async_task/raw.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
use alloc::alloc::Layout;
use core::cell::UnsafeCell;
use core::future::Future;
use core::mem::{self, ManuallyDrop};
use core::pin::Pin;
use core::ptr::NonNull;
use core::sync::atomic::{AtomicUsize, Ordering};
use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
use crate::header::Header;
use crate::state::*;
use crate::utils::{abort, abort_on_panic, extend};
use crate::Runnable;
/// The vtable for a task.
pub(crate) struct TaskVTable {
/// Schedules the task.
pub(crate) schedule: unsafe fn(*const ()),
/// Drops the future inside the task.
pub(crate) drop_future: unsafe fn(*const ()),
/// Returns a pointer to the output stored after completion.
pub(crate) get_output: unsafe fn(*const ()) -> *const (),
/// Drops the task reference (`Runnable` or `Waker`).
pub(crate) drop_ref: unsafe fn(ptr: *const ()),
/// Destroys the task.
pub(crate) destroy: unsafe fn(*const ()),
/// Runs the task.
pub(crate) run: unsafe fn(*const ()) -> bool,
/// Creates a new waker associated with the task.
pub(crate) clone_waker: unsafe fn(ptr: *const ()) -> RawWaker,
}
/// Memory layout of a task.
///
/// This struct contains the following information:
///
/// 1. How to allocate and deallocate the task.
/// 2. How to access the fields inside the task.
#[derive(Clone, Copy)]
pub(crate) struct TaskLayout {
/// Memory layout of the whole task.
pub(crate) layout: Layout,
/// Offset into the task at which the schedule function is stored.
pub(crate) offset_s: usize,
/// Offset into the task at which the future is stored.
pub(crate) offset_f: usize,
/// Offset into the task at which the output is stored.
pub(crate) offset_r: usize,
}
/// Raw pointers to the fields inside a task.
pub(crate) struct RawTask<F, T, S> {
/// The task header.
pub(crate) header: *const Header,
/// The schedule function.
pub(crate) schedule: *const S,
/// The future.
pub(crate) future: *mut F,
/// The output of the future.
pub(crate) output: *mut T,
}
impl<F, T, S> Copy for RawTask<F, T, S> {}
impl<F, T, S> Clone for RawTask<F, T, S> {
fn clone(&self) -> Self {
*self
}
}
impl<F, T, S> RawTask<F, T, S>
where
F: Future<Output = T>,
S: Fn(Runnable),
{
const RAW_WAKER_VTABLE: RawWakerVTable = RawWakerVTable::new(
Self::clone_waker,
Self::wake,
Self::wake_by_ref,
Self::drop_waker,
);
/// Allocates a task with the given `future` and `schedule` function.
///
/// It is assumed that initially only the `Runnable` and the `Task` exist.
pub(crate) fn allocate(future: F, schedule: S) -> NonNull<()> {
// Compute the layout of the task for allocation. Abort if the computation fails.
let task_layout = abort_on_panic(|| Self::task_layout());
unsafe {
// Allocate enough space for the entire task.
let ptr = match NonNull::new(alloc::alloc::alloc(task_layout.layout) as *mut ()) {
None => abort(),
Some(p) => p,
};
let raw = Self::from_ptr(ptr.as_ptr());
// Write the header as the first field of the task.
(raw.header as *mut Header).write(Header {
state: AtomicUsize::new(SCHEDULED | TASK | REFERENCE),
awaiter: UnsafeCell::new(None),
vtable: &TaskVTable {
schedule: Self::schedule,
drop_future: Self::drop_future,
get_output: Self::get_output,
drop_ref: Self::drop_ref,
destroy: Self::destroy,
run: Self::run,
clone_waker: Self::clone_waker,
},
});
// Write the schedule function as the third field of the task.
(raw.schedule as *mut S).write(schedule);
// Write the future as the fourth field of the task.
raw.future.write(future);
ptr
}
}
/// Creates a `RawTask` from a raw task pointer.
#[inline]
pub(crate) fn from_ptr(ptr: *const ()) -> Self {
let task_layout = Self::task_layout();
let p = ptr as *const u8;
unsafe {
Self {
header: p as *const Header,
schedule: p.add(task_layout.offset_s) as *const S,
future: p.add(task_layout.offset_f) as *mut F,
output: p.add(task_layout.offset_r) as *mut T,
}
}
}
/// Returns the memory layout for a task.
#[inline]
fn task_layout() -> TaskLayout {
// Compute the layouts for `Header`, `S`, `F`, and `T`.
let layout_header = Layout::new::<Header>();
let layout_s = Layout::new::<S>();
let layout_f = Layout::new::<F>();
let layout_r = Layout::new::<T>();
// Compute the layout for `union { F, T }`.
let size_union = layout_f.size().max(layout_r.size());
let align_union = layout_f.align().max(layout_r.align());
let layout_union = unsafe { Layout::from_size_align_unchecked(size_union, align_union) };
// Compute the layout for `Header` followed `S` and `union { F, T }`.
let layout = layout_header;
let (layout, offset_s) = extend(layout, layout_s);
let (layout, offset_union) = extend(layout, layout_union);
let offset_f = offset_union;
let offset_r = offset_union;
TaskLayout {
layout,
offset_s,
offset_f,
offset_r,
}
}
/// Wakes a waker.
unsafe fn wake(ptr: *const ()) {
// This is just an optimization. If the schedule function has captured variables, then
// we'll do less reference counting if we wake the waker by reference and then drop it.
if mem::size_of::<S>() > 0 {
Self::wake_by_ref(ptr);
Self::drop_waker(ptr);
return;
}
let raw = Self::from_ptr(ptr);
let mut state = (*raw.header).state.load(Ordering::Acquire);
loop {
// If the task is completed or closed, it can't be woken up.
if state & (COMPLETED | CLOSED) != 0 {
// Drop the waker.
Self::drop_waker(ptr);
break;
}
// If the task is already scheduled, we just need to synchronize with the thread that
// will run the task by "publishing" our current view of the memory.
if state & SCHEDULED != 0 {
// Update the state without actually modifying it.
match (*raw.header).state.compare_exchange_weak(
state,
state,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// Drop the waker.
Self::drop_waker(ptr);
break;
}
Err(s) => state = s,
}
} else {
// Mark the task as scheduled.
match (*raw.header).state.compare_exchange_weak(
state,
state | SCHEDULED,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// If the task is not yet scheduled and isn't currently running, now is the
// time to schedule it.
if state & RUNNING == 0 {
// Schedule the task.
Self::schedule(ptr);
} else {
// Drop the waker.
Self::drop_waker(ptr);
}
break;
}
Err(s) => state = s,
}
}
}
}
/// Wakes a waker by reference.
unsafe fn wake_by_ref(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
let mut state = (*raw.header).state.load(Ordering::Acquire);
loop {
// If the task is completed or closed, it can't be woken up.
if state & (COMPLETED | CLOSED) != 0 {
break;
}
// If the task is already scheduled, we just need to synchronize with the thread that
// will run the task by "publishing" our current view of the memory.
if state & SCHEDULED != 0 {
// Update the state without actually modifying it.
match (*raw.header).state.compare_exchange_weak(
state,
state,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => break,
Err(s) => state = s,
}
} else {
// If the task is not running, we can schedule right away.
let new = if state & RUNNING == 0 {
(state | SCHEDULED) + REFERENCE
} else {
state | SCHEDULED
};
// Mark the task as scheduled.
match (*raw.header).state.compare_exchange_weak(
state,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// If the task is not running, now is the time to schedule.
if state & RUNNING == 0 {
// If the reference count overflowed, abort.
if state > isize::max_value() as usize {
abort();
}
// Schedule the task. There is no need to call `Self::schedule(ptr)`
// because the schedule function cannot be destroyed while the waker is
// still alive.
let task = Runnable {
ptr: NonNull::new_unchecked(ptr as *mut ()),
};
(*raw.schedule)(task);
}
break;
}
Err(s) => state = s,
}
}
}
}
/// Clones a waker.
unsafe fn clone_waker(ptr: *const ()) -> RawWaker {
let raw = Self::from_ptr(ptr);
// Increment the reference count. With any kind of reference-counted data structure,
// relaxed ordering is appropriate when incrementing the counter.
let state = (*raw.header).state.fetch_add(REFERENCE, Ordering::Relaxed);
// If the reference count overflowed, abort.
if state > isize::max_value() as usize {
abort();
}
RawWaker::new(ptr, &Self::RAW_WAKER_VTABLE)
}
/// Drops a waker.
///
/// This function will decrement the reference count. If it drops down to zero, the associated
/// `Task` has been dropped too, and the task has not been completed, then it will get
/// scheduled one more time so that its future gets dropped by the executor.
#[inline]
unsafe fn drop_waker(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// Decrement the reference count.
let new = (*raw.header).state.fetch_sub(REFERENCE, Ordering::AcqRel) - REFERENCE;
// If this was the last reference to the task and the `Task` has been dropped too,
// then we need to decide how to destroy the task.
if new & !(REFERENCE - 1) == 0 && new & TASK == 0 {
if new & (COMPLETED | CLOSED) == 0 {
// If the task was not completed nor closed, close it and schedule one more time so
// that its future gets dropped by the executor.
(*raw.header)
.state
.store(SCHEDULED | CLOSED | REFERENCE, Ordering::Release);
Self::schedule(ptr);
} else {
// Otherwise, destroy the task right away.
Self::destroy(ptr);
}
}
}
/// Drops a task reference (`Runnable` or `Waker`).
///
/// This function will decrement the reference count. If it drops down to zero and the
/// associated `Task` handle has been dropped too, then the task gets destroyed.
#[inline]
unsafe fn drop_ref(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// Decrement the reference count.
let new = (*raw.header).state.fetch_sub(REFERENCE, Ordering::AcqRel) - REFERENCE;
// If this was the last reference to the task and the `Task` has been dropped too,
// then destroy the task.
if new & !(REFERENCE - 1) == 0 && new & TASK == 0 {
Self::destroy(ptr);
}
}
/// Schedules a task for running.
///
/// This function doesn't modify the state of the task. It only passes the task reference to
/// its schedule function.
unsafe fn schedule(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// If the schedule function has captured variables, create a temporary waker that prevents
// the task from getting deallocated while the function is being invoked.
let _waker;
if mem::size_of::<S>() > 0 {
_waker = Waker::from_raw(Self::clone_waker(ptr));
}
let task = Runnable {
ptr: NonNull::new_unchecked(ptr as *mut ()),
};
(*raw.schedule)(task);
}
/// Drops the future inside a task.
#[inline]
unsafe fn drop_future(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
// We need a safeguard against panics because the destructor can panic.
abort_on_panic(|| {
raw.future.drop_in_place();
})
}
/// Returns a pointer to the output inside a task.
unsafe fn get_output(ptr: *const ()) -> *const () {
let raw = Self::from_ptr(ptr);
raw.output as *const ()
}
/// Cleans up task's resources and deallocates it.
///
/// The schedule function will be dropped, and the task will then get deallocated.
/// The task must be closed before this function is called.
#[inline]
unsafe fn destroy(ptr: *const ()) {
let raw = Self::from_ptr(ptr);
let task_layout = Self::task_layout();
// We need a safeguard against panics because destructors can panic.
abort_on_panic(|| {
// Drop the schedule function.
(raw.schedule as *mut S).drop_in_place();
});
// Finally, deallocate the memory reserved by the task.
alloc::alloc::dealloc(ptr as *mut u8, task_layout.layout);
}
/// Runs a task.
///
/// If polling its future panics, the task will be closed and the panic will be propagated into
/// the caller.
unsafe fn run(ptr: *const ()) -> bool {
let raw = Self::from_ptr(ptr);
// Create a context from the raw task pointer and the vtable inside the its header.
let waker = ManuallyDrop::new(Waker::from_raw(RawWaker::new(ptr, &Self::RAW_WAKER_VTABLE)));
let cx = &mut Context::from_waker(&waker);
let mut state = (*raw.header).state.load(Ordering::Acquire);
// Update the task's state before polling its future.
loop {
// If the task has already been closed, drop the task reference and return.
if state & CLOSED != 0 {
// Drop the future.
Self::drop_future(ptr);
// Mark the task as unscheduled.
let state = (*raw.header).state.fetch_and(!SCHEDULED, Ordering::AcqRel);
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
Self::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
return false;
}
// Mark the task as unscheduled and running.
match (*raw.header).state.compare_exchange_weak(
state,
(state & !SCHEDULED) | RUNNING,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// Update the state because we're continuing with polling the future.
state = (state & !SCHEDULED) | RUNNING;
break;
}
Err(s) => state = s,
}
}
// Poll the inner future, but surround it with a guard that closes the task in case polling
// panics.
let guard = Guard(raw);
let poll = <F as Future>::poll(Pin::new_unchecked(&mut *raw.future), cx);
mem::forget(guard);
match poll {
Poll::Ready(out) => {
// Replace the future with its output.
Self::drop_future(ptr);
raw.output.write(out);
// The task is now completed.
loop {
// If the `Task` is dropped, we'll need to close it and drop the output.
let new = if state & TASK == 0 {
(state & !RUNNING & !SCHEDULED) | COMPLETED | CLOSED
} else {
(state & !RUNNING & !SCHEDULED) | COMPLETED
};
// Mark the task as not running and completed.
match (*raw.header).state.compare_exchange_weak(
state,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
// If the `Task` is dropped or if the task was closed while running,
// now it's time to drop the output.
if state & TASK == 0 || state & CLOSED != 0 {
// Drop the output.
abort_on_panic(|| raw.output.drop_in_place());
}
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
Self::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
break;
}
Err(s) => state = s,
}
}
}
Poll::Pending => {
let mut future_dropped = false;
// The task is still not completed.
loop {
// If the task was closed while running, we'll need to unschedule in case it
// was woken up and then destroy it.
let new = if state & CLOSED != 0 {
state & !RUNNING & !SCHEDULED
} else {
state & !RUNNING
};
if state & CLOSED != 0 && !future_dropped {
// The thread that closed the task didn't drop the future because it was
// running so now it's our responsibility to do so.
Self::drop_future(ptr);
future_dropped = true;
}
// Mark the task as not running.
match (*raw.header).state.compare_exchange_weak(
state,
new,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(state) => {
// If the task was closed while running, we need to notify the awaiter.
// If the task was woken up while running, we need to schedule it.
// Otherwise, we just drop the task reference.
if state & CLOSED != 0 {
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
Self::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
} else if state & SCHEDULED != 0 {
// The thread that woke the task up didn't reschedule it because
// it was running so now it's our responsibility to do so.
Self::schedule(ptr);
return true;
} else {
// Drop the task reference.
Self::drop_ref(ptr);
}
break;
}
Err(s) => state = s,
}
}
}
}
return false;
/// A guard that closes the task if polling its future panics.
struct Guard<F, T, S>(RawTask<F, T, S>)
where
F: Future<Output = T>,
S: Fn(Runnable);
impl<F, T, S> Drop for Guard<F, T, S>
where
F: Future<Output = T>,
S: Fn(Runnable),
{
fn drop(&mut self) {
let raw = self.0;
let ptr = raw.header as *const ();
unsafe {
let mut state = (*raw.header).state.load(Ordering::Acquire);
loop {
// If the task was closed while running, then unschedule it, drop its
// future, and drop the task reference.
if state & CLOSED != 0 {
// The thread that closed the task didn't drop the future because it
// was running so now it's our responsibility to do so.
RawTask::<F, T, S>::drop_future(ptr);
// Mark the task as not running and not scheduled.
(*raw.header)
.state
.fetch_and(!RUNNING & !SCHEDULED, Ordering::AcqRel);
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
RawTask::<F, T, S>::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
break;
}
// Mark the task as not running, not scheduled, and closed.
match (*raw.header).state.compare_exchange_weak(
state,
(state & !RUNNING & !SCHEDULED) | CLOSED,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(state) => {
// Drop the future because the task is now closed.
RawTask::<F, T, S>::drop_future(ptr);
// Take the awaiter out.
let mut awaiter = None;
if state & AWAITER != 0 {
awaiter = (*raw.header).take(None);
}
// Drop the task reference.
RawTask::<F, T, S>::drop_ref(ptr);
// Notify the awaiter that the future has been dropped.
if let Some(w) = awaiter {
abort_on_panic(|| w.wake());
}
break;
}
Err(s) => state = s,
}
}
}
}
}
}
}