 7][..];
        let TestParsablePacket {} =
            (&buf[1..7]).parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        let TestParsablePacket {} =
            (&buf[1..7]).parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();

        // mutable byte slices

        let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7];
        let mut buf = &mut bytes[..];
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[0, 1, 2, 3, 4, 5, 6, 7]).unwrap();
        // test that, after parsing, the bytes consumed are consumed permanently
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        // test that this also works with parse_with_mut
        let TestParsablePacket {} =
            buf.parse_with_mut::<_, TestParsablePacket>(&[2, 3, 4, 5]).unwrap();
        let TestParsablePacket {} = buf.parse_with_mut::<_, TestParsablePacket>(&[3, 4]).unwrap();
        assert_eq!(bytes, [0, 1, 3, 4, 6, 7, 6, 7]);

        // test that different temporary values do not affect one another and
        // also that slicing works properly (in that the elements outside of the
        // slice are not exposed in the BufferView[Mut]; this is fairly obvious
        // for slices, but less obvious for Buf, which we test below)
        let buf = &mut [0, 1, 2, 3, 4, 5, 6, 7][..];
        let TestParsablePacket {} =
            (&buf[1..7]).parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        let TestParsablePacket {} =
            (&buf[1..7]).parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        let TestParsablePacket {} =
            (&mut buf[1..7]).parse_with_mut::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        let TestParsablePacket {} =
            (&mut buf[1..7]).parse_with_mut::<_, TestParsablePacket>(&[2, 2, 3, 4, 5, 8]).unwrap();
        assert_eq!(buf, &[0, 3, 2, 3, 4, 5, 10, 7][..]);

        // Buf with immutable byte slice

        let mut buf = Buf::new(&[0, 1, 2, 3, 4, 5, 6, 7][..], ..);
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[0, 1, 2, 3, 4, 5, 6, 7]).unwrap();
        // test that, after parsing, the bytes consumed are consumed permanently
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();

        // the same test again, but this time with Buf's range set
        let mut buf = Buf::new(&[0, 1, 2, 3, 4, 5, 6, 7][..], 1..7);
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        // test that, after parsing, the bytes consumed are consumed permanently
        let TestParsablePacket {} = buf.parse_with::<_, TestParsablePacket>(&[2, 3, 4, 5]).unwrap();

        // Buf with mutable byte slice

        let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7];
        let buf = &mut bytes[..];
        let mut buf = Buf::new(&mut buf[..], ..);
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[0, 1, 2, 3, 4, 5, 6, 7]).unwrap();
        // test that, after parsing, the bytes consumed are consumed permanently
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        // test that this also works with parse_with_mut
        let TestParsablePacket {} =
            buf.parse_with_mut::<_, TestParsablePacket>(&[2, 3, 4, 5]).unwrap();
        let TestParsablePacket {} = buf.parse_with_mut::<_, TestParsablePacket>(&[3, 4]).unwrap();
        assert_eq!(bytes, [0, 1, 3, 4, 6, 7, 6, 7]);
        // the same test again, but this time with Buf's range set
        let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7];
        let buf = &mut bytes[..];
        let mut buf = Buf::new(&mut buf[..], 1..7);
        let TestParsablePacket {} =
            buf.parse_with::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        // test that, after parsing, the bytes consumed are consumed permanently
        let TestParsablePacket {} = buf.parse_with::<_, TestParsablePacket>(&[2, 3, 4, 5]).unwrap();
        assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
        // test that this also works with parse_with_mut
        let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7];
        let buf = &mut bytes[..];
        let mut buf = Buf::new(&mut buf[..], 1..7);
        let TestParsablePacket {} =
            buf.parse_with_mut::<_, TestParsablePacket>(&[1, 2, 3, 4, 5, 6]).unwrap();
        let TestParsablePacket {} =
            buf.parse_with_mut::<_, TestParsablePacket>(&[2, 3, 4, 5]).unwrap();
        assert_eq!(bytes, [0, 2, 3, 3, 4, 7, 8, 7]);
    }

    #[test]
    fn test_buf_shrink_to() {
        // Tests the shrink_front_to and shrink_back_to methods.
        fn test(buf: &[u8], shrink_to: usize, size_after: usize) {
            let mut buf0 = &buf[..];
            buf0.shrink_front_to(shrink_to);
            assert_eq!(buf0.len(), size_after);
            let mut buf1 = &buf[..];
            buf1.shrink_back_to(shrink_to);
            assert_eq!(buf0.len(), size_after);
        }

        test(&[0, 1, 2, 3], 2, 2);
        test(&[0, 1, 2, 3], 4, 4);
        test(&[0, 1, 2, 3], 8, 4);
    }

    #[test]
    fn test_empty_buf() {
        // Test ParseBuffer impl

        assert_eq!(EmptyBuf.as_ref(), []);
        assert_eq!(EmptyBuf.as_mut(), []);
        EmptyBuf.shrink_front(0);
        EmptyBuf.shrink_back(0);

        // Test Buffer impl

        assert_eq!(EmptyBuf.prefix_len(), 0);
        assert_eq!(EmptyBuf.suffix_len(), 0);
        EmptyBuf.grow_front(0);
        EmptyBuf.grow_back(0);

        // Test BufferView impl

        assert_eq!(BufferView::<&[u8]>::take_front(&mut EmptyBuf, 0), Some(&[][..]));
        assert_eq!(BufferView::<&[u8]>::take_front(&mut EmptyBuf, 1), None);
        assert_eq!(BufferView::<&[u8]>::take_back(&mut EmptyBuf, 0), Some(&[][..]));
        assert_eq!(BufferView::<&[u8]>::take_back(&mut EmptyBuf, 1), None);
        assert_eq!(BufferView::<&[u8]>::into_rest(EmptyBuf), &[][..]);
    }

    // Each panic test case needs to be in its own function, which results in an
    // explosion of test functions. These macros generates the appropriate
    // function definitions automatically for a given type, reducing the amount
    // of code by a factor of ~4.
    macro_rules! make_parse_buffer_panic_tests {
        (
            $new_empty_buffer:expr,
            $shrink_panics:ident,
            $nonsense_shrink_panics:ident,
        ) => {
            #[test]
            #[should_panic]
            fn $shrink_panics() {
                ($new_empty_buffer).shrink(..1);
            }
            #[test]
            #[should_panic]
            fn $nonsense_shrink_panics() {
                #[allow(clippy::reversed_empty_ranges)] // Intentionally testing with invalid range
                ($new_empty_buffer).shrink(1..0);
            }
        };
    }

    macro_rules! make_panic_tests {
        (
            $new_empty_buffer:expr,
            $shrink_panics:ident,
            $nonsense_shrink_panics:ident,
            $grow_front_panics:ident,
            $grow_back_panics:ident,
        ) => {
            make_parse_buffer_panic_tests!(
                $new_empty_buffer,
                $shrink_panics,
                $nonsense_shrink_panics,
            );
            #[test]
            #[should_panic]
            fn $grow_front_panics() {
                ($new_empty_buffer).grow_front(1);
            }
            #[test]
            #[should_panic]
            fn $grow_back_panics() {
                ($new_empty_buffer).grow_back(1);
            }
        };
    }

    make_parse_buffer_panic_tests!(
        &[][..],
        test_byte_slice_shrink_panics,
        test_byte_slice_nonsense_shrink_panics,
    );
    make_parse_buffer_panic_tests!(
        &mut [][..],
        test_byte_slice_mut_shrink_panics,
        test_byte_slice_mut_nonsense_shrink_panics,
    );
    make_panic_tests!(
        Either::A::<Buf<&[u8]>, Buf<&[u8]>>(Buf::new(&[][..], ..)),
        test_either_slice_panics,
        test_either_nonsense_slice_panics,
        test_either_grow_front_panics,
        test_either_grow_back_panics,
    );
    make_panic_tests!(
        Buf::new(&[][..], ..),
        test_buf_shrink_panics,
        test_buf_nonsense_shrink_panics,
        test_buf_grow_front_panics,
        test_buf_grow_back_panics,
    );
    make_panic_tests!(
        EmptyBuf,
        test_empty_buf_shrink_panics,
        test_empty_buf_nonsense_shrink_panics,
        test_empty_buf_grow_front_panics,
        test_empty_buf_grow_back_panics,
    );

    #[test]
    fn take_rest_front_back() {
        let buf = [1_u8, 2, 3];
        let mut b = &mut &buf[..];
        assert_eq!(b.take_rest_front(), &buf[..]);
        assert_eq!(b.len(), 0);

        let mut b = &mut &buf[..];
        assert_eq!(b.take_rest_back(), &buf[..]);
        assert_eq!(b.len(), 0);
    }

    #[test]
    fn take_byte_front_back() {
        let buf = [1_u8, 2, 3, 4];
        let mut b = &mut &buf[..];
        assert_eq!(b.take_byte_front().unwrap(), 1);
        assert_eq!(b.take_byte_front().unwrap(), 2);
        assert_eq!(b.take_byte_back().unwrap(), 4);
        assert_eq!(b.take_byte_back().unwrap(), 3);
        assert!(b.take_byte_front().is_none());
        assert!(b.take_byte_back().is_none());
    }
}