netstack3_ip/base.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use alloc::collections::HashMap;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::convert::Infallible as Never;
use core::fmt::Debug;
use core::hash::Hash;
use core::marker::PhantomData;
use core::num::NonZeroU8;
use core::ops::ControlFlow;
#[cfg(test)]
use core::ops::DerefMut;
use core::sync::atomic::{self, AtomicU16};
use derivative::Derivative;
use explicit::ResultExt as _;
use lock_order::lock::{OrderedLockAccess, OrderedLockRef};
use log::{debug, error, trace};
use net_types::ip::{
GenericOverIp, Ip, IpInvariant, Ipv4, Ipv4Addr, Ipv6, Ipv6Addr, Ipv6SourceAddr, Mtu, Subnet,
};
use net_types::{
MulticastAddr, MulticastAddress, NonMappedAddr, NonMulticastAddr, SpecifiedAddr,
SpecifiedAddress as _, UnicastAddr, Witness,
};
use netstack3_base::socket::SocketIpAddrExt as _;
use netstack3_base::sync::{Mutex, PrimaryRc, RwLock, StrongRc, WeakRc};
use netstack3_base::{
AnyDevice, BroadcastIpExt, CoreTimerContext, Counter, CounterContext, DeviceIdContext,
DeviceIdentifier as _, DeviceWithName, ErrorAndSerializer, EventContext, FrameDestination,
HandleableTimer, Inspectable, Inspector, InstantContext, IpAddressId, IpDeviceAddr,
IpDeviceAddressIdContext, IpExt, Matcher as _, NestedIntoCoreTimerCtx, NotFoundError,
RngContext, SendFrameErrorReason, StrongDeviceIdentifier, TimerBindingsTypes, TimerContext,
TimerHandler, TracingContext, WeakIpAddressId, WrapBroadcastMarker,
};
use netstack3_filter::{
self as filter, ConnectionDirection, ConntrackConnection, FilterBindingsContext,
FilterBindingsTypes, FilterHandler as _, FilterIpContext, FilterIpExt, FilterIpMetadata,
FilterTimerId, ForwardedPacket, IngressVerdict, IpPacket, TransportPacketSerializer, Tuple,
WeakConnectionError, WeakConntrackConnection,
};
use packet::{
Buf, BufferAlloc, BufferMut, GrowBuffer, PacketConstraints, ParseBufferMut, ParseMetadata,
SerializeError, Serializer as _,
};
use packet_formats::error::IpParseError;
use packet_formats::ip::{DscpAndEcn, IpPacket as _, IpPacketBuilder as _};
use packet_formats::ipv4::{Ipv4FragmentType, Ipv4Packet};
use packet_formats::ipv6::Ipv6Packet;
use thiserror::Error;
use zerocopy::SplitByteSlice;
use crate::internal::device::opaque_iid::IidSecret;
use crate::internal::device::slaac::SlaacCounters;
use crate::internal::device::state::{
IpDeviceStateBindingsTypes, IpDeviceStateIpExt, Ipv6AddressFlags, Ipv6AddressState,
};
use crate::internal::device::{
self, IpAddressIdExt, IpDeviceBindingsContext, IpDeviceIpExt, IpDeviceSendContext,
};
use crate::internal::fragmentation::{
FragmentableIpSerializer, FragmentationCounters, FragmentationIpExt, IpFragmenter,
};
use crate::internal::gmp::GmpQueryHandler;
use crate::internal::icmp::{
IcmpBindingsTypes, IcmpErrorHandler, IcmpHandlerIpExt, Icmpv4Error, Icmpv4ErrorKind,
Icmpv4State, Icmpv4StateBuilder, Icmpv6ErrorKind, Icmpv6State, Icmpv6StateBuilder,
};
use crate::internal::ipv6::Ipv6PacketAction;
use crate::internal::local_delivery::{
IpHeaderInfo, Ipv4HeaderInfo, Ipv6HeaderInfo, LocalDeliveryPacketInfo, ReceiveIpPacketMeta,
TransparentLocalDelivery,
};
use crate::internal::multicast_forwarding::counters::MulticastForwardingCounters;
use crate::internal::multicast_forwarding::route::{
MulticastRouteIpExt, MulticastRouteTarget, MulticastRouteTargets,
};
use crate::internal::multicast_forwarding::state::{
MulticastForwardingState, MulticastForwardingStateContext,
};
use crate::internal::multicast_forwarding::{
MulticastForwardingBindingsTypes, MulticastForwardingDeviceContext, MulticastForwardingEvent,
MulticastForwardingTimerId,
};
use crate::internal::path_mtu::{PmtuBindingsTypes, PmtuCache, PmtuTimerId};
use crate::internal::raw::counters::RawIpSocketCounters;
use crate::internal::raw::{RawIpSocketHandler, RawIpSocketMap, RawIpSocketsBindingsTypes};
use crate::internal::reassembly::{
FragmentBindingsTypes, FragmentHandler, FragmentProcessingState, FragmentTimerId,
FragmentablePacket, IpPacketFragmentCache,
};
use crate::internal::routing::rules::{Marks, Rule, RuleAction, RuleInput, RulesTable};
use crate::internal::routing::{
IpRoutingDeviceContext, NonLocalSrcAddrPolicy, PacketOrigin, RoutingTable,
};
use crate::internal::socket::{IpSocketBindingsContext, IpSocketContext, IpSocketHandler};
use crate::internal::types::{
self, Destination, InternalForwarding, NextHop, ResolvedRoute, RoutableIpAddr,
};
use crate::internal::{ipv6, multicast_forwarding};
#[cfg(test)]
mod tests;
/// Default IPv4 TTL.
pub const DEFAULT_TTL: NonZeroU8 = NonZeroU8::new(64).unwrap();
/// Hop limits for packets sent to multicast and unicast destinations.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[allow(missing_docs)]
pub struct HopLimits {
pub unicast: NonZeroU8,
pub multicast: NonZeroU8,
}
/// Default hop limits for sockets.
pub const DEFAULT_HOP_LIMITS: HopLimits =
HopLimits { unicast: DEFAULT_TTL, multicast: NonZeroU8::new(1).unwrap() };
/// The IPv6 subnet that contains all addresses; `::/0`.
// Safe because 0 is less than the number of IPv6 address bits.
pub const IPV6_DEFAULT_SUBNET: Subnet<Ipv6Addr> =
unsafe { Subnet::new_unchecked(Ipv6::UNSPECIFIED_ADDRESS, 0) };
/// An error encountered when receiving a transport-layer packet.
#[derive(Debug)]
#[allow(missing_docs)]
pub enum TransportReceiveError {
ProtocolUnsupported,
PortUnreachable,
}
impl TransportReceiveError {
fn into_icmpv4_error(self, header_len: usize) -> Icmpv4Error {
let kind = match self {
TransportReceiveError::ProtocolUnsupported => Icmpv4ErrorKind::ProtocolUnreachable,
TransportReceiveError::PortUnreachable => Icmpv4ErrorKind::PortUnreachable,
};
Icmpv4Error { kind, header_len }
}
fn into_icmpv6_error(self, header_len: usize) -> Icmpv6ErrorKind {
match self {
TransportReceiveError::ProtocolUnsupported => {
Icmpv6ErrorKind::ProtocolUnreachable { header_len }
}
TransportReceiveError::PortUnreachable => Icmpv6ErrorKind::PortUnreachable,
}
}
}
/// Sidecar metadata passed along with the packet.
///
/// Note: This metadata may be regenerated when packet handling requires
/// performing multiple actions (e.g. sending the packet out multiple interfaces
/// as part of multicast forwarding).
#[derive(Derivative)]
#[derivative(Default(bound = ""))]
pub struct IpLayerPacketMetadata<I: packet_formats::ip::IpExt, A, BT: FilterBindingsTypes> {
conntrack_connection_and_direction:
Option<(ConntrackConnection<I, A, BT>, ConnectionDirection)>,
#[cfg(debug_assertions)]
drop_check: IpLayerPacketMetadataDropCheck,
}
/// A type that asserts, on drop, that it was intentionally being dropped.
///
/// NOTE: Unfortunately, debugging this requires backtraces, since track_caller
/// won't do what we want (https://github.com/rust-lang/rust/issues/116942).
/// Since this is only enabled in debug, the assumption is that stacktraces are
/// enabled.
#[cfg(debug_assertions)]
#[derive(Default)]
struct IpLayerPacketMetadataDropCheck {
okay_to_drop: bool,
}
/// Metadata that is produced and consumed by the IP layer for each packet, but
/// which also traverses the device layer.
#[derive(Debug, Default, Clone)]
pub struct DeviceIpLayerMetadata {
/// Weak reference to this packet's connection tracking entry, if the packet is
/// tracked.
///
/// This allows NAT to consistently associate locally-generated, looped-back
/// packets with the same connection at every filtering hook even when NAT may
/// have been performed on them, causing them to no longer match the original or
/// reply tuples of the connection.
conntrack_entry: Option<(WeakConntrackConnection, ConnectionDirection)>,
}
impl<I: IpLayerIpExt, A: WeakIpAddressId<I::Addr>, BT: FilterBindingsTypes>
IpLayerPacketMetadata<I, A, BT>
{
fn from_device_ip_layer_metadata<CC>(
core_ctx: &mut CC,
DeviceIpLayerMetadata { conntrack_entry }: DeviceIpLayerMetadata,
) -> Self
where
CC: CounterContext<IpCounters<I>>,
{
match conntrack_entry
.map(|(conn, dir)| conn.into_inner().map(|conn| (conn, dir)))
.transpose()
{
// Either the packet was tracked and we've preserved its conntrack entry across
// loopback, or it was untracked and we just stash the `None`.
Ok(conn_and_dir) => IpLayerPacketMetadata {
conntrack_connection_and_direction: conn_and_dir,
..Default::default()
},
// Conntrack entry was removed from table after packet was enqueued in loopback.
Err(WeakConnectionError::EntryRemoved) => IpLayerPacketMetadata::default(),
// Conntrack entry no longer matches the packet (for example, it could be that
// this is an IPv6 packet that was modified at the device layer and therefore it
// no longer matches its IPv4 conntrack entry).
Err(WeakConnectionError::InvalidEntry) => {
core_ctx
.increment(|counters: &IpCounters<I>| &counters.invalid_cached_conntrack_entry);
IpLayerPacketMetadata::default()
}
}
}
}
impl<I: IpExt, A, BT: FilterBindingsTypes> IpLayerPacketMetadata<I, A, BT> {
/// Acknowledge that it's okay to drop this packet metadata.
///
/// When compiled with debug assertions, dropping [`IplayerPacketMetadata`]
/// will panic if this method has not previously been called.
pub(crate) fn acknowledge_drop(&mut self) {
#[cfg(debug_assertions)]
{
self.drop_check.okay_to_drop = true;
}
}
}
#[cfg(debug_assertions)]
impl Drop for IpLayerPacketMetadataDropCheck {
fn drop(&mut self) {
if !self.okay_to_drop {
panic!(
"IpLayerPacketMetadata dropped without acknowledgement. https://fxbug.dev/334127474"
);
}
}
}
impl<I: packet_formats::ip::IpExt, A, BT: FilterBindingsTypes> FilterIpMetadata<I, A, BT>
for IpLayerPacketMetadata<I, A, BT>
{
fn take_connection_and_direction(
&mut self,
) -> Option<(ConntrackConnection<I, A, BT>, ConnectionDirection)> {
self.conntrack_connection_and_direction.take()
}
fn replace_connection_and_direction(
&mut self,
conn: ConntrackConnection<I, A, BT>,
direction: ConnectionDirection,
) -> Option<ConntrackConnection<I, A, BT>> {
self.conntrack_connection_and_direction.replace((conn, direction)).map(|(conn, _dir)| conn)
}
}
/// Send errors observed at or above the IP layer that carry a serializer.
pub type IpSendFrameError<S> = ErrorAndSerializer<IpSendFrameErrorReason, S>;
/// Send error cause for [`IpSendFrameError`].
#[derive(Debug, PartialEq)]
pub enum IpSendFrameErrorReason {
/// Error comes from the device layer.
Device(SendFrameErrorReason),
/// The frame's source or destination address is in the loopback subnet, but
/// the target device is not the loopback device.
IllegalLoopbackAddress,
}
impl From<SendFrameErrorReason> for IpSendFrameErrorReason {
fn from(value: SendFrameErrorReason) -> Self {
Self::Device(value)
}
}
/// The execution context provided by a transport layer protocol to the IP
/// layer.
///
/// An implementation for `()` is provided which indicates that a particular
/// transport layer protocol is unsupported.
pub trait IpTransportContext<I: IpExt, BC, CC: DeviceIdContext<AnyDevice> + ?Sized> {
/// Receive an ICMP error message.
///
/// All arguments beginning with `original_` are fields from the IP packet
/// that triggered the error. The `original_body` is provided here so that
/// the error can be associated with a transport-layer socket. `device`
/// identifies the device that received the ICMP error message packet.
///
/// While ICMPv4 error messages are supposed to contain the first 8 bytes of
/// the body of the offending packet, and ICMPv6 error messages are supposed
/// to contain as much of the offending packet as possible without violating
/// the IPv6 minimum MTU, the caller does NOT guarantee that either of these
/// hold. It is `receive_icmp_error`'s responsibility to handle any length
/// of `original_body`, and to perform any necessary validation.
fn receive_icmp_error(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
original_src_ip: Option<SpecifiedAddr<I::Addr>>,
original_dst_ip: SpecifiedAddr<I::Addr>,
original_body: &[u8],
err: I::ErrorCode,
);
/// Receive a transport layer packet in an IP packet.
///
/// In the event of an unreachable port, `receive_ip_packet` returns the
/// buffer in its original state (with the transport packet un-parsed) in
/// the `Err` variant.
fn receive_ip_packet<B: BufferMut, H: IpHeaderInfo<I>>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
src_ip: I::RecvSrcAddr,
dst_ip: SpecifiedAddr<I::Addr>,
buffer: B,
info: &LocalDeliveryPacketInfo<I, H>,
) -> Result<(), (B, TransportReceiveError)>;
}
impl<I: IpExt, BC, CC: DeviceIdContext<AnyDevice> + ?Sized> IpTransportContext<I, BC, CC> for () {
fn receive_icmp_error(
_core_ctx: &mut CC,
_bindings_ctx: &mut BC,
_device: &CC::DeviceId,
_original_src_ip: Option<SpecifiedAddr<I::Addr>>,
_original_dst_ip: SpecifiedAddr<I::Addr>,
_original_body: &[u8],
err: I::ErrorCode,
) {
trace!("IpTransportContext::receive_icmp_error: Received ICMP error message ({:?}) for unsupported IP protocol", err);
}
fn receive_ip_packet<B: BufferMut, H: IpHeaderInfo<I>>(
_core_ctx: &mut CC,
_bindings_ctx: &mut BC,
_device: &CC::DeviceId,
_src_ip: I::RecvSrcAddr,
_dst_ip: SpecifiedAddr<I::Addr>,
buffer: B,
_info: &LocalDeliveryPacketInfo<I, H>,
) -> Result<(), (B, TransportReceiveError)> {
Err((buffer, TransportReceiveError::ProtocolUnsupported))
}
}
/// The base execution context provided by the IP layer to transport layer
/// protocols.
pub trait BaseTransportIpContext<I: IpExt, BC>: DeviceIdContext<AnyDevice> {
/// The iterator given to
/// [`BaseTransportIpContext::with_devices_with_assigned_addr`].
type DevicesWithAddrIter<'s>: Iterator<Item = Self::DeviceId>;
/// Is this one of our local addresses, and is it in the assigned state?
///
/// Calls `cb` with an iterator over all the local interfaces for which
/// `addr` is an associated address, and, for IPv6, for which it is in the
/// "assigned" state.
fn with_devices_with_assigned_addr<O, F: FnOnce(Self::DevicesWithAddrIter<'_>) -> O>(
&mut self,
addr: SpecifiedAddr<I::Addr>,
cb: F,
) -> O;
/// Get default hop limits.
///
/// If `device` is not `None` and exists, its hop limits will be returned.
/// Otherwise the system defaults are returned.
fn get_default_hop_limits(&mut self, device: Option<&Self::DeviceId>) -> HopLimits;
/// Gets the original destination for the tracked connection indexed by
/// `tuple`, which includes the source and destination addresses and
/// transport-layer ports as well as the transport protocol number.
fn get_original_destination(&mut self, tuple: &Tuple<I>) -> Option<(I::Addr, u16)>;
}
/// A marker trait for the traits required by the transport layer from the IP
/// layer.
pub trait TransportIpContext<I: IpExt, BC>:
BaseTransportIpContext<I, BC> + IpSocketHandler<I, BC>
{
}
impl<I, CC, BC> TransportIpContext<I, BC> for CC
where
I: IpExt,
CC: BaseTransportIpContext<I, BC> + IpSocketHandler<I, BC>,
{
}
/// Abstraction over the ability to join and leave multicast groups.
pub trait MulticastMembershipHandler<I: Ip, BC>: DeviceIdContext<AnyDevice> {
/// Requests that the specified device join the given multicast group.
///
/// If this method is called multiple times with the same device and
/// address, the device will remain joined to the multicast group until
/// [`MulticastTransportIpContext::leave_multicast_group`] has been called
/// the same number of times.
fn join_multicast_group(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
addr: MulticastAddr<I::Addr>,
);
/// Requests that the specified device leave the given multicast group.
///
/// Each call to this method must correspond to an earlier call to
/// [`MulticastTransportIpContext::join_multicast_group`]. The device
/// remains a member of the multicast group so long as some call to
/// `join_multicast_group` has been made without a corresponding call to
/// `leave_multicast_group`.
fn leave_multicast_group(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
addr: MulticastAddr<I::Addr>,
);
/// Selects a default device with which to join the given multicast group.
///
/// The selection is made by consulting the routing table; If there is no
/// route available to the given address, an error is returned.
fn select_device_for_multicast_group(
&mut self,
addr: MulticastAddr<I::Addr>,
marks: &Marks,
) -> Result<Self::DeviceId, ResolveRouteError>;
}
// TODO(joshlf): With all 256 protocol numbers (minus reserved ones) given their
// own associated type in both traits, running `cargo check` on a 2018 MacBook
// Pro takes over a minute. Eventually - and before we formally publish this as
// a library - we should identify the bottleneck in the compiler and optimize
// it. For the time being, however, we only support protocol numbers that we
// actually use (TCP and UDP).
/// Enables a blanket implementation of [`TransportIpContext`].
///
/// Implementing this marker trait for a type enables a blanket implementation
/// of `TransportIpContext` given the other requirements are met.
pub trait UseTransportIpContextBlanket {}
/// An iterator supporting the blanket implementation of
/// [`BaseTransportIpContext::with_devices_with_assigned_addr`].
pub struct AssignedAddressDeviceIterator<Iter, I, D>(Iter, PhantomData<(I, D)>);
impl<Iter, I, D> Iterator for AssignedAddressDeviceIterator<Iter, I, D>
where
Iter: Iterator<Item = (D, I::AddressStatus)>,
I: IpLayerIpExt,
{
type Item = D;
fn next(&mut self) -> Option<D> {
let Self(iter, PhantomData) = self;
iter.by_ref().find_map(|(device, state)| is_unicast_assigned::<I>(&state).then_some(device))
}
}
impl<
I: IpLayerIpExt,
BC: FilterBindingsContext,
CC: IpDeviceContext<I>
+ IpSocketHandler<I, BC>
+ IpStateContext<I>
+ FilterIpContext<I, BC>
+ UseTransportIpContextBlanket,
> BaseTransportIpContext<I, BC> for CC
{
type DevicesWithAddrIter<'s> =
AssignedAddressDeviceIterator<CC::DeviceAndAddressStatusIter<'s>, I, CC::DeviceId>;
fn with_devices_with_assigned_addr<O, F: FnOnce(Self::DevicesWithAddrIter<'_>) -> O>(
&mut self,
addr: SpecifiedAddr<I::Addr>,
cb: F,
) -> O {
self.with_address_statuses(addr, |it| cb(AssignedAddressDeviceIterator(it, PhantomData)))
}
fn get_default_hop_limits(&mut self, device: Option<&Self::DeviceId>) -> HopLimits {
match device {
Some(device) => HopLimits {
unicast: IpDeviceEgressStateContext::<I>::get_hop_limit(self, device),
..DEFAULT_HOP_LIMITS
},
None => DEFAULT_HOP_LIMITS,
}
}
fn get_original_destination(&mut self, tuple: &Tuple<I>) -> Option<(I::Addr, u16)> {
self.with_filter_state(|state| {
let conn = state.conntrack.get_connection(&tuple)?;
if !conn.destination_nat() {
return None;
}
// The tuple marking the original direction of the connection is
// never modified by NAT. This means it can be used to recover the
// destination before NAT was performed.
let original = conn.original_tuple();
Some((original.dst_addr, original.dst_port_or_id))
})
}
}
/// The status of an IP address on an interface.
#[derive(Debug, PartialEq)]
#[allow(missing_docs)]
pub enum AddressStatus<S> {
Present(S),
Unassigned,
}
impl<S> AddressStatus<S> {
fn into_present(self) -> Option<S> {
match self {
Self::Present(s) => Some(s),
Self::Unassigned => None,
}
}
}
impl AddressStatus<Ipv4PresentAddressStatus> {
/// Creates an IPv4 `AddressStatus` for `addr` on `device`.
pub fn from_context_addr_v4<
BC: IpDeviceStateBindingsTypes,
CC: device::IpDeviceStateContext<Ipv4, BC> + GmpQueryHandler<Ipv4, BC>,
>(
core_ctx: &mut CC,
device: &CC::DeviceId,
addr: SpecifiedAddr<Ipv4Addr>,
) -> AddressStatus<Ipv4PresentAddressStatus> {
if addr.is_limited_broadcast() {
return AddressStatus::Present(Ipv4PresentAddressStatus::LimitedBroadcast);
}
if MulticastAddr::new(addr.get())
.is_some_and(|addr| GmpQueryHandler::gmp_is_in_group(core_ctx, device, addr))
{
return AddressStatus::Present(Ipv4PresentAddressStatus::Multicast);
}
core_ctx.with_address_ids(device, |mut addrs, _core_ctx| {
addrs
.find_map(|addr_id| {
let dev_addr = addr_id.addr_sub();
let (dev_addr, subnet) = dev_addr.addr_subnet();
if **dev_addr == addr {
Some(AddressStatus::Present(Ipv4PresentAddressStatus::Unicast))
} else if addr.get() == subnet.broadcast() {
Some(AddressStatus::Present(Ipv4PresentAddressStatus::SubnetBroadcast))
} else if device.is_loopback() && subnet.contains(addr.as_ref()) {
Some(AddressStatus::Present(Ipv4PresentAddressStatus::LoopbackSubnet))
} else {
None
}
})
.unwrap_or(AddressStatus::Unassigned)
})
}
}
impl AddressStatus<Ipv6PresentAddressStatus> {
/// /// Creates an IPv6 `AddressStatus` for `addr` on `device`.
pub fn from_context_addr_v6<
BC: IpDeviceBindingsContext<Ipv6, CC::DeviceId>,
CC: device::Ipv6DeviceContext<BC> + GmpQueryHandler<Ipv6, BC>,
>(
core_ctx: &mut CC,
device: &CC::DeviceId,
addr: SpecifiedAddr<Ipv6Addr>,
) -> AddressStatus<Ipv6PresentAddressStatus> {
if MulticastAddr::new(addr.get())
.is_some_and(|addr| GmpQueryHandler::gmp_is_in_group(core_ctx, device, addr))
{
return AddressStatus::Present(Ipv6PresentAddressStatus::Multicast);
}
let addr_id = match core_ctx.get_address_id(device, addr) {
Ok(o) => o,
Err(NotFoundError) => return AddressStatus::Unassigned,
};
let assigned = core_ctx.with_ip_address_state(
device,
&addr_id,
|Ipv6AddressState { flags: Ipv6AddressFlags { assigned }, config: _ }| *assigned,
);
if assigned {
AddressStatus::Present(Ipv6PresentAddressStatus::UnicastAssigned)
} else {
AddressStatus::Present(Ipv6PresentAddressStatus::UnicastTentative)
}
}
}
impl<S: GenericOverIp<I>, I: Ip> GenericOverIp<I> for AddressStatus<S> {
type Type = AddressStatus<S::Type>;
}
/// The status of an IPv4 address.
#[derive(Debug, PartialEq)]
#[allow(missing_docs)]
pub enum Ipv4PresentAddressStatus {
LimitedBroadcast,
SubnetBroadcast,
Multicast,
Unicast,
/// This status indicates that the queried device was Loopback. The address
/// belongs to a subnet that is assigned to the interface. This status
/// takes lower precedence than `Unicast` and `SubnetBroadcast``, E.g. if
/// the loopback device is assigned `127.0.0.1/8`:
/// * address `127.0.0.1` -> `Unicast`
/// * address `127.0.0.2` -> `LoopbackSubnet`
/// * address `127.255.255.255` -> `SubnetBroadcast`
/// This exists for Linux conformance, which on the Loopback device,
/// considers an IPv4 address assigned if it belongs to one of the device's
/// assigned subnets.
LoopbackSubnet,
}
impl Ipv4PresentAddressStatus {
fn to_broadcast_marker(&self) -> Option<<Ipv4 as BroadcastIpExt>::BroadcastMarker> {
match self {
Self::LimitedBroadcast | Self::SubnetBroadcast => Some(()),
Self::Multicast | Self::Unicast | Self::LoopbackSubnet => None,
}
}
}
/// The status of an IPv6 address.
#[derive(Debug, PartialEq)]
#[allow(missing_docs)]
pub enum Ipv6PresentAddressStatus {
Multicast,
UnicastAssigned,
UnicastTentative,
}
/// An extension trait providing IP layer properties.
pub trait IpLayerIpExt:
IpExt
+ MulticastRouteIpExt
+ IcmpHandlerIpExt
+ FilterIpExt
+ FragmentationIpExt
+ IpDeviceIpExt
+ IpAddressIdExt
{
/// IP Address status.
type AddressStatus: Debug;
/// IP Address state.
type State<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>: AsRef<
IpStateInner<Self, StrongDeviceId, BT>,
>;
/// State kept for packet identifiers.
type PacketIdState;
/// The type of a single packet identifier.
type PacketId;
/// Receive counters.
type RxCounters: Default + Inspectable;
/// Produces the next packet ID from the state.
fn next_packet_id_from_state(state: &Self::PacketIdState) -> Self::PacketId;
}
impl IpLayerIpExt for Ipv4 {
type AddressStatus = Ipv4PresentAddressStatus;
type State<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes> =
Ipv4State<StrongDeviceId, BT>;
type PacketIdState = AtomicU16;
type PacketId = u16;
type RxCounters = Ipv4RxCounters;
fn next_packet_id_from_state(next_packet_id: &Self::PacketIdState) -> Self::PacketId {
// Relaxed ordering as we only need atomicity without synchronization. See
// https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
// for more details.
next_packet_id.fetch_add(1, atomic::Ordering::Relaxed)
}
}
impl IpLayerIpExt for Ipv6 {
type AddressStatus = Ipv6PresentAddressStatus;
type State<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes> =
Ipv6State<StrongDeviceId, BT>;
type PacketIdState = ();
type PacketId = ();
type RxCounters = Ipv6RxCounters;
fn next_packet_id_from_state((): &Self::PacketIdState) -> Self::PacketId {
()
}
}
/// The state context provided to the IP layer.
pub trait IpStateContext<I: IpLayerIpExt>:
IpRouteTablesContext<I, DeviceId: DeviceWithName>
{
/// The context that provides access to the IP routing tables.
type IpRouteTablesCtx<'a>: IpRouteTablesContext<I, DeviceId = Self::DeviceId>;
/// Gets an immutable reference to the rules table.
fn with_rules_table<
O,
F: FnOnce(&mut Self::IpRouteTablesCtx<'_>, &RulesTable<I, Self::DeviceId>) -> O,
>(
&mut self,
cb: F,
) -> O;
/// Gets a mutable reference to the rules table.
fn with_rules_table_mut<
O,
F: FnOnce(&mut Self::IpRouteTablesCtx<'_>, &mut RulesTable<I, Self::DeviceId>) -> O,
>(
&mut self,
cb: F,
) -> O;
}
/// The state context that gives access to routing tables provided to the IP layer.
pub trait IpRouteTablesContext<I: IpLayerIpExt>:
IpRouteTableContext<I> + IpDeviceContext<I>
{
/// The inner context that can provide access to individual routing tables.
type Ctx<'a>: IpRouteTableContext<
I,
DeviceId = Self::DeviceId,
WeakDeviceId = Self::WeakDeviceId,
>;
/// Gets the main table ID.
fn main_table_id(&self) -> RoutingTableId<I, Self::DeviceId>;
/// Gets immutable access to all the routing tables that currently exist.
fn with_ip_routing_tables<
O,
F: FnOnce(
&mut Self::Ctx<'_>,
&HashMap<
RoutingTableId<I, Self::DeviceId>,
PrimaryRc<RwLock<RoutingTable<I, Self::DeviceId>>>,
>,
) -> O,
>(
&mut self,
cb: F,
) -> O;
/// Gets mutable access to all the routing tables that currently exist.
fn with_ip_routing_tables_mut<
O,
F: FnOnce(
&mut HashMap<
RoutingTableId<I, Self::DeviceId>,
PrimaryRc<RwLock<RoutingTable<I, Self::DeviceId>>>,
>,
) -> O,
>(
&mut self,
cb: F,
) -> O;
// TODO(https://fxbug.dev/354724171): Remove this function when we no longer
// make routing decisions starting from the main table.
/// Calls the function with an immutable reference to IP routing table.
fn with_main_ip_routing_table<
O,
F: FnOnce(&mut Self::IpDeviceIdCtx<'_>, &RoutingTable<I, Self::DeviceId>) -> O,
>(
&mut self,
cb: F,
) -> O {
let main_table_id = self.main_table_id();
self.with_ip_routing_table(&main_table_id, cb)
}
// TODO(https://fxbug.dev/341194323): Remove this function when we no longer
// only update the main routing table by default.
/// Calls the function with a mutable reference to IP routing table.
fn with_main_ip_routing_table_mut<
O,
F: FnOnce(&mut Self::IpDeviceIdCtx<'_>, &mut RoutingTable<I, Self::DeviceId>) -> O,
>(
&mut self,
cb: F,
) -> O {
let main_table_id = self.main_table_id();
self.with_ip_routing_table_mut(&main_table_id, cb)
}
}
/// The state context that gives access to a singular routing table.
pub trait IpRouteTableContext<I: IpLayerIpExt>: IpDeviceContext<I> {
/// The inner device id context.
type IpDeviceIdCtx<'a>: DeviceIdContext<AnyDevice, DeviceId = Self::DeviceId, WeakDeviceId = Self::WeakDeviceId>
+ IpRoutingDeviceContext<I>
+ IpDeviceContext<I>;
/// Calls the function with an immutable reference to IP routing table.
fn with_ip_routing_table<
O,
F: FnOnce(&mut Self::IpDeviceIdCtx<'_>, &RoutingTable<I, Self::DeviceId>) -> O,
>(
&mut self,
table_id: &RoutingTableId<I, Self::DeviceId>,
cb: F,
) -> O;
/// Calls the function with a mutable reference to IP routing table.
fn with_ip_routing_table_mut<
O,
F: FnOnce(&mut Self::IpDeviceIdCtx<'_>, &mut RoutingTable<I, Self::DeviceId>) -> O,
>(
&mut self,
table_id: &RoutingTableId<I, Self::DeviceId>,
cb: F,
) -> O;
}
/// Provides access to an IP device's state for IP layer egress.
pub trait IpDeviceEgressStateContext<I: IpLayerIpExt>: DeviceIdContext<AnyDevice> {
/// Calls the callback with the next packet ID.
fn with_next_packet_id<O, F: FnOnce(&I::PacketIdState) -> O>(&self, cb: F) -> O;
/// Returns the best local address for communicating with the remote.
fn get_local_addr_for_remote(
&mut self,
device_id: &Self::DeviceId,
remote: Option<SpecifiedAddr<I::Addr>>,
) -> Option<IpDeviceAddr<I::Addr>>;
/// Returns the hop limit.
fn get_hop_limit(&mut self, device_id: &Self::DeviceId) -> NonZeroU8;
}
/// Provides access to an IP device's state for IP layer ingress.
pub trait IpDeviceIngressStateContext<I: IpLayerIpExt>: DeviceIdContext<AnyDevice> {
/// Gets the status of an address.
///
/// Only the specified device will be checked for the address. Returns
/// [`AddressStatus::Unassigned`] if the address is not assigned to the
/// device.
fn address_status_for_device(
&mut self,
addr: SpecifiedAddr<I::Addr>,
device_id: &Self::DeviceId,
) -> AddressStatus<I::AddressStatus>;
}
/// The IP device context provided to the IP layer.
pub trait IpDeviceContext<I: IpLayerIpExt>:
IpDeviceEgressStateContext<I> + IpDeviceIngressStateContext<I>
{
/// Is the device enabled?
fn is_ip_device_enabled(&mut self, device_id: &Self::DeviceId) -> bool;
/// The iterator provided to [`IpDeviceContext::with_address_statuses`].
type DeviceAndAddressStatusIter<'a>: Iterator<Item = (Self::DeviceId, I::AddressStatus)>;
/// Provides access to the status of an address.
///
/// Calls the provided callback with an iterator over the devices for which
/// the address is assigned and the status of the assignment for each
/// device.
fn with_address_statuses<F: FnOnce(Self::DeviceAndAddressStatusIter<'_>) -> R, R>(
&mut self,
addr: SpecifiedAddr<I::Addr>,
cb: F,
) -> R;
/// Returns true iff the device has unicast forwarding enabled.
fn is_device_unicast_forwarding_enabled(&mut self, device_id: &Self::DeviceId) -> bool;
}
/// Provides the ability to check neighbor reachability via a specific device.
pub trait IpDeviceConfirmReachableContext<I: IpLayerIpExt, BC>: DeviceIdContext<AnyDevice> {
/// Confirm transport-layer forward reachability to the specified neighbor
/// through the specified device.
fn confirm_reachable(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
neighbor: SpecifiedAddr<I::Addr>,
);
}
/// Provides access to an IP device's MTU for the IP layer.
pub trait IpDeviceMtuContext<I: Ip>: DeviceIdContext<AnyDevice> {
/// Returns the MTU of the device.
///
/// The MTU is the maximum size of an IP packet.
fn get_mtu(&mut self, device_id: &Self::DeviceId) -> Mtu;
}
/// Events observed at the IP layer.
#[derive(Debug, Eq, Hash, PartialEq, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub enum IpLayerEvent<DeviceId, I: IpLayerIpExt> {
/// A route needs to be added.
AddRoute(types::AddableEntry<I::Addr, DeviceId>),
/// Routes matching these specifiers need to be removed.
RemoveRoutes {
/// Destination subnet
subnet: Subnet<I::Addr>,
/// Outgoing interface
device: DeviceId,
/// Gateway/next-hop
gateway: Option<SpecifiedAddr<I::Addr>>,
},
/// The multicast forwarding engine emitted an event.
MulticastForwarding(MulticastForwardingEvent<I, DeviceId>),
}
impl<DeviceId, I: IpLayerIpExt> From<MulticastForwardingEvent<I, DeviceId>>
for IpLayerEvent<DeviceId, I>
{
fn from(event: MulticastForwardingEvent<I, DeviceId>) -> IpLayerEvent<DeviceId, I> {
IpLayerEvent::MulticastForwarding(event)
}
}
impl<DeviceId, I: IpLayerIpExt> IpLayerEvent<DeviceId, I> {
/// Changes the device id type with `map`.
pub fn map_device<N, F: Fn(DeviceId) -> N>(self, map: F) -> IpLayerEvent<N, I> {
match self {
IpLayerEvent::AddRoute(types::AddableEntry { subnet, device, gateway, metric }) => {
IpLayerEvent::AddRoute(types::AddableEntry {
subnet,
device: map(device),
gateway,
metric,
})
}
IpLayerEvent::RemoveRoutes { subnet, device, gateway } => {
IpLayerEvent::RemoveRoutes { subnet, device: map(device), gateway }
}
IpLayerEvent::MulticastForwarding(e) => {
IpLayerEvent::MulticastForwarding(e.map_device(map))
}
}
}
}
/// The bindings execution context for the IP layer.
pub trait IpLayerBindingsContext<I: IpLayerIpExt, DeviceId>:
InstantContext + EventContext<IpLayerEvent<DeviceId, I>> + TracingContext + FilterBindingsContext
{
}
impl<
I: IpLayerIpExt,
DeviceId,
BC: InstantContext
+ EventContext<IpLayerEvent<DeviceId, I>>
+ TracingContext
+ FilterBindingsContext,
> IpLayerBindingsContext<I, DeviceId> for BC
{
}
/// A marker trait for bindings types at the IP layer.
pub trait IpLayerBindingsTypes: IcmpBindingsTypes + IpStateBindingsTypes {}
impl<BT: IcmpBindingsTypes + IpStateBindingsTypes> IpLayerBindingsTypes for BT {}
/// The execution context for the IP layer.
pub trait IpLayerContext<
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, <Self as DeviceIdContext<AnyDevice>>::DeviceId>,
>:
IpStateContext<I>
+ IpDeviceContext<I>
+ IpDeviceMtuContext<I>
+ IpDeviceSendContext<I, BC>
+ IcmpErrorHandler<I, BC>
+ MulticastForwardingStateContext<I, BC>
+ MulticastForwardingDeviceContext<I>
+ CounterContext<MulticastForwardingCounters<I>>
{
}
impl<
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, <CC as DeviceIdContext<AnyDevice>>::DeviceId>,
CC: IpStateContext<I>
+ IpDeviceContext<I>
+ IpDeviceMtuContext<I>
+ IpDeviceSendContext<I, BC>
+ IcmpErrorHandler<I, BC>
+ MulticastForwardingStateContext<I, BC>
+ MulticastForwardingDeviceContext<I>
+ CounterContext<MulticastForwardingCounters<I>>,
> IpLayerContext<I, BC> for CC
{
}
fn is_unicast_assigned<I: IpLayerIpExt>(status: &I::AddressStatus) -> bool {
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct WrapAddressStatus<'a, I: IpLayerIpExt>(&'a I::AddressStatus);
I::map_ip(
WrapAddressStatus(status),
|WrapAddressStatus(status)| match status {
Ipv4PresentAddressStatus::Unicast | Ipv4PresentAddressStatus::LoopbackSubnet => true,
Ipv4PresentAddressStatus::LimitedBroadcast
| Ipv4PresentAddressStatus::SubnetBroadcast
| Ipv4PresentAddressStatus::Multicast => false,
},
|WrapAddressStatus(status)| match status {
Ipv6PresentAddressStatus::UnicastAssigned => true,
Ipv6PresentAddressStatus::Multicast | Ipv6PresentAddressStatus::UnicastTentative => {
false
}
},
)
}
fn is_local_assigned_address<I: Ip + IpLayerIpExt, CC: IpDeviceIngressStateContext<I>>(
core_ctx: &mut CC,
device: &CC::DeviceId,
addr: IpDeviceAddr<I::Addr>,
) -> bool {
match core_ctx.address_status_for_device(addr.into(), device) {
AddressStatus::Present(status) => is_unicast_assigned::<I>(&status),
AddressStatus::Unassigned => false,
}
}
fn get_device_with_assigned_address<I, CC>(
core_ctx: &mut CC,
addr: IpDeviceAddr<I::Addr>,
) -> Option<(CC::DeviceId, I::AddressStatus)>
where
I: IpLayerIpExt,
CC: IpDeviceContext<I>,
{
core_ctx.with_address_statuses(addr.into(), |mut it| {
it.find_map(|(device, status)| {
is_unicast_assigned::<I>(&status).then_some((device, status))
})
})
}
// Returns the local IP address to use for sending packets from the
// given device to `addr`, restricting to `local_ip` if it is not
// `None`.
fn get_local_addr<I: Ip + IpLayerIpExt, CC: IpDeviceContext<I>>(
core_ctx: &mut CC,
local_ip_and_policy: Option<(IpDeviceAddr<I::Addr>, NonLocalSrcAddrPolicy)>,
device: &CC::DeviceId,
remote_addr: Option<RoutableIpAddr<I::Addr>>,
) -> Result<IpDeviceAddr<I::Addr>, ResolveRouteError> {
match local_ip_and_policy {
Some((local_ip, NonLocalSrcAddrPolicy::Allow)) => Ok(local_ip),
Some((local_ip, NonLocalSrcAddrPolicy::Deny)) => {
is_local_assigned_address(core_ctx, device, local_ip)
.then_some(local_ip)
.ok_or(ResolveRouteError::NoSrcAddr)
}
None => core_ctx
.get_local_addr_for_remote(device, remote_addr.map(Into::into))
.ok_or(ResolveRouteError::NoSrcAddr),
}
}
/// An error occurred while resolving the route to a destination
#[derive(Error, Copy, Clone, Debug, Eq, GenericOverIp, PartialEq)]
#[generic_over_ip()]
pub enum ResolveRouteError {
/// A source address could not be selected.
#[error("a source address could not be selected")]
NoSrcAddr,
/// The destination in unreachable.
#[error("no route exists to the destination IP address")]
Unreachable,
}
/// Like [`get_local_addr`], but willing to forward internally as necessary.
fn get_local_addr_with_internal_forwarding<I, CC>(
core_ctx: &mut CC,
local_ip_and_policy: Option<(IpDeviceAddr<I::Addr>, NonLocalSrcAddrPolicy)>,
device: &CC::DeviceId,
remote_addr: Option<RoutableIpAddr<I::Addr>>,
) -> Result<(IpDeviceAddr<I::Addr>, InternalForwarding<CC::DeviceId>), ResolveRouteError>
where
I: IpLayerIpExt,
CC: IpDeviceContext<I>,
{
match get_local_addr(core_ctx, local_ip_and_policy, device, remote_addr) {
Ok(src_addr) => Ok((src_addr, InternalForwarding::NotUsed)),
Err(e) => {
// If a local_ip was specified, the local_ip is assigned to a
// device, and that device has forwarding enabled, use internal
// forwarding.
//
// This enables a weak host model when the Netstack is configured as
// a router. Conceptually the netstack is forwarding the packet from
// the local IP's device to the output device of the selected route.
if let Some((local_ip, _policy)) = local_ip_and_policy {
if let Some((device, _addr_status)) =
get_device_with_assigned_address(core_ctx, local_ip)
{
if core_ctx.is_device_unicast_forwarding_enabled(&device) {
return Ok((local_ip, InternalForwarding::Used(device)));
}
}
}
Err(e)
}
}
}
/// The information about the rule walk in addition to a custom state. This type is introduced so
/// that `walk_rules` can be extended later with more information about the walk if needed.
#[derive(Debug, PartialEq, Eq)]
struct RuleWalkInfo<O> {
/// Whether there is a rule with a source address matcher during the walk.
observed_source_address_matcher: bool,
/// The custom info carried. For example this could be the lookup result from the user provided
/// function.
inner: O,
}
/// A helper function that traverses through the rules table.
///
/// To walk through the rules, you need to provide it with an initial value for the loop and a
/// callback function that yieds a [`ControlFlow`] result to indicate whether the traversal should
/// stop.
///
/// # Returns
///
/// - `ControlFlow::Break(RuleAction::Lookup(_))` if we hit a lookup rule and an output is
/// yielded from the route table.
/// - `ControlFlow::Break(RuleAction::Unreachable)` if we hit an unreachable rule.
/// - `ControlFlow::Continue(_)` if we finished walking the rules table without yielding any
/// result.
fn walk_rules<
I: IpLayerIpExt,
CC: IpRouteTablesContext<I, DeviceId: DeviceWithName>,
O,
State,
F: FnMut(
State,
&mut CC::IpDeviceIdCtx<'_>,
&RoutingTable<I, CC::DeviceId>,
) -> ControlFlow<O, State>,
>(
core_ctx: &mut CC,
rules: &RulesTable<I, CC::DeviceId>,
init: State,
rule_input: &RuleInput<'_, I, CC::DeviceId>,
mut lookup_table: F,
) -> ControlFlow<RuleAction<RuleWalkInfo<O>>, RuleWalkInfo<State>> {
rules.iter().try_fold(
RuleWalkInfo { inner: init, observed_source_address_matcher: false },
|RuleWalkInfo { inner: state, observed_source_address_matcher },
Rule { action, matcher }| {
let observed_source_address_matcher =
observed_source_address_matcher || matcher.source_address_matcher.is_some();
if !matcher.matches(rule_input) {
return ControlFlow::Continue(RuleWalkInfo {
inner: state,
observed_source_address_matcher,
});
}
match action {
RuleAction::Unreachable => return ControlFlow::Break(RuleAction::Unreachable),
RuleAction::Lookup(table_id) => core_ctx.with_ip_routing_table(
&table_id,
|core_ctx, table| match lookup_table(state, core_ctx, table) {
ControlFlow::Break(out) => {
ControlFlow::Break(RuleAction::Lookup(RuleWalkInfo {
inner: out,
observed_source_address_matcher,
}))
}
ControlFlow::Continue(state) => ControlFlow::Continue(RuleWalkInfo {
inner: state,
observed_source_address_matcher,
}),
},
),
}
},
)
}
/// Returns the outgoing routing instructions for reaching the given destination.
///
/// If a `device` is specified, the resolved route is limited to those that
/// egress over the device.
///
/// If `src_ip` is specified the resolved route is limited to those that egress
/// over a device with the address assigned.
///
/// This function should only be used for calculating a route for an outgoing packet
/// that is generated by us.
pub fn resolve_output_route_to_destination<
I: Ip + IpDeviceStateIpExt + IpDeviceIpExt + IpLayerIpExt,
BC: IpDeviceBindingsContext<I, CC::DeviceId> + IpLayerBindingsContext<I, CC::DeviceId>,
CC: IpStateContext<I> + IpDeviceContext<I> + device::IpDeviceConfigurationContext<I, BC>,
>(
core_ctx: &mut CC,
device: Option<&CC::DeviceId>,
src_ip_and_policy: Option<(IpDeviceAddr<I::Addr>, NonLocalSrcAddrPolicy)>,
dst_ip: Option<RoutableIpAddr<I::Addr>>,
marks: &Marks,
) -> Result<ResolvedRoute<I, CC::DeviceId>, ResolveRouteError> {
enum LocalDelivery<A, D> {
WeakLoopback { dst_ip: A, device: D },
StrongForDevice(D),
}
// Check if locally destined. If the destination is an address assigned
// on an interface, and an egress interface wasn't specifically
// selected, route via the loopback device. This lets us operate as a
// strong host when an outgoing interface is explicitly requested while
// still enabling local delivery via the loopback interface, which is
// acting as a weak host. Note that if the loopback interface is
// requested as an outgoing interface, route selection is still
// performed as a strong host! This makes the loopback interface behave
// more like the other interfaces on the system.
//
// TODO(https://fxbug.dev/42175703): Encode the delivery of locally-
// destined packets to loopback in the route table.
//
// TODO(https://fxbug.dev/322539434): Linux is more permissive about
// allowing cross-device local delivery even when SO_BINDTODEVICE or
// link-local addresses are involved, and this behavior may need to be
// emulated.
let local_delivery_instructions: Option<LocalDelivery<IpDeviceAddr<I::Addr>, CC::DeviceId>> = {
let dst_ip = dst_ip.and_then(IpDeviceAddr::new_from_socket_ip_addr);
match (device, dst_ip) {
(Some(device), Some(dst_ip)) => is_local_assigned_address(core_ctx, device, dst_ip)
.then_some(LocalDelivery::StrongForDevice(device.clone())),
(None, Some(dst_ip)) => {
get_device_with_assigned_address(core_ctx, dst_ip).map(
|(dst_device, _addr_status)| {
// If either the source or destination addresses needs
// a zone ID, then use strong host to enforce that the
// source and destination addresses are assigned to the
// same interface.
if src_ip_and_policy
.is_some_and(|(ip, _policy)| ip.as_ref().must_have_zone())
|| dst_ip.as_ref().must_have_zone()
{
LocalDelivery::StrongForDevice(dst_device)
} else {
LocalDelivery::WeakLoopback { dst_ip, device: dst_device }
}
},
)
}
(_, None) => None,
}
};
if let Some(local_delivery) = local_delivery_instructions {
let loopback = core_ctx.loopback_id().ok_or(ResolveRouteError::Unreachable)?;
let (src_addr, dest_device) = match local_delivery {
LocalDelivery::WeakLoopback { dst_ip, device } => {
let src_ip = match src_ip_and_policy {
Some((src_ip, NonLocalSrcAddrPolicy::Deny)) => {
let _device = get_device_with_assigned_address(core_ctx, src_ip)
.ok_or(ResolveRouteError::NoSrcAddr)?;
src_ip
}
Some((src_ip, NonLocalSrcAddrPolicy::Allow)) => src_ip,
None => dst_ip,
};
(src_ip, device)
}
LocalDelivery::StrongForDevice(device) => {
(get_local_addr(core_ctx, src_ip_and_policy, &device, dst_ip)?, device)
}
};
return Ok(ResolvedRoute {
src_addr,
local_delivery_device: Some(dest_device),
device: loopback,
next_hop: NextHop::RemoteAsNeighbor,
internal_forwarding: InternalForwarding::NotUsed,
});
}
let bound_address = src_ip_and_policy.map(|(sock_addr, _policy)| sock_addr.into_inner().get());
let rule_input = RuleInput {
packet_origin: PacketOrigin::Local { bound_address, bound_device: device },
marks,
};
core_ctx.with_rules_table(|core_ctx, rules| {
let mut walk_rules = |rule_input, src_ip_and_policy| {
walk_rules(
core_ctx,
rules,
None, /* first error encountered */
rule_input,
|first_error, core_ctx, table| {
let mut matching_with_addr = table.lookup_filter_map(
core_ctx,
device,
dst_ip.map_or(I::UNSPECIFIED_ADDRESS, |a| a.addr()),
|core_ctx, d| {
Some(get_local_addr_with_internal_forwarding(
core_ctx,
src_ip_and_policy,
d,
dst_ip,
))
},
);
let first_error_in_this_table = match matching_with_addr.next() {
Some((
Destination { device, next_hop },
Ok((local_addr, internal_forwarding)),
)) => {
return ControlFlow::Break(Ok((
Destination { device: device.clone(), next_hop },
local_addr,
internal_forwarding,
)));
}
Some((_, Err(e))) => e,
// Note: rule evaluation will continue on to the next rule, if the
// previous rule was `Lookup` but the table didn't have the route
// inside of it.
None => return ControlFlow::Continue(first_error),
};
matching_with_addr
.filter_map(|(destination, local_addr)| {
// Select successful routes. We ignore later errors
// since we've already saved the first one.
local_addr.ok_checked::<ResolveRouteError>().map(
|(local_addr, internal_forwarding)| {
(destination, local_addr, internal_forwarding)
},
)
})
.next()
.map_or(
ControlFlow::Continue(first_error.or(Some(first_error_in_this_table))),
|(
Destination { device, next_hop },
local_addr,
internal_forwarding,
)| {
ControlFlow::Break(Ok((
Destination { device: device.clone(), next_hop },
local_addr,
internal_forwarding,
)))
},
)
},
)
};
let result = match walk_rules(&rule_input, src_ip_and_policy) {
// Only try to resolve a route again if all of the following are true:
// 1. The source address is not provided by the caller.
// 2. A route is successfully resolved so we selected a source address.
// 3. There is a rule with a source address matcher during the resolution.
// The rationale is to make sure the route resolution converges to a sensible route
// after considering the source address we select.
ControlFlow::Break(RuleAction::Lookup(RuleWalkInfo {
inner: Ok((_dst, selected_src_addr, _internal_forwarding)),
observed_source_address_matcher: true,
})) if src_ip_and_policy.is_none() => walk_rules(
&RuleInput {
packet_origin: PacketOrigin::Local {
bound_address: Some(selected_src_addr.into()),
bound_device: device,
},
marks,
},
Some((selected_src_addr, NonLocalSrcAddrPolicy::Deny)),
),
result => result,
};
match result {
ControlFlow::Break(RuleAction::Lookup(RuleWalkInfo {
inner: result,
observed_source_address_matcher: _,
})) => {
result.map(|(Destination { device, next_hop }, src_addr, internal_forwarding)| {
ResolvedRoute {
src_addr,
device,
local_delivery_device: None,
next_hop,
internal_forwarding,
}
})
}
ControlFlow::Break(RuleAction::Unreachable) => Err(ResolveRouteError::Unreachable),
ControlFlow::Continue(RuleWalkInfo {
inner: first_error,
observed_source_address_matcher: _,
}) => Err(first_error.unwrap_or(ResolveRouteError::Unreachable)),
}
})
}
/// Enables a blanket implementation of [`IpSocketContext`].
///
/// Implementing this marker trait for a type enables a blanket implementation
/// of `IpSocketContext` given the other requirements are met.
pub trait UseIpSocketContextBlanket {}
impl<
I: Ip + IpDeviceStateIpExt + IpDeviceIpExt + IpLayerIpExt,
BC: IpDeviceBindingsContext<I, CC::DeviceId>
+ IpLayerBindingsContext<I, CC::DeviceId>
+ IpSocketBindingsContext,
CC: IpLayerEgressContext<I, BC>
+ IpStateContext<I>
+ IpDeviceContext<I>
+ IpDeviceConfirmReachableContext<I, BC>
+ IpDeviceMtuContext<I>
+ device::IpDeviceConfigurationContext<I, BC>
+ UseIpSocketContextBlanket,
> IpSocketContext<I, BC> for CC
{
fn lookup_route(
&mut self,
_bindings_ctx: &mut BC,
device: Option<&CC::DeviceId>,
local_ip: Option<IpDeviceAddr<I::Addr>>,
addr: RoutableIpAddr<I::Addr>,
transparent: bool,
marks: &Marks,
) -> Result<ResolvedRoute<I, CC::DeviceId>, ResolveRouteError> {
let src_ip_and_policy = local_ip.map(|local_ip| {
(
local_ip,
if transparent {
NonLocalSrcAddrPolicy::Allow
} else {
NonLocalSrcAddrPolicy::Deny
},
)
});
resolve_output_route_to_destination(self, device, src_ip_and_policy, Some(addr), marks)
}
fn send_ip_packet<S>(
&mut self,
bindings_ctx: &mut BC,
meta: SendIpPacketMeta<
I,
&<CC as DeviceIdContext<AnyDevice>>::DeviceId,
SpecifiedAddr<I::Addr>,
>,
body: S,
packet_metadata: IpLayerPacketMetadata<I, CC::WeakAddressId, BC>,
) -> Result<(), IpSendFrameError<S>>
where
S: TransportPacketSerializer<I>,
S::Buffer: BufferMut,
{
send_ip_packet_from_device(self, bindings_ctx, meta.into(), body, packet_metadata)
}
fn get_loopback_device(&mut self) -> Option<Self::DeviceId> {
device::IpDeviceConfigurationContext::<I, _>::loopback_id(self)
}
fn confirm_reachable(
&mut self,
bindings_ctx: &mut BC,
dst: SpecifiedAddr<I::Addr>,
input: RuleInput<'_, I, Self::DeviceId>,
) {
match lookup_route_table(self, dst.get(), input) {
Some(Destination { next_hop, device }) => {
let neighbor = match next_hop {
NextHop::RemoteAsNeighbor => dst,
NextHop::Gateway(gateway) => gateway,
NextHop::Broadcast(marker) => {
I::map_ip::<_, ()>(
WrapBroadcastMarker(marker),
|WrapBroadcastMarker(())| {
debug!(
"can't confirm {dst:?}@{device:?} as reachable: \
dst is a broadcast address"
);
},
|WrapBroadcastMarker(never)| match never {},
);
return;
}
};
IpDeviceConfirmReachableContext::confirm_reachable(
self,
bindings_ctx,
&device,
neighbor,
);
}
None => {
debug!("can't confirm {dst:?} as reachable: no route");
}
}
}
}
/// The IP context providing dispatch to the available transport protocols.
///
/// This trait acts like a demux on the transport protocol for ingress IP
/// packets.
pub trait IpTransportDispatchContext<I: IpLayerIpExt, BC>: DeviceIdContext<AnyDevice> {
/// Dispatches a received incoming IP packet to the appropriate protocol.
fn dispatch_receive_ip_packet<B: BufferMut, H: IpHeaderInfo<I>>(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
src_ip: I::RecvSrcAddr,
dst_ip: SpecifiedAddr<I::Addr>,
proto: I::Proto,
body: B,
info: &LocalDeliveryPacketInfo<I, H>,
) -> Result<(), TransportReceiveError>;
}
/// A marker trait for all the contexts required for IP ingress.
pub trait IpLayerIngressContext<I: IpLayerIpExt, BC: IpLayerBindingsContext<I, Self::DeviceId>>:
IpTransportDispatchContext<I, BC, DeviceId: filter::InterfaceProperties<BC::DeviceClass>>
+ IpDeviceIngressStateContext<I>
+ IpDeviceMtuContext<I>
+ IpDeviceSendContext<I, BC>
+ IcmpErrorHandler<I, BC>
+ IpLayerContext<I, BC>
+ FragmentHandler<I, BC>
+ FilterHandlerProvider<I, BC>
+ RawIpSocketHandler<I, BC>
{
}
impl<
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, CC::DeviceId>,
CC: IpTransportDispatchContext<
I,
BC,
DeviceId: filter::InterfaceProperties<BC::DeviceClass>,
> + IpDeviceIngressStateContext<I>
+ IpDeviceMtuContext<I>
+ IpDeviceSendContext<I, BC>
+ IcmpErrorHandler<I, BC>
+ IpLayerContext<I, BC>
+ FragmentHandler<I, BC>
+ FilterHandlerProvider<I, BC>
+ RawIpSocketHandler<I, BC>,
> IpLayerIngressContext<I, BC> for CC
{
}
/// A marker trait for all the contexts required for IP egress.
pub trait IpLayerEgressContext<I, BC>:
IpDeviceSendContext<I, BC, DeviceId: filter::InterfaceProperties<BC::DeviceClass>>
+ FilterHandlerProvider<I, BC>
+ CounterContext<IpCounters<I>>
where
I: IpLayerIpExt,
BC: FilterBindingsContext,
{
}
impl<I, BC, CC> IpLayerEgressContext<I, BC> for CC
where
I: IpLayerIpExt,
BC: FilterBindingsContext,
CC: IpDeviceSendContext<I, BC, DeviceId: filter::InterfaceProperties<BC::DeviceClass>>
+ FilterHandlerProvider<I, BC>
+ CounterContext<IpCounters<I>>,
{
}
/// A marker trait for all the contexts required for IP forwarding.
pub trait IpLayerForwardingContext<I: IpLayerIpExt, BC: IpLayerBindingsContext<I, Self::DeviceId>>:
IpLayerEgressContext<I, BC> + IcmpErrorHandler<I, BC> + IpDeviceMtuContext<I>
{
}
impl<
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, CC::DeviceId>,
CC: IpLayerEgressContext<I, BC> + IcmpErrorHandler<I, BC> + IpDeviceMtuContext<I>,
> IpLayerForwardingContext<I, BC> for CC
{
}
/// A builder for IPv4 state.
#[derive(Copy, Clone, Default)]
pub struct Ipv4StateBuilder {
icmp: Icmpv4StateBuilder,
}
impl Ipv4StateBuilder {
/// Get the builder for the ICMPv4 state.
#[cfg(any(test, feature = "testutils"))]
pub fn icmpv4_builder(&mut self) -> &mut Icmpv4StateBuilder {
&mut self.icmp
}
/// Builds the [`Ipv4State`].
pub fn build<
CC: CoreTimerContext<IpLayerTimerId, BC>,
StrongDeviceId: StrongDeviceIdentifier,
BC: TimerContext + RngContext + IpLayerBindingsTypes,
>(
self,
bindings_ctx: &mut BC,
) -> Ipv4State<StrongDeviceId, BC> {
let Ipv4StateBuilder { icmp } = self;
Ipv4State {
inner: IpStateInner::new::<CC>(bindings_ctx),
icmp: icmp.build(),
next_packet_id: Default::default(),
}
}
}
/// A builder for IPv6 state.
#[derive(Copy, Clone, Default)]
pub struct Ipv6StateBuilder {
icmp: Icmpv6StateBuilder,
}
impl Ipv6StateBuilder {
/// Builds the [`Ipv6State`].
pub fn build<
CC: CoreTimerContext<IpLayerTimerId, BC>,
StrongDeviceId: StrongDeviceIdentifier,
BC: TimerContext + RngContext + IpLayerBindingsTypes,
>(
self,
bindings_ctx: &mut BC,
) -> Ipv6State<StrongDeviceId, BC> {
let Ipv6StateBuilder { icmp } = self;
Ipv6State {
inner: IpStateInner::new::<CC>(bindings_ctx),
icmp: icmp.build(),
slaac_counters: Default::default(),
slaac_temp_secret_key: IidSecret::new_random(&mut bindings_ctx.rng()),
}
}
}
/// The stack's IPv4 state.
pub struct Ipv4State<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes> {
/// The common inner IP layer state.
pub inner: IpStateInner<Ipv4, StrongDeviceId, BT>,
/// The ICMP state.
pub icmp: Icmpv4State<BT>,
/// The atomic counter providing IPv4 packet identifiers.
pub next_packet_id: AtomicU16,
}
impl<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
AsRef<IpStateInner<Ipv4, StrongDeviceId, BT>> for Ipv4State<StrongDeviceId, BT>
{
fn as_ref(&self) -> &IpStateInner<Ipv4, StrongDeviceId, BT> {
&self.inner
}
}
/// Generates an IP packet ID.
///
/// This is only meaningful for IPv4, see [`IpLayerIpExt`].
pub fn gen_ip_packet_id<I: IpLayerIpExt, CC: IpDeviceEgressStateContext<I>>(
core_ctx: &mut CC,
) -> I::PacketId {
core_ctx.with_next_packet_id(|state| I::next_packet_id_from_state(state))
}
/// The stack's IPv6 state.
pub struct Ipv6State<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes> {
/// The common inner IP layer state.
pub inner: IpStateInner<Ipv6, StrongDeviceId, BT>,
/// ICMPv6 state.
pub icmp: Icmpv6State<BT>,
/// Stateless address autoconfiguration counters.
pub slaac_counters: SlaacCounters,
/// Secret key used for generating SLAAC temporary addresses.
pub slaac_temp_secret_key: IidSecret,
}
impl<StrongDeviceId: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
AsRef<IpStateInner<Ipv6, StrongDeviceId, BT>> for Ipv6State<StrongDeviceId, BT>
{
fn as_ref(&self) -> &IpStateInner<Ipv6, StrongDeviceId, BT> {
&self.inner
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<IpPacketFragmentCache<I, BT>> for IpStateInner<I, D, BT>
{
type Lock = Mutex<IpPacketFragmentCache<I, BT>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.fragment_cache)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<PmtuCache<I, BT>> for IpStateInner<I, D, BT>
{
type Lock = Mutex<PmtuCache<I, BT>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.pmtu_cache)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<RulesTable<I, D>> for IpStateInner<I, D, BT>
{
type Lock = RwLock<RulesTable<I, D>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.rules_table)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<HashMap<RoutingTableId<I, D>, PrimaryRc<RwLock<RoutingTable<I, D>>>>>
for IpStateInner<I, D, BT>
{
type Lock = Mutex<HashMap<RoutingTableId<I, D>, PrimaryRc<RwLock<RoutingTable<I, D>>>>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.tables)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier> OrderedLockAccess<RoutingTable<I, D>>
for RoutingTableId<I, D>
{
type Lock = RwLock<RoutingTable<I, D>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
let Self(inner) = self;
OrderedLockRef::new(&*inner)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<MulticastForwardingState<I, D, BT>> for IpStateInner<I, D, BT>
{
type Lock = RwLock<MulticastForwardingState<I, D, BT>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.multicast_forwarding)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<RawIpSocketMap<I, D::Weak, BT>> for IpStateInner<I, D, BT>
{
type Lock = RwLock<RawIpSocketMap<I, D::Weak, BT>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.raw_sockets)
}
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpLayerBindingsTypes>
OrderedLockAccess<filter::State<I, I::Weak<BT>, BT>> for IpStateInner<I, D, BT>
{
type Lock = RwLock<filter::State<I, I::Weak<BT>, BT>>;
fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
OrderedLockRef::new(&self.filter)
}
}
/// Ip layer counters.
#[derive(Default, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct IpCounters<I: IpLayerIpExt> {
/// Count of incoming IP unicast packets delivered.
pub deliver_unicast: Counter,
/// Count of incoming IP multicast packets delivered.
pub deliver_multicast: Counter,
/// Count of incoming IP packets that are dispatched to the appropriate protocol.
pub dispatch_receive_ip_packet: Counter,
/// Count of incoming IP packets destined to another host.
pub dispatch_receive_ip_packet_other_host: Counter,
/// Count of incoming IP packets received by the stack.
pub receive_ip_packet: Counter,
/// Count of sent outgoing IP packets.
pub send_ip_packet: Counter,
/// Count of packets to be forwarded which are instead dropped because
/// forwarding is disabled.
pub forwarding_disabled: Counter,
/// Count of incoming packets forwarded to another host.
pub forward: Counter,
/// Count of incoming packets which cannot be forwarded because there is no
/// route to the destination host.
pub no_route_to_host: Counter,
/// Count of incoming packets which cannot be forwarded because the MTU has
/// been exceeded.
pub mtu_exceeded: Counter,
/// Count of incoming packets which cannot be forwarded because the TTL has
/// expired.
pub ttl_expired: Counter,
/// Count of ICMP error messages received.
pub receive_icmp_error: Counter,
/// Count of IP fragment reassembly errors.
pub fragment_reassembly_error: Counter,
/// Count of IP fragments that could not be reassembled because more
/// fragments were needed.
pub need_more_fragments: Counter,
/// Count of IP fragments that could not be reassembled because the fragment
/// was invalid.
pub invalid_fragment: Counter,
/// Count of IP fragments that could not be reassembled because the stack's
/// per-IP-protocol fragment cache was full.
pub fragment_cache_full: Counter,
/// Count of incoming IP packets not delivered because of a parameter problem.
pub parameter_problem: Counter,
/// Count of incoming IP packets with an unspecified destination address.
pub unspecified_destination: Counter,
/// Count of incoming IP packets with an unspecified source address.
pub unspecified_source: Counter,
/// Count of incoming IP packets dropped.
pub dropped: Counter,
/// Number of frames rejected because they'd cause illegal loopback
/// addresses on the wire.
pub tx_illegal_loopback_address: Counter,
/// Version specific rx counters.
pub version_rx: I::RxCounters,
/// Count of incoming IP multicast packets that were dropped because
/// The stack doesn't have any sockets that belong to the multicast group,
/// and the stack isn't configured to forward the multicast packet.
pub multicast_no_interest: Counter,
/// Count of looped-back packets that held a cached conntrack entry that could
/// not be downcasted to the expected type. This would happen if, for example, a
/// packet was modified to a different IP version between EGRESS and INGRESS.
pub invalid_cached_conntrack_entry: Counter,
/// IP fragmentation counters.
pub fragmentation: FragmentationCounters,
}
/// IPv4-specific Rx counters.
#[derive(Default)]
pub struct Ipv4RxCounters {
/// Count of incoming broadcast IPv4 packets delivered.
pub deliver_broadcast: Counter,
}
impl Inspectable for Ipv4RxCounters {
fn record<I: Inspector>(&self, inspector: &mut I) {
let Self { deliver_broadcast } = self;
inspector.record_counter("DeliveredBroadcast", deliver_broadcast);
}
}
/// IPv6-specific Rx counters.
#[derive(Default)]
pub struct Ipv6RxCounters {
/// Count of incoming IPv6 packets dropped because the destination address
/// is only tentatively assigned to the device.
pub drop_for_tentative: Counter,
/// Count of incoming IPv6 packets dropped due to a non-unicast source address.
pub non_unicast_source: Counter,
/// Count of incoming IPv6 packets discarded while processing extension
/// headers.
pub extension_header_discard: Counter,
/// Count of incoming neighbor solicitations discarded as looped-back
/// DAD probes.
pub drop_looped_back_dad_probe: Counter,
}
impl Inspectable for Ipv6RxCounters {
fn record<I: Inspector>(&self, inspector: &mut I) {
let Self {
drop_for_tentative,
non_unicast_source,
extension_header_discard,
drop_looped_back_dad_probe,
} = self;
inspector.record_counter("DroppedTentativeDst", drop_for_tentative);
inspector.record_counter("DroppedNonUnicastSrc", non_unicast_source);
inspector.record_counter("DroppedExtensionHeader", extension_header_discard);
inspector.record_counter("DroppedLoopedBackDadProbe", drop_looped_back_dad_probe);
}
}
/// Marker trait for the bindings types required by the IP layer's inner state.
pub trait IpStateBindingsTypes:
PmtuBindingsTypes
+ FragmentBindingsTypes
+ RawIpSocketsBindingsTypes
+ FilterBindingsTypes
+ MulticastForwardingBindingsTypes
+ IpDeviceStateBindingsTypes
{
}
impl<BT> IpStateBindingsTypes for BT where
BT: PmtuBindingsTypes
+ FragmentBindingsTypes
+ RawIpSocketsBindingsTypes
+ FilterBindingsTypes
+ MulticastForwardingBindingsTypes
+ IpDeviceStateBindingsTypes
{
}
/// Identifier to a routing table.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct RoutingTableId<I: Ip, D>(StrongRc<RwLock<RoutingTable<I, D>>>);
impl<I: Ip, D> Debug for RoutingTableId<I, D> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let Self(rc) = self;
f.debug_tuple("RoutingTableId").field(&StrongRc::debug_id(rc)).finish()
}
}
impl<I: Ip, D> RoutingTableId<I, D> {
/// Creates a new table ID.
pub(crate) fn new(rc: StrongRc<RwLock<RoutingTable<I, D>>>) -> Self {
Self(rc)
}
/// Provides direct access to the forwarding table.
#[cfg(any(test, feature = "testutils"))]
pub fn table(&self) -> &RwLock<RoutingTable<I, D>> {
let Self(inner) = self;
&*inner
}
/// Downgrades the strong ID into a weak one.
pub fn downgrade(&self) -> WeakRoutingTableId<I, D> {
let Self(rc) = self;
WeakRoutingTableId(StrongRc::downgrade(rc))
}
#[cfg(test)]
fn get_mut(&self) -> impl DerefMut<Target = RoutingTable<I, D>> + '_ {
let Self(rc) = self;
rc.write()
}
}
/// Weak Identifier to a routing table.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct WeakRoutingTableId<I: Ip, D>(WeakRc<RwLock<RoutingTable<I, D>>>);
impl<I: Ip, D> Debug for WeakRoutingTableId<I, D> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let Self(rc) = self;
f.debug_tuple("WeakRoutingTableId").field(&WeakRc::debug_id(rc)).finish()
}
}
/// The inner state for the IP layer for IP version `I`.
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct IpStateInner<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpStateBindingsTypes> {
rules_table: RwLock<RulesTable<I, D>>,
// TODO(https://fxbug.dev/355059838): Explore the option to let Bindings create the main table.
main_table_id: RoutingTableId<I, D>,
multicast_forwarding: RwLock<MulticastForwardingState<I, D, BT>>,
multicast_forwarding_counters: MulticastForwardingCounters<I>,
fragment_cache: Mutex<IpPacketFragmentCache<I, BT>>,
pmtu_cache: Mutex<PmtuCache<I, BT>>,
counters: IpCounters<I>,
raw_sockets: RwLock<RawIpSocketMap<I, D::Weak, BT>>,
raw_socket_counters: RawIpSocketCounters<I>,
filter: RwLock<filter::State<I, I::Weak<BT>, BT>>,
// Make sure the primary IDs are dropped last. Also note that the following hash map also stores
// the primary ID to the main table, and if the user (Bindings) attempts to remove the main
// table without dropping `main_table_id` first, it will panic. This serves as an assertion
// that the main table cannot be removed and Bindings must never attempt to remove the main
// routing table.
tables: Mutex<HashMap<RoutingTableId<I, D>, PrimaryRc<RwLock<RoutingTable<I, D>>>>>,
}
impl<I: IpLayerIpExt, D: StrongDeviceIdentifier, BT: IpStateBindingsTypes> IpStateInner<I, D, BT> {
/// Gets the IP counters.
pub fn counters(&self) -> &IpCounters<I> {
&self.counters
}
/// Gets the multicast forwarding counters.
pub fn multicast_forwarding_counters(&self) -> &MulticastForwardingCounters<I> {
&self.multicast_forwarding_counters
}
/// Gets the aggregate raw IP socket counters.
pub fn raw_ip_socket_counters(&self) -> &RawIpSocketCounters<I> {
&self.raw_socket_counters
}
/// Gets the main table ID.
pub fn main_table_id(&self) -> &RoutingTableId<I, D> {
&self.main_table_id
}
/// Provides direct access to the path MTU cache.
#[cfg(any(test, feature = "testutils"))]
pub fn pmtu_cache(&self) -> &Mutex<PmtuCache<I, BT>> {
&self.pmtu_cache
}
/// Provides direct access to the filtering state.
#[cfg(any(test, feature = "testutils"))]
pub fn filter(&self) -> &RwLock<filter::State<I, I::Weak<BT>, BT>> {
&self.filter
}
}
impl<
I: IpLayerIpExt,
D: StrongDeviceIdentifier,
BC: TimerContext + RngContext + IpStateBindingsTypes,
> IpStateInner<I, D, BC>
{
/// Creates a new inner IP layer state.
fn new<CC: CoreTimerContext<IpLayerTimerId, BC>>(bindings_ctx: &mut BC) -> Self {
let main_table: PrimaryRc<RwLock<RoutingTable<I, D>>> = PrimaryRc::new(Default::default());
let main_table_id = RoutingTableId(PrimaryRc::clone_strong(&main_table));
Self {
rules_table: RwLock::new(RulesTable::new(main_table_id.clone())),
tables: Mutex::new(HashMap::from_iter(core::iter::once((
main_table_id.clone(),
main_table,
)))),
main_table_id,
multicast_forwarding: Default::default(),
multicast_forwarding_counters: Default::default(),
fragment_cache: Mutex::new(
IpPacketFragmentCache::new::<NestedIntoCoreTimerCtx<CC, _>>(bindings_ctx),
),
pmtu_cache: Mutex::new(PmtuCache::new::<NestedIntoCoreTimerCtx<CC, _>>(bindings_ctx)),
counters: Default::default(),
raw_sockets: Default::default(),
raw_socket_counters: Default::default(),
filter: RwLock::new(filter::State::new::<NestedIntoCoreTimerCtx<CC, _>>(bindings_ctx)),
}
}
}
/// The identifier for timer events in the IP layer.
#[derive(Debug, Clone, Eq, PartialEq, Hash, GenericOverIp)]
#[generic_over_ip()]
pub enum IpLayerTimerId {
/// A timer event for IPv4 packet reassembly timers.
ReassemblyTimeoutv4(FragmentTimerId<Ipv4>),
/// A timer event for IPv6 packet reassembly timers.
ReassemblyTimeoutv6(FragmentTimerId<Ipv6>),
/// A timer event for IPv4 path MTU discovery.
PmtuTimeoutv4(PmtuTimerId<Ipv4>),
/// A timer event for IPv6 path MTU discovery.
PmtuTimeoutv6(PmtuTimerId<Ipv6>),
/// A timer event for IPv4 filtering timers.
FilterTimerv4(FilterTimerId<Ipv4>),
/// A timer event for IPv6 filtering timers.
FilterTimerv6(FilterTimerId<Ipv6>),
/// A timer event for IPv4 Multicast forwarding timers.
MulticastForwardingTimerv4(MulticastForwardingTimerId<Ipv4>),
/// A timer event for IPv6 Multicast forwarding timers.
MulticastForwardingTimerv6(MulticastForwardingTimerId<Ipv6>),
}
impl<I: Ip> From<FragmentTimerId<I>> for IpLayerTimerId {
fn from(timer: FragmentTimerId<I>) -> IpLayerTimerId {
I::map_ip(timer, IpLayerTimerId::ReassemblyTimeoutv4, IpLayerTimerId::ReassemblyTimeoutv6)
}
}
impl<I: Ip> From<PmtuTimerId<I>> for IpLayerTimerId {
fn from(timer: PmtuTimerId<I>) -> IpLayerTimerId {
I::map_ip(timer, IpLayerTimerId::PmtuTimeoutv4, IpLayerTimerId::PmtuTimeoutv6)
}
}
impl<I: Ip> From<FilterTimerId<I>> for IpLayerTimerId {
fn from(timer: FilterTimerId<I>) -> IpLayerTimerId {
I::map_ip(timer, IpLayerTimerId::FilterTimerv4, IpLayerTimerId::FilterTimerv6)
}
}
impl<I: Ip> From<MulticastForwardingTimerId<I>> for IpLayerTimerId {
fn from(timer: MulticastForwardingTimerId<I>) -> IpLayerTimerId {
I::map_ip(
timer,
IpLayerTimerId::MulticastForwardingTimerv4,
IpLayerTimerId::MulticastForwardingTimerv6,
)
}
}
impl<CC, BC> HandleableTimer<CC, BC> for IpLayerTimerId
where
CC: TimerHandler<BC, FragmentTimerId<Ipv4>>
+ TimerHandler<BC, FragmentTimerId<Ipv6>>
+ TimerHandler<BC, PmtuTimerId<Ipv4>>
+ TimerHandler<BC, PmtuTimerId<Ipv6>>
+ TimerHandler<BC, FilterTimerId<Ipv4>>
+ TimerHandler<BC, FilterTimerId<Ipv6>>
+ TimerHandler<BC, MulticastForwardingTimerId<Ipv4>>
+ TimerHandler<BC, MulticastForwardingTimerId<Ipv6>>,
BC: TimerBindingsTypes,
{
fn handle(self, core_ctx: &mut CC, bindings_ctx: &mut BC, timer: BC::UniqueTimerId) {
match self {
IpLayerTimerId::ReassemblyTimeoutv4(id) => {
core_ctx.handle_timer(bindings_ctx, id, timer)
}
IpLayerTimerId::ReassemblyTimeoutv6(id) => {
core_ctx.handle_timer(bindings_ctx, id, timer)
}
IpLayerTimerId::PmtuTimeoutv4(id) => core_ctx.handle_timer(bindings_ctx, id, timer),
IpLayerTimerId::PmtuTimeoutv6(id) => core_ctx.handle_timer(bindings_ctx, id, timer),
IpLayerTimerId::FilterTimerv4(id) => core_ctx.handle_timer(bindings_ctx, id, timer),
IpLayerTimerId::FilterTimerv6(id) => core_ctx.handle_timer(bindings_ctx, id, timer),
IpLayerTimerId::MulticastForwardingTimerv4(id) => {
core_ctx.handle_timer(bindings_ctx, id, timer)
}
IpLayerTimerId::MulticastForwardingTimerv6(id) => {
core_ctx.handle_timer(bindings_ctx, id, timer)
}
}
}
}
/// An ICMP error, and the metadata required to send it.
///
/// This allows the sending of the ICMP error to be decoupled from the
/// generation of the error, which is advantageous because sending the error
/// requires the underlying packet buffer, which cannot be "moved" in certain
/// contexts.
pub(crate) struct IcmpErrorSender<'a, I: IcmpHandlerIpExt, D> {
/// The ICMP error that should be sent.
err: I::IcmpError,
/// The original source IP address of the packet (before the local-ingress
/// hook evaluation).
src_ip: I::SourceAddress,
/// The original destination IP address of the packet (before the
/// local-ingress hook evaluation).
dst_ip: SpecifiedAddr<I::Addr>,
/// The frame destination of the packet.
frame_dst: Option<FrameDestination>,
/// The device out which to send the error.
device: &'a D,
/// The metadata from the packet, allowing the packet's backing buffer to be
/// returned to it's pre-IP-parse state with [`GrowBuffer::undo_parse`].
meta: ParseMetadata,
}
impl<'a, I: IcmpHandlerIpExt, D> IcmpErrorSender<'a, I, D> {
/// Generate an send an appropriate ICMP error in response to this error.
///
/// The provided `body` must be the original buffer from which the IP
/// packet responsible for this error was parsed. It is expected to be in a
/// state that allows undoing the IP packet parse (e.g. unmodified after the
/// IP packet was parsed).
fn respond_with_icmp_error<B, BC, CC>(
self,
core_ctx: &mut CC,
bindings_ctx: &mut BC,
mut body: B,
) where
B: BufferMut,
CC: IcmpErrorHandler<I, BC, DeviceId = D>,
{
let IcmpErrorSender { err, src_ip, dst_ip, frame_dst, device, meta } = self;
// Undo the parsing of the IP Packet, moving the buffer's cursor so that
// it points at the start of the IP header. This way, the sent ICMP
// error will contain the entire original IP packet.
body.undo_parse(meta);
core_ctx.send_icmp_error_message(
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
body,
err,
);
}
}
// TODO(joshlf): Once we support multiple extension headers in IPv6, we will
// need to verify that the callers of this function are still sound. In
// particular, they may accidentally pass a parse_metadata argument which
// corresponds to a single extension header rather than all of the IPv6 headers.
/// Dispatch a received IPv4 packet to the appropriate protocol.
///
/// `device` is the device the packet was received on. `parse_metadata` is the
/// parse metadata associated with parsing the IP headers. It is used to undo
/// that parsing. Both `device` and `parse_metadata` are required in order to
/// send ICMP messages in response to unrecognized protocols or ports. If either
/// of `device` or `parse_metadata` is `None`, the caller promises that the
/// protocol and port are recognized.
///
/// # Panics
///
/// `dispatch_receive_ipv4_packet` panics if the protocol is unrecognized and
/// `parse_metadata` is `None`. If an IGMP message is received but it is not
/// coming from a device, i.e., `device` given is `None`,
/// `dispatch_receive_ip_packet` will also panic.
fn dispatch_receive_ipv4_packet<
'a,
'b,
BC: IpLayerBindingsContext<Ipv4, CC::DeviceId>,
CC: IpLayerIngressContext<Ipv4, BC> + CounterContext<IpCounters<Ipv4>>,
>(
core_ctx: &'a mut CC,
bindings_ctx: &'a mut BC,
device: &'b CC::DeviceId,
frame_dst: Option<FrameDestination>,
mut packet: Ipv4Packet<&'a mut [u8]>,
mut packet_metadata: IpLayerPacketMetadata<Ipv4, CC::WeakAddressId, BC>,
receive_meta: ReceiveIpPacketMeta<Ipv4>,
) -> Result<(), IcmpErrorSender<'b, Ipv4, CC::DeviceId>> {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.dispatch_receive_ip_packet);
match frame_dst {
Some(FrameDestination::Individual { local: false }) => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| {
&counters.dispatch_receive_ip_packet_other_host
});
}
Some(FrameDestination::Individual { local: true })
| Some(FrameDestination::Multicast)
| Some(FrameDestination::Broadcast)
| None => (),
}
let proto = packet.proto();
match core_ctx.filter_handler().local_ingress_hook(
bindings_ctx,
&mut packet,
device,
&mut packet_metadata,
) {
filter::Verdict::Drop => {
packet_metadata.acknowledge_drop();
return Ok(());
}
filter::Verdict::Accept(()) => {}
}
packet_metadata.acknowledge_drop();
let src_ip = packet.src_ip();
// `dst_ip` is validated to be specified before a packet is provided to this
// function, but it's possible for the LOCAL_INGRESS hook to rewrite the packet,
// so we have to re-verify this.
let Some(dst_ip) = SpecifiedAddr::new(packet.dst_ip()) else {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_destination);
debug!(
"dispatch_receive_ipv4_packet: Received packet with unspecified destination IP address \
after the LOCAL_INGRESS hook; dropping"
);
return Ok(());
};
core_ctx.deliver_packet_to_raw_ip_sockets(bindings_ctx, &packet, &device);
let (prefix, options, body) = packet.parts_with_body_mut();
let buffer = Buf::new(body, ..);
let header_info = Ipv4HeaderInfo { prefix, options: options.as_ref() };
let receive_info = LocalDeliveryPacketInfo { meta: receive_meta, header_info };
core_ctx
.dispatch_receive_ip_packet(
bindings_ctx,
device,
src_ip,
dst_ip,
proto,
buffer,
&receive_info,
)
.or_else(|err| {
if let Some(src_ip) = SpecifiedAddr::new(src_ip) {
let (_, _, _, meta) = packet.into_metadata();
Err(IcmpErrorSender {
err: err.into_icmpv4_error(meta.header_len()),
src_ip,
dst_ip,
frame_dst,
device,
meta,
})
} else {
Ok(())
}
})
}
/// Dispatch a received IPv6 packet to the appropriate protocol.
///
/// `dispatch_receive_ipv6_packet` has the same semantics as
/// `dispatch_receive_ipv4_packet`, but for IPv6.
fn dispatch_receive_ipv6_packet<
'a,
'b,
BC: IpLayerBindingsContext<Ipv6, CC::DeviceId>,
CC: IpLayerIngressContext<Ipv6, BC> + CounterContext<IpCounters<Ipv6>>,
>(
core_ctx: &'a mut CC,
bindings_ctx: &'a mut BC,
device: &'b CC::DeviceId,
frame_dst: Option<FrameDestination>,
mut packet: Ipv6Packet<&'a mut [u8]>,
mut packet_metadata: IpLayerPacketMetadata<Ipv6, CC::WeakAddressId, BC>,
meta: ReceiveIpPacketMeta<Ipv6>,
) -> Result<(), IcmpErrorSender<'b, Ipv6, CC::DeviceId>> {
// TODO(https://fxbug.dev/42095067): Once we support multiple extension
// headers in IPv6, we will need to verify that the callers of this
// function are still sound. In particular, they may accidentally pass a
// parse_metadata argument which corresponds to a single extension
// header rather than all of the IPv6 headers.
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.dispatch_receive_ip_packet);
match frame_dst {
Some(FrameDestination::Individual { local: false }) => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| {
&counters.dispatch_receive_ip_packet_other_host
});
}
Some(FrameDestination::Individual { local: true })
| Some(FrameDestination::Multicast)
| Some(FrameDestination::Broadcast)
| None => (),
}
let proto = packet.proto();
match core_ctx.filter_handler().local_ingress_hook(
bindings_ctx,
&mut packet,
device,
&mut packet_metadata,
) {
filter::Verdict::Drop => {
packet_metadata.acknowledge_drop();
return Ok(());
}
filter::Verdict::Accept(()) => {}
}
// These invariants are validated by the caller of this function, but it's
// possible for the LOCAL_INGRESS hook to rewrite the packet, so we have to
// check them again.
let Some(src_ip) = packet.src_ipv6() else {
debug!(
"dispatch_receive_ipv6_packet: received packet from non-unicast source {} after the \
LOCAL_INGRESS hook; dropping",
packet.src_ip()
);
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.version_rx.non_unicast_source);
return Ok(());
};
let Some(dst_ip) = SpecifiedAddr::new(packet.dst_ip()) else {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.unspecified_destination);
debug!(
"dispatch_receive_ipv6_packet: Received packet with unspecified destination IP address \
after the LOCAL_INGRESS hook; dropping"
);
return Ok(());
};
core_ctx.deliver_packet_to_raw_ip_sockets(bindings_ctx, &packet, &device);
let (fixed, extension, body) = packet.parts_with_body_mut();
let buffer = Buf::new(body, ..);
let header_info = Ipv6HeaderInfo { fixed, extension };
let receive_info = LocalDeliveryPacketInfo { meta, header_info };
let result = core_ctx
.dispatch_receive_ip_packet(
bindings_ctx,
device,
src_ip,
dst_ip,
proto,
buffer,
&receive_info,
)
.or_else(|err| {
if let Ipv6SourceAddr::Unicast(src_ip) = src_ip {
let (_, _, _, meta) = packet.into_metadata();
Err(IcmpErrorSender {
err: err.into_icmpv6_error(meta.header_len()),
src_ip: *src_ip,
dst_ip,
frame_dst,
device,
meta,
})
} else {
Ok(())
}
});
packet_metadata.acknowledge_drop();
result
}
/// The metadata required to forward an IP Packet.
///
/// This allows the forwarding of the packet to be decoupled from the
/// determination of how to forward. This is advantageous because forwarding
/// requires the underlying packet buffer, which cannot be "moved" in certain
/// contexts.
pub(crate) struct IpPacketForwarder<'a, I: IpLayerIpExt, D, A, BT: FilterBindingsTypes> {
inbound_device: &'a D,
outbound_device: &'a D,
packet_meta: IpLayerPacketMetadata<I, A, BT>,
src_ip: I::RecvSrcAddr,
dst_ip: SpecifiedAddr<I::Addr>,
destination: IpPacketDestination<I, &'a D>,
proto: I::Proto,
parse_meta: ParseMetadata,
frame_dst: Option<FrameDestination>,
}
impl<'a, I, D, A, BC> IpPacketForwarder<'a, I, D, A, BC>
where
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, D>,
{
// Forward the provided buffer as specified by this [`IpPacketForwarder`].
fn forward_with_buffer<CC, B>(self, core_ctx: &mut CC, bindings_ctx: &mut BC, buffer: B)
where
B: BufferMut,
CC: IpLayerForwardingContext<I, BC, DeviceId = D, WeakAddressId = A>,
{
let Self {
inbound_device,
outbound_device,
packet_meta,
src_ip,
dst_ip,
destination,
proto,
parse_meta,
frame_dst,
} = self;
let packet = ForwardedPacket::new(src_ip.into(), dst_ip.get(), proto, parse_meta, buffer);
trace!("forward_with_buffer: forwarding {} packet", I::NAME);
match send_ip_frame(
core_ctx,
bindings_ctx,
outbound_device,
destination,
packet,
packet_meta,
Mtu::no_limit(),
) {
Ok(()) => (),
Err(IpSendFrameError { serializer, error }) => {
match error {
IpSendFrameErrorReason::Device(
SendFrameErrorReason::SizeConstraintsViolation,
) => {
debug!("failed to forward {} packet: MTU exceeded", I::NAME);
core_ctx.increment(|counters: &IpCounters<I>| &counters.mtu_exceeded);
let mtu = core_ctx.get_mtu(inbound_device);
// NB: Ipv6 sends a PacketTooBig error. Ipv4 sends nothing.
let Some(err) = I::new_mtu_exceeded(proto, parse_meta.header_len(), mtu)
else {
return;
};
// NB: Only send an ICMP error if the sender's src
// is specified.
let Some(src_ip) = I::received_source_as_icmp_source(src_ip) else {
return;
};
// TODO(https://fxbug.dev/362489447): Increment the TTL since we
// just decremented it. The fact that we don't do this is
// technically a violation of the ICMP spec (we're not
// encapsulating the original packet that caused the
// issue, but a slightly modified version of it), but
// it's not that big of a deal because it won't affect
// the sender's ability to figure out the minimum path
// MTU. This may break other logic, though, so we should
// still fix it eventually.
core_ctx.send_icmp_error_message(
bindings_ctx,
inbound_device,
frame_dst,
src_ip,
dst_ip,
serializer.into_buffer(),
err,
);
}
IpSendFrameErrorReason::Device(SendFrameErrorReason::QueueFull)
| IpSendFrameErrorReason::Device(SendFrameErrorReason::Alloc)
| IpSendFrameErrorReason::IllegalLoopbackAddress => (),
}
debug!("failed to forward {} packet: {error:?}", I::NAME);
}
}
}
}
/// The action to take for a packet that was a candidate for forwarding.
pub(crate) enum ForwardingAction<'a, I: IpLayerIpExt, D, A, BT: FilterBindingsTypes> {
/// Drop the packet without forwarding it or generating an ICMP error.
SilentlyDrop,
/// Forward the packet, as specified by the [`IpPacketForwarder`].
Forward(IpPacketForwarder<'a, I, D, A, BT>),
/// Drop the packet without forwarding, and generate an ICMP error as
/// specified by the [`IcmpErrorSender`].
DropWithIcmpError(IcmpErrorSender<'a, I, D>),
}
impl<'a, I, D, A, BC> ForwardingAction<'a, I, D, A, BC>
where
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, D>,
{
/// Perform the action prescribed by self, with the provided packet buffer.
pub(crate) fn perform_action_with_buffer<CC, B>(
self,
core_ctx: &mut CC,
bindings_ctx: &mut BC,
buffer: B,
) where
B: BufferMut,
CC: IpLayerForwardingContext<I, BC, DeviceId = D, WeakAddressId = A>,
{
match self {
ForwardingAction::SilentlyDrop => {}
ForwardingAction::Forward(forwarder) => {
forwarder.forward_with_buffer(core_ctx, bindings_ctx, buffer)
}
ForwardingAction::DropWithIcmpError(icmp_sender) => {
icmp_sender.respond_with_icmp_error(core_ctx, bindings_ctx, buffer)
}
}
}
}
/// Determine which [`ForwardingAction`] should be taken for an IP packet.
pub(crate) fn determine_ip_packet_forwarding_action<'a, 'b, I, BC, CC>(
core_ctx: &'a mut CC,
mut packet: I::Packet<&'a mut [u8]>,
mut packet_meta: IpLayerPacketMetadata<I, CC::WeakAddressId, BC>,
minimum_ttl: Option<u8>,
inbound_device: &'b CC::DeviceId,
outbound_device: &'b CC::DeviceId,
destination: IpPacketDestination<I, &'b CC::DeviceId>,
frame_dst: Option<FrameDestination>,
src_ip: I::RecvSrcAddr,
dst_ip: SpecifiedAddr<I::Addr>,
) -> ForwardingAction<'b, I, CC::DeviceId, CC::WeakAddressId, BC>
where
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, CC::DeviceId>,
CC: IpLayerForwardingContext<I, BC>,
{
// When forwarding, if a datagram's TTL is one or zero, discard it, as
// decrementing the TTL would put it below the allowed minimum value.
// For IPv4, see "TTL" section, https://tools.ietf.org/html/rfc791#page-14.
// For IPv6, see "Hop Limit" section, https://datatracker.ietf.org/doc/html/rfc2460#page-5.
const DEFAULT_MINIMUM_FORWARDING_TTL: u8 = 2;
let minimum_ttl = minimum_ttl.unwrap_or(DEFAULT_MINIMUM_FORWARDING_TTL);
let ttl = packet.ttl();
if ttl < minimum_ttl {
debug!(
"{} packet not forwarded due to inadequate TTL: got={ttl} minimum={minimum_ttl}",
I::NAME
);
// As per RFC 792's specification of the Time Exceeded Message:
// If the gateway processing a datagram finds the time to live
// field is zero it must discard the datagram. The gateway may
// also notify the source host via the time exceeded message.
// And RFC 4443 section 3.3:
// If a router receives a packet with a Hop Limit of zero, or if
// a router decrements a packet's Hop Limit to zero, it MUST
// discard the packet and originate an ICMPv6 Time Exceeded
// message with Code 0 to the source of the packet.
// Don't send a Time Exceeded Message in cases where the netstack is
// enforcing a higher minimum TTL (e.g. as part of a multicast route).
if ttl > 1 {
packet_meta.acknowledge_drop();
return ForwardingAction::SilentlyDrop;
}
core_ctx.increment(|counters: &IpCounters<I>| &counters.ttl_expired);
// Only send an ICMP error if the src_ip is specified.
let Some(src_ip) = I::received_source_as_icmp_source(src_ip) else {
core_ctx.increment(|counters: &IpCounters<I>| &counters.unspecified_source);
packet_meta.acknowledge_drop();
return ForwardingAction::SilentlyDrop;
};
// Construct and send the appropriate ICMP error for the IP version.
let version_specific_meta = packet.version_specific_meta();
let (_, _, proto, parse_meta): (I::Addr, I::Addr, _, _) = packet.into_metadata();
let err = I::new_ttl_expired(proto, parse_meta.header_len(), version_specific_meta);
packet_meta.acknowledge_drop();
return ForwardingAction::DropWithIcmpError(IcmpErrorSender {
err,
src_ip,
dst_ip,
frame_dst,
device: inbound_device,
meta: parse_meta,
});
}
trace!("determine_ip_packet_forwarding_action: adequate TTL");
// For IPv6 packets, handle extension headers first.
//
// Any previous handling of extension headers was done under the
// assumption that we are the final destination of the packet. Now that
// we know we're forwarding, we need to re-examine them.
let maybe_ipv6_packet_action = I::map_ip_in(
&packet,
|_packet| None,
|packet| {
Some(ipv6::handle_extension_headers(core_ctx, inbound_device, frame_dst, packet, false))
},
);
match maybe_ipv6_packet_action {
None => {} // NB: Ipv4 case.
Some(Ipv6PacketAction::_Discard) => {
core_ctx.increment(|counters: &IpCounters<I>| {
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct InCounters<'a, I: IpLayerIpExt>(&'a I::RxCounters);
let IpInvariant(counter) = I::map_ip(
InCounters(&counters.version_rx),
|_counters| {
unreachable!(
"`I` must be `Ipv6` because we're handling IPv6 extension headers"
)
},
|InCounters(counters)| IpInvariant(&counters.extension_header_discard),
);
counter
});
trace!(
"determine_ip_packet_forwarding_action: handled IPv6 extension headers: \
discarding packet"
);
packet_meta.acknowledge_drop();
return ForwardingAction::SilentlyDrop;
}
Some(Ipv6PacketAction::Continue) => {
trace!(
"determine_ip_packet_forwarding_action: handled IPv6 extension headers: \
forwarding packet"
);
}
Some(Ipv6PacketAction::ProcessFragment) => {
unreachable!(
"When forwarding packets, we should only ever look at the hop by hop \
options extension header (if present)"
)
}
};
match core_ctx.filter_handler().forwarding_hook(
I::as_filter_packet(&mut packet),
inbound_device,
outbound_device,
&mut packet_meta,
) {
filter::Verdict::Drop => {
packet_meta.acknowledge_drop();
trace!("determine_ip_packet_forwarding_action: filter verdict: Drop");
return ForwardingAction::SilentlyDrop;
}
filter::Verdict::Accept(()) => {}
}
packet.set_ttl(ttl - 1);
let (_, _, proto, parse_meta): (I::Addr, I::Addr, _, _) = packet.into_metadata();
ForwardingAction::Forward(IpPacketForwarder {
inbound_device,
outbound_device,
packet_meta,
src_ip,
dst_ip,
destination,
proto,
parse_meta,
frame_dst,
})
}
pub(crate) fn send_ip_frame<I, CC, BC, S>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
destination: IpPacketDestination<I, &CC::DeviceId>,
mut body: S,
mut packet_metadata: IpLayerPacketMetadata<I, CC::WeakAddressId, BC>,
limit_mtu: Mtu,
) -> Result<(), IpSendFrameError<S>>
where
I: IpLayerIpExt,
BC: FilterBindingsContext,
CC: IpLayerEgressContext<I, BC> + IpDeviceMtuContext<I> + IpDeviceAddressIdContext<I>,
S: FragmentableIpSerializer<I, Buffer: BufferMut> + IpPacket<I>,
{
let (verdict, proof) = core_ctx.filter_handler().egress_hook(
bindings_ctx,
&mut body,
device,
&mut packet_metadata,
);
match verdict {
filter::Verdict::Drop => {
packet_metadata.acknowledge_drop();
return Ok(());
}
filter::Verdict::Accept(()) => {}
}
// If the packet is leaving through the loopback device, attempt to extract a
// weak reference to the packet's conntrack entry to plumb that through the
// device layer so it can be reused on ingress to the IP layer.
let conntrack_entry = if device.is_loopback() {
packet_metadata
.conntrack_connection_and_direction
.take()
.and_then(|(conn, dir)| WeakConntrackConnection::new(&conn).map(|conn| (conn, dir)))
} else {
None
};
let device_ip_layer_metadata = DeviceIpLayerMetadata { conntrack_entry };
packet_metadata.acknowledge_drop();
// The filtering layer may have changed our address. Perform a last moment
// check to protect against sending loopback addresses on the wire for
// non-loopback devices, which is an RFC violation.
if !device.is_loopback()
&& (I::LOOPBACK_SUBNET.contains(&body.src_addr())
|| I::LOOPBACK_SUBNET.contains(&body.dst_addr()))
{
core_ctx.increment(|c: &IpCounters<I>| &c.tx_illegal_loopback_address);
return Err(IpSendFrameError {
serializer: body,
error: IpSendFrameErrorReason::IllegalLoopbackAddress,
});
}
// Use the minimum MTU between the target device and the requested mtu.
let mtu = limit_mtu.min(core_ctx.get_mtu(device));
let body = body.with_size_limit(mtu.into());
let fits_mtu =
match body.serialize_new_buf(PacketConstraints::UNCONSTRAINED, AlwaysFailBufferAlloc) {
// We hit the allocator that refused to allocate new data, which
// means the MTU is respected.
Err(SerializeError::Alloc(())) => true,
// MTU failure, we should try to fragment.
Err(SerializeError::SizeLimitExceeded) => false,
};
if fits_mtu {
return core_ctx
.send_ip_frame(bindings_ctx, device, destination, device_ip_layer_metadata, body, proof)
.map_err(|ErrorAndSerializer { serializer, error }| IpSendFrameError {
serializer: serializer.into_inner(),
error: error.into(),
});
}
// Body doesn't fit MTU, we must fragment this serializer in order to send
// it out.
core_ctx.increment(|c: &IpCounters<I>| &c.fragmentation.fragmentation_required);
let body = body.into_inner();
let result = match IpFragmenter::new(bindings_ctx, &body, mtu) {
Ok(mut fragmenter) => loop {
let fragment = match fragmenter.next() {
None => break Ok(()),
Some(f) => f,
};
match core_ctx.send_ip_frame(
bindings_ctx,
device,
destination.clone(),
device_ip_layer_metadata.clone(),
fragment,
proof.clone_for_fragmentation(),
) {
Ok(()) => {
core_ctx.increment(|c: &IpCounters<I>| &c.fragmentation.fragments);
}
Err(ErrorAndSerializer { serializer: _, error }) => {
core_ctx.increment(|c: &IpCounters<I>| {
&c.fragmentation.error_fragmented_serializer
});
break Err(error);
}
}
},
Err(e) => {
core_ctx.increment(|c: &IpCounters<I>| &c.fragmentation.error_counter(e));
Err(SendFrameErrorReason::SizeConstraintsViolation)
}
};
result.map_err(|e| IpSendFrameError { serializer: body, error: e.into() })
}
/// A buffer allocator that always fails to allocate a new buffer.
///
/// Can be used to check for packet size constraints in serializer without in
/// fact serializing the buffer.
struct AlwaysFailBufferAlloc;
impl BufferAlloc<Never> for AlwaysFailBufferAlloc {
type Error = ();
fn alloc(self, _len: usize) -> Result<Never, Self::Error> {
Err(())
}
}
/// Drop a packet and undo the effects of parsing it.
///
/// `drop_packet_and_undo_parse!` takes a `$packet` and a `$buffer` which the
/// packet was parsed from. It saves the results of the `src_ip()`, `dst_ip()`,
/// `proto()`, and `parse_metadata()` methods. It drops `$packet` and uses the
/// result of `parse_metadata()` to undo the effects of parsing the packet.
/// Finally, it returns the source IP, destination IP, protocol, and parse
/// metadata.
macro_rules! drop_packet_and_undo_parse {
($packet:expr, $buffer:expr) => {{
let (src_ip, dst_ip, proto, meta) = $packet.into_metadata();
$buffer.undo_parse(meta);
(src_ip, dst_ip, proto, meta)
}};
}
/// The result of calling [`process_fragment`], depending on what action needs
/// to be taken by the caller.
enum ProcessFragmentResult<'a, I: IpLayerIpExt> {
/// Processing of the packet is complete and no more action should be
/// taken.
Done,
/// Reassembly is not needed. The returned packet is the same one that was
/// passed in the call to [`process_fragment`].
NotNeeded(I::Packet<&'a mut [u8]>),
/// A packet was successfully reassembled into the provided buffer. If a
/// parsed packet is needed, then the caller must perform that parsing.
Reassembled(Vec<u8>),
}
/// Process a fragment and reassemble if required.
///
/// Attempts to process a potential fragment packet and reassemble if we are
/// ready to do so. Returns an enum to the caller with the result of processing
/// the potential fragment.
fn process_fragment<'a, I, CC, BC>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
packet: I::Packet<&'a mut [u8]>,
) -> ProcessFragmentResult<'a, I>
where
I: IpLayerIpExt,
for<'b> I::Packet<&'b mut [u8]>: FragmentablePacket,
CC: IpLayerIngressContext<I, BC> + CounterContext<IpCounters<I>>,
BC: IpLayerBindingsContext<I, CC::DeviceId>,
{
match FragmentHandler::<I, _>::process_fragment::<&mut [u8]>(core_ctx, bindings_ctx, packet) {
// Handle the packet right away since reassembly is not needed.
FragmentProcessingState::NotNeeded(packet) => {
trace!("receive_ip_packet: not fragmented");
ProcessFragmentResult::NotNeeded(packet)
}
// Ready to reassemble a packet.
FragmentProcessingState::Ready { key, packet_len } => {
trace!("receive_ip_packet: fragmented, ready for reassembly");
// Allocate a buffer of `packet_len` bytes.
let mut buffer = Buf::new(alloc::vec![0; packet_len], ..);
// Attempt to reassemble the packet.
let reassemble_result = match FragmentHandler::<I, _>::reassemble_packet(
core_ctx,
bindings_ctx,
&key,
buffer.buffer_view_mut(),
) {
// Successfully reassembled the packet, handle it.
Ok(()) => ProcessFragmentResult::Reassembled(buffer.into_inner()),
Err(e) => {
core_ctx
.increment(|counters: &IpCounters<I>| &counters.fragment_reassembly_error);
debug!("receive_ip_packet: fragmented, failed to reassemble: {:?}", e);
ProcessFragmentResult::Done
}
};
reassemble_result
}
// Cannot proceed since we need more fragments before we
// can reassemble a packet.
FragmentProcessingState::NeedMoreFragments => {
core_ctx.increment(|counters: &IpCounters<I>| &counters.need_more_fragments);
trace!("receive_ip_packet: fragmented, need more before reassembly");
ProcessFragmentResult::Done
}
// TODO(ghanan): Handle invalid fragments.
FragmentProcessingState::InvalidFragment => {
core_ctx.increment(|counters: &IpCounters<I>| &counters.invalid_fragment);
trace!("receive_ip_packet: fragmented, invalid");
ProcessFragmentResult::Done
}
FragmentProcessingState::OutOfMemory => {
core_ctx.increment(|counters: &IpCounters<I>| &counters.fragment_cache_full);
trace!("receive_ip_packet: fragmented, dropped because OOM");
ProcessFragmentResult::Done
}
}
}
// TODO(joshlf): Can we turn `try_parse_ip_packet` into a function? So far, I've
// been unable to get the borrow checker to accept it.
/// Try to parse an IP packet from a buffer.
///
/// If parsing fails, return the buffer to its original state so that its
/// contents can be used to send an ICMP error message. When invoked, the macro
/// expands to an expression whose type is `Result<P, P::Error>`, where `P` is
/// the parsed packet type.
macro_rules! try_parse_ip_packet {
($buffer:expr) => {{
let p_len = $buffer.prefix_len();
let s_len = $buffer.suffix_len();
let result = $buffer.parse_mut();
if let Err(err) = result {
// Revert `buffer` to it's original state.
let n_p_len = $buffer.prefix_len();
let n_s_len = $buffer.suffix_len();
if p_len > n_p_len {
$buffer.grow_front(p_len - n_p_len);
}
if s_len > n_s_len {
$buffer.grow_back(s_len - n_s_len);
}
Err(err)
} else {
result
}
}};
}
/// Clone an IP packet so that it may be delivered to a multicast route target.
///
/// Note: We must copy the underlying data here, as the filtering
/// engine may uniquely modify each instance as part of
/// performing forwarding.
///
/// In the future there are potential optimizations we could
/// pursue, including:
/// * Copy-on-write semantics for the buffer/packet so that
/// copies of the underlying data are done on an as-needed
/// basis.
/// * Avoid reparsing the IP packet. Because we're parsing an
/// exact copy of a known good packet, it would be safe to
/// adopt the data as an IP packet without performing any
/// validation.
// NB: This is a macro, not a function, because Rust's "move" semantics prevent
// us from returning both a buffer and a packet referencing that buffer.
macro_rules! clone_packet_for_mcast_forwarding {
{let ($new_data:ident, $new_buffer:ident, $new_packet:ident) = $packet:ident} => {
let mut $new_data = $packet.to_vec();
let mut $new_buffer: Buf<&mut [u8]> = Buf::new($new_data.as_mut(), ..);
let $new_packet = try_parse_ip_packet!($new_buffer).unwrap();
};
}
/// Receive an IPv4 packet from a device.
///
/// `frame_dst` specifies how this packet was received; see [`FrameDestination`]
/// for options.
pub fn receive_ipv4_packet<
BC: IpLayerBindingsContext<Ipv4, CC::DeviceId>,
B: BufferMut,
CC: IpLayerIngressContext<Ipv4, BC> + CounterContext<IpCounters<Ipv4>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
device_ip_layer_metadata: DeviceIpLayerMetadata,
buffer: B,
) {
if !core_ctx.is_ip_device_enabled(&device) {
return;
}
// This is required because we may need to process the buffer that was
// passed in or a reassembled one, which have different types.
let mut buffer: packet::Either<B, Buf<Vec<u8>>> = packet::Either::A(buffer);
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.receive_ip_packet);
trace!("receive_ip_packet({device:?})");
let packet: Ipv4Packet<_> = match try_parse_ip_packet!(buffer) {
Ok(packet) => packet,
// Conditionally send an ICMP response if we encountered a parameter
// problem error when parsing an IPv4 packet. Note, we do not always
// send back an ICMP response as it can be used as an attack vector for
// DDoS attacks. We only send back an ICMP response if the RFC requires
// that we MUST send one, as noted by `must_send_icmp` and `action`.
// TODO(https://fxbug.dev/42157630): test this code path once
// `Ipv4Packet::parse` can return an `IpParseError::ParameterProblem`
// error.
Err(IpParseError::ParameterProblem {
src_ip,
dst_ip,
code,
pointer,
must_send_icmp,
header_len,
action,
}) if must_send_icmp && action.should_send_icmp(&dst_ip) => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.parameter_problem);
// `should_send_icmp_to_multicast` should never return `true` for IPv4.
assert!(!action.should_send_icmp_to_multicast());
let dst_ip = match SpecifiedAddr::new(dst_ip) {
Some(ip) => ip,
None => {
core_ctx
.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_destination);
debug!("receive_ipv4_packet: Received packet with unspecified destination IP address; dropping");
return;
}
};
let src_ip = match SpecifiedAddr::new(src_ip) {
Some(ip) => ip,
None => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_source);
trace!("receive_ipv4_packet: Cannot send ICMP error in response to packet with unspecified source IP address");
return;
}
};
IcmpErrorHandler::<Ipv4, _>::send_icmp_error_message(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
buffer,
Icmpv4Error {
kind: Icmpv4ErrorKind::ParameterProblem {
code,
pointer,
// When the call to `action.should_send_icmp` returns true, it always means that
// the IPv4 packet that failed parsing is an initial fragment.
fragment_type: Ipv4FragmentType::InitialFragment,
},
header_len,
},
);
return;
}
_ => return, // TODO(joshlf): Do something with ICMP here?
};
// We verify this later by actually creating the `SpecifiedAddr` witness
// type after the INGRESS filtering hook, but we keep this check here as an
// optimization to return early if the packet has an unspecified
// destination.
if !packet.dst_ip().is_specified() {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_destination);
debug!("receive_ipv4_packet: Received packet with unspecified destination IP; dropping");
return;
};
// Reassemble all packets before local delivery or forwarding. Reassembly
// before forwarding is not RFC-compliant, but it's the easiest way to
// ensure that fragments are filtered properly. Linux does this and it
// doesn't seem to create major problems.
//
// TODO(https://fxbug.dev/345814518): Forward fragments without reassembly.
//
// Note, the `process_fragment` function could panic if the packet does not
// have fragment data. However, we are guaranteed that it will not panic
// because the fragment data is in the fixed header so it is always present
// (even if the fragment data has values that implies that the packet is not
// fragmented).
let mut packet = match process_fragment(core_ctx, bindings_ctx, packet) {
ProcessFragmentResult::Done => return,
ProcessFragmentResult::NotNeeded(packet) => packet,
ProcessFragmentResult::Reassembled(buf) => {
let buf = Buf::new(buf, ..);
buffer = packet::Either::B(buf);
match buffer.parse_mut() {
Ok(packet) => packet,
Err(err) => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| {
&counters.fragment_reassembly_error
});
debug!("receive_ip_packet: fragmented, failed to reassemble: {:?}", err);
return;
}
}
}
};
// TODO(ghanan): Act upon options.
let mut packet_metadata =
IpLayerPacketMetadata::from_device_ip_layer_metadata(core_ctx, device_ip_layer_metadata);
let mut filter = core_ctx.filter_handler();
match filter.ingress_hook(bindings_ctx, &mut packet, device, &mut packet_metadata) {
IngressVerdict::Verdict(filter::Verdict::Accept(())) => {}
IngressVerdict::Verdict(filter::Verdict::Drop) => {
packet_metadata.acknowledge_drop();
return;
}
IngressVerdict::TransparentLocalDelivery { addr, port } => {
// Drop the filter handler since it holds a mutable borrow of `core_ctx`, which
// we need to provide to the packet dispatch function.
drop(filter);
let Some(addr) = SpecifiedAddr::new(addr) else {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_destination);
debug!("cannot perform transparent delivery to unspecified destination; dropping");
return;
};
let receive_meta = ReceiveIpPacketMeta {
// It's possible that the packet was actually sent to a
// broadcast address, but it doesn't matter here since it's
// being delivered to a transparent proxy.
broadcast: None,
transparent_override: Some(TransparentLocalDelivery { addr, port }),
};
// Short-circuit the routing process and override local demux, providing a local
// address and port to which the packet should be transparently delivered at the
// transport layer.
dispatch_receive_ipv4_packet(
core_ctx,
bindings_ctx,
device,
frame_dst,
packet,
packet_metadata,
receive_meta,
)
.unwrap_or_else(|err| err.respond_with_icmp_error(core_ctx, bindings_ctx, buffer));
return;
}
}
// Drop the filter handler since it holds a mutable borrow of `core_ctx`, which
// we need below.
drop(filter);
let action = receive_ipv4_packet_action(core_ctx, bindings_ctx, device, &packet, frame_dst);
match action {
ReceivePacketAction::MulticastForward { targets, address_status, dst_ip } => {
let src_ip = packet.src_ip();
// TOOD(https://fxbug.dev/364242513): Support connection tracking of
// the multiplexed flows created by multicast forwarding. Here, we
// use the existing metadata for the first action taken, and then
// a default instance for each subsequent action. The first action
// will populate the conntrack table with an entry, which will then
// be used by all subsequent forwards.
let mut packet_metadata = Some(packet_metadata);
for MulticastRouteTarget { output_interface, min_ttl } in targets.as_ref() {
clone_packet_for_mcast_forwarding! {
let (copy_of_data, copy_of_buffer, copy_of_packet) = packet
};
determine_ip_packet_forwarding_action::<Ipv4, _, _>(
core_ctx,
copy_of_packet,
packet_metadata.take().unwrap_or_default(),
Some(*min_ttl),
device,
&output_interface,
IpPacketDestination::from_addr(dst_ip),
frame_dst,
src_ip,
dst_ip,
)
.perform_action_with_buffer(core_ctx, bindings_ctx, copy_of_buffer);
}
// If we also have an interest in the packet, deliver it locally.
if let Some(address_status) = address_status {
let receive_meta = ReceiveIpPacketMeta {
broadcast: address_status.to_broadcast_marker(),
transparent_override: None,
};
dispatch_receive_ipv4_packet(
core_ctx,
bindings_ctx,
device,
frame_dst,
packet,
packet_metadata.take().unwrap_or_default(),
receive_meta,
)
.unwrap_or_else(|err| err.respond_with_icmp_error(core_ctx, bindings_ctx, buffer));
}
}
ReceivePacketAction::Deliver { address_status, internal_forwarding } => {
// NB: when performing internal forwarding, hit the
// forwarding hook.
match internal_forwarding {
InternalForwarding::Used(outbound_device) => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.forward);
match core_ctx.filter_handler().forwarding_hook(
&mut packet,
device,
&outbound_device,
&mut packet_metadata,
) {
filter::Verdict::Drop => {
packet_metadata.acknowledge_drop();
return;
}
filter::Verdict::Accept(()) => {}
}
}
InternalForwarding::NotUsed => {}
}
let receive_meta = ReceiveIpPacketMeta {
broadcast: address_status.to_broadcast_marker(),
transparent_override: None,
};
dispatch_receive_ipv4_packet(
core_ctx,
bindings_ctx,
device,
frame_dst,
packet,
packet_metadata,
receive_meta,
)
.unwrap_or_else(|err| err.respond_with_icmp_error(core_ctx, bindings_ctx, buffer));
}
ReceivePacketAction::Forward {
original_dst,
dst: Destination { device: dst_device, next_hop },
} => {
let src_ip = packet.src_ip();
determine_ip_packet_forwarding_action::<Ipv4, _, _>(
core_ctx,
packet,
packet_metadata,
None,
device,
&dst_device,
IpPacketDestination::from_next_hop(next_hop, original_dst),
frame_dst,
src_ip,
original_dst,
)
.perform_action_with_buffer(core_ctx, bindings_ctx, buffer);
}
ReceivePacketAction::SendNoRouteToDest { dst: dst_ip } => {
use packet_formats::ipv4::Ipv4Header as _;
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.no_route_to_host);
debug!("received IPv4 packet with no known route to destination {}", dst_ip);
let fragment_type = packet.fragment_type();
let (src_ip, _, proto, meta): (_, Ipv4Addr, _, _) =
drop_packet_and_undo_parse!(packet, buffer);
packet_metadata.acknowledge_drop();
let src_ip = match SpecifiedAddr::new(src_ip) {
Some(ip) => ip,
None => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_source);
trace!("receive_ipv4_packet: Cannot send ICMP error in response to packet with unspecified source IP address");
return;
}
};
IcmpErrorHandler::<Ipv4, _>::send_icmp_error_message(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
buffer,
Icmpv4Error {
kind: Icmpv4ErrorKind::NetUnreachable { proto, fragment_type },
header_len: meta.header_len(),
},
);
}
ReceivePacketAction::Drop { reason } => {
let src_ip = packet.src_ip();
let dst_ip = packet.dst_ip();
packet_metadata.acknowledge_drop();
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.dropped);
debug!(
"receive_ipv4_packet: dropping packet from {src_ip} to {dst_ip} received on \
{device:?}: {reason:?}",
);
}
}
}
/// Receive an IPv6 packet from a device.
///
/// `frame_dst` specifies how this packet was received; see [`FrameDestination`]
/// for options.
pub fn receive_ipv6_packet<
BC: IpLayerBindingsContext<Ipv6, CC::DeviceId>,
B: BufferMut,
CC: IpLayerIngressContext<Ipv6, BC> + CounterContext<IpCounters<Ipv6>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
frame_dst: Option<FrameDestination>,
device_ip_layer_metadata: DeviceIpLayerMetadata,
buffer: B,
) {
if !core_ctx.is_ip_device_enabled(&device) {
return;
}
// This is required because we may need to process the buffer that was
// passed in or a reassembled one, which have different types.
let mut buffer: packet::Either<B, Buf<Vec<u8>>> = packet::Either::A(buffer);
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.receive_ip_packet);
trace!("receive_ipv6_packet({:?})", device);
let packet: Ipv6Packet<_> = match try_parse_ip_packet!(buffer) {
Ok(packet) => packet,
// Conditionally send an ICMP response if we encountered a parameter
// problem error when parsing an IPv4 packet. Note, we do not always
// send back an ICMP response as it can be used as an attack vector for
// DDoS attacks. We only send back an ICMP response if the RFC requires
// that we MUST send one, as noted by `must_send_icmp` and `action`.
Err(IpParseError::ParameterProblem {
src_ip,
dst_ip,
code,
pointer,
must_send_icmp,
header_len: _,
action,
}) if must_send_icmp && action.should_send_icmp(&dst_ip) => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.parameter_problem);
let dst_ip = match SpecifiedAddr::new(dst_ip) {
Some(ip) => ip,
None => {
core_ctx
.increment(|counters: &IpCounters<Ipv6>| &counters.unspecified_destination);
debug!("receive_ipv6_packet: Received packet with unspecified destination IP address; dropping");
return;
}
};
let src_ip = match UnicastAddr::new(src_ip) {
Some(ip) => ip,
None => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| {
&counters.version_rx.non_unicast_source
});
trace!("receive_ipv6_packet: Cannot send ICMP error in response to packet with non unicast source IP address");
return;
}
};
IcmpErrorHandler::<Ipv6, _>::send_icmp_error_message(
core_ctx,
bindings_ctx,
device,
frame_dst,
src_ip,
dst_ip,
buffer,
Icmpv6ErrorKind::ParameterProblem {
code,
pointer,
allow_dst_multicast: action.should_send_icmp_to_multicast(),
},
);
return;
}
_ => return, // TODO(joshlf): Do something with ICMP here?
};
trace!("receive_ipv6_packet: parsed packet: {:?}", packet);
// TODO(ghanan): Act upon extension headers.
// We verify these properties later by actually creating the corresponding
// witness types after the INGRESS filtering hook, but we keep these checks
// here as an optimization to return early and save some work.
if packet.src_ipv6().is_none() {
debug!(
"receive_ipv6_packet: received packet from non-unicast source {}; dropping",
packet.src_ip()
);
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.version_rx.non_unicast_source);
return;
};
if !packet.dst_ip().is_specified() {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.unspecified_destination);
debug!("receive_ipv6_packet: Received packet with unspecified destination IP; dropping");
return;
};
// Reassemble all packets before local delivery or forwarding. Reassembly
// before forwarding is not RFC-compliant, but it's the easiest way to
// ensure that fragments are filtered properly. Linux does this and it
// doesn't seem to create major problems.
//
// TODO(https://fxbug.dev/345814518): Forward fragments without reassembly.
//
// delivery_extension_header_action is used to prevent looking at the
// extension headers twice when a non-fragmented packet is delivered
// locally.
let (mut packet, delivery_extension_header_action) =
match ipv6::handle_extension_headers(core_ctx, device, frame_dst, &packet, true) {
Ipv6PacketAction::_Discard => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| {
&counters.version_rx.extension_header_discard
});
trace!("receive_ipv6_packet: handled IPv6 extension headers: discarding packet");
return;
}
Ipv6PacketAction::Continue => {
trace!("receive_ipv6_packet: handled IPv6 extension headers: dispatching packet");
(packet, Some(Ipv6PacketAction::Continue))
}
Ipv6PacketAction::ProcessFragment => {
trace!(
"receive_ipv6_packet: handled IPv6 extension headers: handling \
fragmented packet"
);
// Note, `IpPacketFragmentCache::process_fragment`
// could panic if the packet does not have fragment data.
// However, we are guaranteed that it will not panic for an
// IPv6 packet because the fragment data is in an (optional)
// fragment extension header which we attempt to handle by
// calling `ipv6::handle_extension_headers`. We will only
// end up here if its return value is
// `Ipv6PacketAction::ProcessFragment` which is only
// possible when the packet has the fragment extension
// header (even if the fragment data has values that implies
// that the packet is not fragmented).
match process_fragment(core_ctx, bindings_ctx, packet) {
ProcessFragmentResult::Done => return,
ProcessFragmentResult::NotNeeded(packet) => {
// While strange, it's possible for there to be a Fragment
// header that says the packet doesn't need defragmentation.
// As per RFC 8200 4.5:
//
// If the fragment is a whole datagram (that is, both the
// Fragment Offset field and the M flag are zero), then it
// does not need any further reassembly and should be
// processed as a fully reassembled packet (i.e., updating
// Next Header, adjust Payload Length, removing the
// Fragment header, etc.).
//
// In this case, we're not technically reassembling the
// packet, since, per the RFC, that would mean removing the
// Fragment header.
(packet, Some(Ipv6PacketAction::Continue))
}
ProcessFragmentResult::Reassembled(buf) => {
let buf = Buf::new(buf, ..);
buffer = packet::Either::B(buf);
match buffer.parse_mut() {
Ok(packet) => (packet, None),
Err(err) => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| {
&counters.fragment_reassembly_error
});
debug!(
"receive_ip_packet: fragmented, failed to reassemble: {:?}",
err
);
return;
}
}
}
}
}
};
let mut packet_metadata =
IpLayerPacketMetadata::from_device_ip_layer_metadata(core_ctx, device_ip_layer_metadata);
let mut filter = core_ctx.filter_handler();
match filter.ingress_hook(bindings_ctx, &mut packet, device, &mut packet_metadata) {
IngressVerdict::Verdict(filter::Verdict::Accept(())) => {}
IngressVerdict::Verdict(filter::Verdict::Drop) => {
packet_metadata.acknowledge_drop();
return;
}
IngressVerdict::TransparentLocalDelivery { addr, port } => {
// Drop the filter handler since it holds a mutable borrow of `core_ctx`, which
// we need to provide to the packet dispatch function.
drop(filter);
let Some(addr) = SpecifiedAddr::new(addr) else {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.unspecified_destination);
debug!("cannot perform transparent delivery to unspecified destination; dropping");
return;
};
let receive_meta = ReceiveIpPacketMeta {
broadcast: None,
transparent_override: Some(TransparentLocalDelivery { addr, port }),
};
// Short-circuit the routing process and override local demux, providing a local
// address and port to which the packet should be transparently delivered at the
// transport layer.
dispatch_receive_ipv6_packet(
core_ctx,
bindings_ctx,
device,
frame_dst,
packet,
packet_metadata,
receive_meta,
)
.unwrap_or_else(|err| err.respond_with_icmp_error(core_ctx, bindings_ctx, buffer));
return;
}
}
// Drop the filter handler since it holds a mutable borrow of `core_ctx`, which
// we need below.
drop(filter);
let Some(src_ip) = packet.src_ipv6() else {
debug!(
"receive_ipv6_packet: received packet from non-unicast source {}; dropping",
packet.src_ip()
);
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.version_rx.non_unicast_source);
return;
};
match receive_ipv6_packet_action(core_ctx, bindings_ctx, device, &packet, frame_dst) {
ReceivePacketAction::MulticastForward { targets, address_status, dst_ip } => {
// TOOD(https://fxbug.dev/364242513): Support connection tracking of
// the multiplexed flows created by multicast forwarding. Here, we
// use the existing metadata for the first action taken, and then
// a default instance for each subsequent action. The first action
// will populate the conntrack table with an entry, which will then
// be used by all subsequent forwards.
let mut packet_metadata = Some(packet_metadata);
for MulticastRouteTarget { output_interface, min_ttl } in targets.as_ref() {
clone_packet_for_mcast_forwarding! {
let (copy_of_data, copy_of_buffer, copy_of_packet) = packet
};
determine_ip_packet_forwarding_action::<Ipv6, _, _>(
core_ctx,
copy_of_packet,
packet_metadata.take().unwrap_or_default(),
Some(*min_ttl),
device,
&output_interface,
IpPacketDestination::from_addr(dst_ip),
frame_dst,
src_ip,
dst_ip,
)
.perform_action_with_buffer(core_ctx, bindings_ctx, copy_of_buffer);
}
// If we also have an interest in the packet, deliver it locally.
if let Some(_) = address_status {
let receive_meta =
ReceiveIpPacketMeta { broadcast: None, transparent_override: None };
dispatch_receive_ipv6_packet(
core_ctx,
bindings_ctx,
device,
frame_dst,
packet,
packet_metadata.take().unwrap_or_default(),
receive_meta,
)
.unwrap_or_else(|err| err.respond_with_icmp_error(core_ctx, bindings_ctx, buffer));
}
}
ReceivePacketAction::Deliver { address_status: _, internal_forwarding } => {
trace!("receive_ipv6_packet: delivering locally");
let action = if let Some(action) = delivery_extension_header_action {
action
} else {
ipv6::handle_extension_headers(core_ctx, device, frame_dst, &packet, true)
};
match action {
Ipv6PacketAction::_Discard => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| {
&counters.version_rx.extension_header_discard
});
trace!(
"receive_ipv6_packet: handled IPv6 extension headers: discarding packet"
);
packet_metadata.acknowledge_drop();
}
Ipv6PacketAction::Continue => {
trace!(
"receive_ipv6_packet: handled IPv6 extension headers: dispatching packet"
);
// NB: when performing internal forwarding, hit the
// forwarding hook.
match internal_forwarding {
InternalForwarding::Used(outbound_device) => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.forward);
match core_ctx.filter_handler().forwarding_hook(
&mut packet,
device,
&outbound_device,
&mut packet_metadata,
) {
filter::Verdict::Drop => {
packet_metadata.acknowledge_drop();
return;
}
filter::Verdict::Accept(()) => {}
}
}
InternalForwarding::NotUsed => {}
}
let meta = ReceiveIpPacketMeta { broadcast: None, transparent_override: None };
// TODO(joshlf):
// - Do something with ICMP if we don't have a handler for
// that protocol?
// - Check for already-expired TTL?
dispatch_receive_ipv6_packet(
core_ctx,
bindings_ctx,
device,
frame_dst,
packet,
packet_metadata,
meta,
)
.unwrap_or_else(|err| {
err.respond_with_icmp_error(core_ctx, bindings_ctx, buffer)
});
}
Ipv6PacketAction::ProcessFragment => {
debug!("receive_ipv6_packet: found fragment header after reassembly; dropping");
packet_metadata.acknowledge_drop();
}
}
}
ReceivePacketAction::Forward {
original_dst,
dst: Destination { device: dst_device, next_hop },
} => {
determine_ip_packet_forwarding_action::<Ipv6, _, _>(
core_ctx,
packet,
packet_metadata,
None,
device,
&dst_device,
IpPacketDestination::from_next_hop(next_hop, original_dst),
frame_dst,
src_ip,
original_dst,
)
.perform_action_with_buffer(core_ctx, bindings_ctx, buffer);
}
ReceivePacketAction::SendNoRouteToDest { dst: dst_ip } => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.no_route_to_host);
let (_, _, proto, meta): (Ipv6Addr, Ipv6Addr, _, _) =
drop_packet_and_undo_parse!(packet, buffer);
debug!("received IPv6 packet with no known route to destination {}", dst_ip);
packet_metadata.acknowledge_drop();
if let Ipv6SourceAddr::Unicast(src_ip) = src_ip {
IcmpErrorHandler::<Ipv6, _>::send_icmp_error_message(
core_ctx,
bindings_ctx,
device,
frame_dst,
*src_ip,
dst_ip,
buffer,
Icmpv6ErrorKind::NetUnreachable { proto, header_len: meta.header_len() },
);
}
}
ReceivePacketAction::Drop { reason } => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.dropped);
let src_ip = packet.src_ip();
let dst_ip = packet.dst_ip();
packet_metadata.acknowledge_drop();
debug!(
"receive_ipv6_packet: dropping packet from {src_ip} to {dst_ip} received on \
{device:?}: {reason:?}",
);
}
}
}
/// The action to take in order to process a received IP packet.
#[derive(Debug, PartialEq)]
pub enum ReceivePacketAction<I: BroadcastIpExt + IpLayerIpExt, DeviceId: StrongDeviceIdentifier> {
/// Deliver the packet locally.
Deliver {
/// Status of the receiving IP address.
address_status: I::AddressStatus,
/// `InternalForwarding::Used(d)` if we're delivering the packet as a
/// Weak Host performing internal forwarding via output device `d`.
internal_forwarding: InternalForwarding<DeviceId>,
},
/// Forward the packet to the given destination.
Forward {
/// The original destination IP address of the packet.
original_dst: SpecifiedAddr<I::Addr>,
/// The destination that the packet should be forwarded to.
dst: Destination<I::Addr, DeviceId>,
},
/// A multicast packet that should be forwarded (& optional local delivery).
///
/// The packet should be forwarded to each of the given targets. This case
/// is only returned when the packet is eligible for multicast forwarding;
/// `Self::Deliver` is used for packets that are ineligible (either because
/// multicast forwarding is disabled, or because there are no applicable
/// multicast routes with which to forward the packet).
MulticastForward {
/// The multicast targets to forward the packet via.
targets: MulticastRouteTargets<DeviceId>,
/// Some if the host is a member of the multicast group and the packet
/// should be delivered locally (in addition to forwarding).
address_status: Option<I::AddressStatus>,
/// The multicast address the packet should be forwarded to.
dst_ip: SpecifiedAddr<I::Addr>,
},
/// Send a Destination Unreachable ICMP error message to the packet's sender
/// and drop the packet.
///
/// For ICMPv4, use the code "net unreachable". For ICMPv6, use the code "no
/// route to destination".
SendNoRouteToDest {
/// The destination IP Address to which there was no route.
dst: SpecifiedAddr<I::Addr>,
},
/// Silently drop the packet.
///
/// `reason` describes why the packet was dropped.
#[allow(missing_docs)]
Drop { reason: DropReason },
}
/// The reason a received IP packet is dropped.
#[derive(Debug, PartialEq)]
pub enum DropReason {
/// Remote packet destined to tentative address.
Tentative,
/// Remote packet destined to the unspecified address.
UnspecifiedDestination,
/// Cannot forward a packet with unspecified source address.
ForwardUnspecifiedSource,
/// Packet should be forwarded but packet's inbound interface has forwarding
/// disabled.
ForwardingDisabledInboundIface,
/// Remote packet destined to a multicast address that could not be:
/// * delivered locally (because we are not a member of the multicast
/// group), or
/// * forwarded (either because multicast forwarding is disabled, or no
/// applicable multicast route has been installed).
MulticastNoInterest,
}
/// Computes the action to take in order to process a received IPv4 packet.
pub fn receive_ipv4_packet_action<BC, CC, B>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
packet: &Ipv4Packet<B>,
frame_dst: Option<FrameDestination>,
) -> ReceivePacketAction<Ipv4, CC::DeviceId>
where
BC: IpLayerBindingsContext<Ipv4, CC::DeviceId>,
CC: IpLayerContext<Ipv4, BC> + CounterContext<IpCounters<Ipv4>>,
B: SplitByteSlice,
{
let Some(dst_ip) = SpecifiedAddr::new(packet.dst_ip()) else {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.unspecified_destination);
return ReceivePacketAction::Drop { reason: DropReason::UnspecifiedDestination };
};
// If the packet arrived at the loopback interface, check if any local
// interface has the destination address assigned. This effectively lets
// the loopback interface operate as a weak host for incoming packets.
//
// Note that (as of writing) the stack sends all locally destined traffic to
// the loopback interface so we need this hack to allow the stack to accept
// packets that arrive at the loopback interface (after being looped back)
// but destined to an address that is assigned to another local interface.
//
// TODO(https://fxbug.dev/42175703): This should instead be controlled by the
// routing table.
// Since we treat all addresses identically, it doesn't matter whether one
// or more than one device has the address assigned. That means we can just
// take the first status and ignore the rest.
let first_status = if device.is_loopback() {
core_ctx.with_address_statuses(dst_ip, |it| it.map(|(_device, status)| status).next())
} else {
core_ctx.address_status_for_device(dst_ip, device).into_present()
};
match first_status {
Some(
address_status @ (Ipv4PresentAddressStatus::Unicast
| Ipv4PresentAddressStatus::LoopbackSubnet),
) => {
core_ctx.increment(|counters: &IpCounters<Ipv4>| &counters.deliver_unicast);
ReceivePacketAction::Deliver {
address_status,
internal_forwarding: InternalForwarding::NotUsed,
}
}
Some(address_status @ Ipv4PresentAddressStatus::Multicast) => {
receive_ip_multicast_packet_action(
core_ctx,
bindings_ctx,
device,
packet,
Some(address_status),
dst_ip,
frame_dst,
)
}
Some(
address_status @ (Ipv4PresentAddressStatus::LimitedBroadcast
| Ipv4PresentAddressStatus::SubnetBroadcast),
) => {
core_ctx
.increment(|counters: &IpCounters<Ipv4>| &counters.version_rx.deliver_broadcast);
ReceivePacketAction::Deliver {
address_status,
internal_forwarding: InternalForwarding::NotUsed,
}
}
None => receive_ip_packet_action_common::<Ipv4, _, _, _>(
core_ctx,
bindings_ctx,
dst_ip,
device,
packet,
frame_dst,
),
}
}
/// Computes the action to take in order to process a received IPv6 packet.
pub fn receive_ipv6_packet_action<BC, CC, B>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
packet: &Ipv6Packet<B>,
frame_dst: Option<FrameDestination>,
) -> ReceivePacketAction<Ipv6, CC::DeviceId>
where
BC: IpLayerBindingsContext<Ipv6, CC::DeviceId>,
CC: IpLayerContext<Ipv6, BC> + CounterContext<IpCounters<Ipv6>>,
B: SplitByteSlice,
{
let Some(dst_ip) = SpecifiedAddr::new(packet.dst_ip()) else {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.unspecified_destination);
return ReceivePacketAction::Drop { reason: DropReason::UnspecifiedDestination };
};
// If the packet arrived at the loopback interface, check if any local
// interface has the destination address assigned. This effectively lets
// the loopback interface operate as a weak host for incoming packets.
//
// Note that (as of writing) the stack sends all locally destined traffic to
// the loopback interface so we need this hack to allow the stack to accept
// packets that arrive at the loopback interface (after being looped back)
// but destined to an address that is assigned to another local interface.
//
// TODO(https://fxbug.dev/42175703): This should instead be controlled by the
// routing table.
// It's possible that there is more than one device with the address
// assigned. Since IPv6 addresses are either multicast or unicast, we
// don't expect to see one device with `UnicastAssigned` or
// `UnicastTentative` and another with `Multicast`. We might see one
// assigned and one tentative status, though, in which case we should
// prefer the former.
fn choose_highest_priority(
address_statuses: impl Iterator<Item = Ipv6PresentAddressStatus>,
dst_ip: SpecifiedAddr<Ipv6Addr>,
) -> Option<Ipv6PresentAddressStatus> {
address_statuses.max_by(|lhs, rhs| {
use Ipv6PresentAddressStatus::*;
match (lhs, rhs) {
(UnicastAssigned | UnicastTentative, Multicast)
| (Multicast, UnicastAssigned | UnicastTentative) => {
unreachable!("the IPv6 address {:?} is not both unicast and multicast", dst_ip)
}
(UnicastAssigned, UnicastTentative) => Ordering::Greater,
(UnicastTentative, UnicastAssigned) => Ordering::Less,
(UnicastTentative, UnicastTentative)
| (UnicastAssigned, UnicastAssigned)
| (Multicast, Multicast) => Ordering::Equal,
}
})
}
let highest_priority = if device.is_loopback() {
core_ctx.with_address_statuses(dst_ip, |it| {
let it = it.map(|(_device, status)| status);
choose_highest_priority(it, dst_ip)
})
} else {
core_ctx.address_status_for_device(dst_ip, device).into_present()
};
match highest_priority {
Some(address_status @ Ipv6PresentAddressStatus::Multicast) => {
receive_ip_multicast_packet_action(
core_ctx,
bindings_ctx,
device,
packet,
Some(address_status),
dst_ip,
frame_dst,
)
}
Some(address_status @ Ipv6PresentAddressStatus::UnicastAssigned) => {
core_ctx.increment(|counters: &IpCounters<Ipv6>| &counters.deliver_unicast);
ReceivePacketAction::Deliver {
address_status,
internal_forwarding: InternalForwarding::NotUsed,
}
}
Some(Ipv6PresentAddressStatus::UnicastTentative) => {
// If the destination address is tentative (which implies that
// we are still performing NDP's Duplicate Address Detection on
// it), then we don't consider the address "assigned to an
// interface", and so we drop packets instead of delivering them
// locally.
//
// As per RFC 4862 section 5.4:
//
// An address on which the Duplicate Address Detection
// procedure is applied is said to be tentative until the
// procedure has completed successfully. A tentative address
// is not considered "assigned to an interface" in the
// traditional sense. That is, the interface must accept
// Neighbor Solicitation and Advertisement messages containing
// the tentative address in the Target Address field, but
// processes such packets differently from those whose Target
// Address matches an address assigned to the interface. Other
// packets addressed to the tentative address should be
// silently discarded. Note that the "other packets" include
// Neighbor Solicitation and Advertisement messages that have
// the tentative (i.e., unicast) address as the IP destination
// address and contain the tentative address in the Target
// Address field. Such a case should not happen in normal
// operation, though, since these messages are multicasted in
// the Duplicate Address Detection procedure.
//
// That is, we accept no packets destined to a tentative
// address. NS and NA packets should be addressed to a multicast
// address that we would have joined during DAD so that we can
// receive those packets.
core_ctx
.increment(|counters: &IpCounters<Ipv6>| &counters.version_rx.drop_for_tentative);
ReceivePacketAction::Drop { reason: DropReason::Tentative }
}
None => receive_ip_packet_action_common::<Ipv6, _, _, _>(
core_ctx,
bindings_ctx,
dst_ip,
device,
packet,
frame_dst,
),
}
}
/// Computes the action to take for multicast packets on behalf of
/// [`receive_ipv4_packet_action`] and [`receive_ipv6_packet_action`].
fn receive_ip_multicast_packet_action<
I: IpLayerIpExt,
B: SplitByteSlice,
BC: IpLayerBindingsContext<I, CC::DeviceId>,
CC: IpLayerContext<I, BC> + CounterContext<IpCounters<I>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
device: &CC::DeviceId,
packet: &I::Packet<B>,
address_status: Option<I::AddressStatus>,
dst_ip: SpecifiedAddr<I::Addr>,
frame_dst: Option<FrameDestination>,
) -> ReceivePacketAction<I, CC::DeviceId> {
let targets = multicast_forwarding::lookup_multicast_route_or_stash_packet(
core_ctx,
bindings_ctx,
packet,
device,
frame_dst,
);
match (targets, address_status) {
(Some(targets), address_status) => {
if address_status.is_some() {
core_ctx.increment(|counters: &IpCounters<I>| &counters.deliver_multicast);
}
ReceivePacketAction::MulticastForward { targets, address_status, dst_ip }
}
(None, Some(address_status)) => {
// If the address was present on the device (e.g. the host is a
// member of the multicast group), fallback to local delivery.
core_ctx.increment(|counters: &IpCounters<I>| &counters.deliver_multicast);
ReceivePacketAction::Deliver {
address_status,
internal_forwarding: InternalForwarding::NotUsed,
}
}
(None, None) => {
// As per RFC 1122 Section 3.2.2
// An ICMP error message MUST NOT be sent as the result of
// receiving:
// ...
// * a datagram destined to an IP broadcast or IP multicast
// address
//
// As such, drop the packet
core_ctx.increment(|counters: &IpCounters<I>| &counters.multicast_no_interest);
ReceivePacketAction::Drop { reason: DropReason::MulticastNoInterest }
}
}
}
/// Computes the remaining protocol-agnostic actions on behalf of
/// [`receive_ipv4_packet_action`] and [`receive_ipv6_packet_action`].
fn receive_ip_packet_action_common<
I: IpLayerIpExt,
B: SplitByteSlice,
BC: IpLayerBindingsContext<I, CC::DeviceId>,
CC: IpLayerContext<I, BC> + CounterContext<IpCounters<I>>,
>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
dst_ip: SpecifiedAddr<I::Addr>,
device_id: &CC::DeviceId,
packet: &I::Packet<B>,
frame_dst: Option<FrameDestination>,
) -> ReceivePacketAction<I, CC::DeviceId> {
if dst_ip.is_multicast() {
return receive_ip_multicast_packet_action(
core_ctx,
bindings_ctx,
device_id,
packet,
None,
dst_ip,
frame_dst,
);
}
// The packet is not destined locally, so we attempt to forward it.
if !core_ctx.is_device_unicast_forwarding_enabled(device_id) {
// Forwarding is disabled; we are operating only as a host.
//
// For IPv4, per RFC 1122 Section 3.2.1.3, "A host MUST silently discard
// an incoming datagram that is not destined for the host."
//
// For IPv6, per RFC 4443 Section 3.1, the only instance in which a host
// sends an ICMPv6 Destination Unreachable message is when a packet is
// destined to that host but on an unreachable port (Code 4 - "Port
// unreachable"). Since the only sensible error message to send in this
// case is a Destination Unreachable message, we interpret the RFC text
// to mean that, consistent with IPv4's behavior, we should silently
// discard the packet in this case.
core_ctx.increment(|counters: &IpCounters<I>| &counters.forwarding_disabled);
return ReceivePacketAction::Drop { reason: DropReason::ForwardingDisabledInboundIface };
}
// Per https://www.rfc-editor.org/rfc/rfc4291.html#section-2.5.2:
// An IPv6 packet with a source address of unspecified must never be forwarded by an IPv6
// router.
// Per https://datatracker.ietf.org/doc/html/rfc1812#section-5.3.7:
// A router SHOULD NOT forward any packet that has an invalid IP source address or a source
// address on network 0
let Some(source_address) = SpecifiedAddr::new(packet.src_ip()) else {
return ReceivePacketAction::Drop { reason: DropReason::ForwardUnspecifiedSource };
};
// If forwarding is enabled, allow local delivery if the packet is destined
// for an IP assigned to a different interface.
//
// This enables a weak host model when the Netstack is configured as a
// router. Conceptually, the netstack is forwarding the packet from the
// input device, to the destination IP's device.
if let Some(dst_ip) = NonMappedAddr::new(dst_ip).and_then(NonMulticastAddr::new) {
if let Some((outbound_device, address_status)) =
get_device_with_assigned_address(core_ctx, IpDeviceAddr::new_from_witness(dst_ip))
{
return ReceivePacketAction::Deliver {
address_status,
internal_forwarding: InternalForwarding::Used(outbound_device),
};
}
}
match lookup_route_table(
core_ctx,
*dst_ip,
RuleInput {
packet_origin: PacketOrigin::NonLocal { source_address, incoming_device: device_id },
// TODO(https://fxbug.dev/369133279): packets can have marks as a result of a filtering
// target like `MARK`.
marks: &Default::default(),
},
) {
Some(dst) => {
core_ctx.increment(|counters: &IpCounters<I>| &counters.forward);
ReceivePacketAction::Forward { original_dst: dst_ip, dst }
}
None => {
core_ctx.increment(|counters: &IpCounters<I>| &counters.no_route_to_host);
ReceivePacketAction::SendNoRouteToDest { dst: dst_ip }
}
}
}
// Look up the route to a host.
fn lookup_route_table<I: IpLayerIpExt, CC: IpStateContext<I>>(
core_ctx: &mut CC,
dst_ip: I::Addr,
rule_input: RuleInput<'_, I, CC::DeviceId>,
) -> Option<Destination<I::Addr, CC::DeviceId>> {
let bound_device = match rule_input.packet_origin {
PacketOrigin::Local { bound_address: _, bound_device } => bound_device,
PacketOrigin::NonLocal { source_address: _, incoming_device: _ } => None,
};
core_ctx.with_rules_table(|core_ctx, rules| {
match walk_rules(core_ctx, rules, (), &rule_input, |(), core_ctx, table| {
match table.lookup(core_ctx, bound_device, dst_ip) {
Some(dst) => ControlFlow::Break(Some(dst)),
None => ControlFlow::Continue(()),
}
}) {
ControlFlow::Break(RuleAction::Lookup(RuleWalkInfo {
inner: dst,
observed_source_address_matcher: _,
})) => dst,
ControlFlow::Break(RuleAction::Unreachable) => None,
ControlFlow::Continue(RuleWalkInfo {
inner: (),
observed_source_address_matcher: _,
}) => None,
}
})
}
/// Packed destination passed to [`IpDeviceSendContext::send_ip_frame`].
#[derive(Debug, Derivative, Clone)]
#[derivative(Eq(bound = "D: Eq"), PartialEq(bound = "D: PartialEq"))]
pub enum IpPacketDestination<I: BroadcastIpExt, D> {
/// Broadcast packet.
Broadcast(I::BroadcastMarker),
/// Multicast packet to the specified IP.
Multicast(MulticastAddr<I::Addr>),
/// Send packet to the neighbor with the specified IP (the receiving
/// node is either a router or the final recipient of the packet).
Neighbor(SpecifiedAddr<I::Addr>),
/// Loopback the packet to the specified device. Can be used only when
/// sending to the loopback device.
Loopback(D),
}
impl<I: BroadcastIpExt, D> IpPacketDestination<I, D> {
/// Creates `IpPacketDestination` for IP address.
pub fn from_addr(addr: SpecifiedAddr<I::Addr>) -> Self {
match MulticastAddr::new(addr.into_addr()) {
Some(mc_addr) => Self::Multicast(mc_addr),
None => Self::Neighbor(addr),
}
}
/// Create `IpPacketDestination` from `NextHop`.
pub fn from_next_hop(next_hop: NextHop<I::Addr>, dst_ip: SpecifiedAddr<I::Addr>) -> Self {
match next_hop {
NextHop::RemoteAsNeighbor => Self::from_addr(dst_ip),
NextHop::Gateway(gateway) => Self::Neighbor(gateway),
NextHop::Broadcast(marker) => Self::Broadcast(marker),
}
}
}
/// The metadata associated with an outgoing IP packet.
#[derive(Debug, Clone)]
pub struct SendIpPacketMeta<I: IpExt, D, Src> {
/// The outgoing device.
pub device: D,
/// The source address of the packet.
pub src_ip: Src,
/// The destination address of the packet.
pub dst_ip: SpecifiedAddr<I::Addr>,
/// The destination for the send operation.
pub destination: IpPacketDestination<I, D>,
/// The upper-layer protocol held in the packet's payload.
pub proto: I::Proto,
/// The time-to-live (IPv4) or hop limit (IPv6) for the packet.
///
/// If not set, a default TTL may be used.
pub ttl: Option<NonZeroU8>,
/// An MTU to artificially impose on the whole IP packet.
///
/// Note that the device's and discovered path MTU may still be imposed on
/// the packet.
pub mtu: Mtu,
/// Traffic Class (IPv6) or Type of Service (IPv4) field for the packet.
pub dscp_and_ecn: DscpAndEcn,
}
impl<I: IpExt, D> From<SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>>
for SendIpPacketMeta<I, D, Option<SpecifiedAddr<I::Addr>>>
{
fn from(
SendIpPacketMeta { device, src_ip, dst_ip, destination, proto, ttl, mtu, dscp_and_ecn }: SendIpPacketMeta<
I,
D,
SpecifiedAddr<I::Addr>,
>,
) -> SendIpPacketMeta<I, D, Option<SpecifiedAddr<I::Addr>>> {
SendIpPacketMeta {
device,
src_ip: Some(src_ip),
dst_ip,
destination,
proto,
ttl,
mtu,
dscp_and_ecn,
}
}
}
/// Trait for abstracting the IP layer for locally-generated traffic. That is,
/// traffic generated by the netstack itself (e.g. ICMP, IGMP, or MLD).
///
/// NOTE: Due to filtering rules, it is possible that the device provided in
/// `meta` will not be the device that final IP packet is actually sent from.
pub trait IpLayerHandler<I: IpExt + FragmentationIpExt, BC>: DeviceIdContext<AnyDevice> {
/// Encapsulate and send the provided transport packet and from the device
/// provided in `meta`.
fn send_ip_packet_from_device<S>(
&mut self,
bindings_ctx: &mut BC,
meta: SendIpPacketMeta<I, &Self::DeviceId, Option<SpecifiedAddr<I::Addr>>>,
body: S,
) -> Result<(), IpSendFrameError<S>>
where
S: TransportPacketSerializer<I>,
S::Buffer: BufferMut;
/// Send an IP packet that doesn't require the encapsulation and other
/// processing of [`send_ip_packet_from_device`] from the device specified
/// in `meta`.
// TODO(https://fxbug.dev/333908066): The packets going through this
// function only hit the EGRESS filter hook, bypassing LOCAL_EGRESS.
// Refactor callers and other functions to prevent this.
fn send_ip_frame<S>(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
destination: IpPacketDestination<I, &Self::DeviceId>,
body: S,
) -> Result<(), IpSendFrameError<S>>
where
S: FragmentableIpSerializer<I, Buffer: BufferMut> + IpPacket<I>;
}
impl<
I: IpLayerIpExt,
BC: IpLayerBindingsContext<I, <CC as DeviceIdContext<AnyDevice>>::DeviceId>,
CC: IpLayerEgressContext<I, BC> + IpDeviceEgressStateContext<I> + IpDeviceMtuContext<I>,
> IpLayerHandler<I, BC> for CC
{
fn send_ip_packet_from_device<S>(
&mut self,
bindings_ctx: &mut BC,
meta: SendIpPacketMeta<I, &CC::DeviceId, Option<SpecifiedAddr<I::Addr>>>,
body: S,
) -> Result<(), IpSendFrameError<S>>
where
S: TransportPacketSerializer<I>,
S::Buffer: BufferMut,
{
send_ip_packet_from_device(self, bindings_ctx, meta, body, IpLayerPacketMetadata::default())
}
fn send_ip_frame<S>(
&mut self,
bindings_ctx: &mut BC,
device: &Self::DeviceId,
destination: IpPacketDestination<I, &Self::DeviceId>,
body: S,
) -> Result<(), IpSendFrameError<S>>
where
S: FragmentableIpSerializer<I, Buffer: BufferMut> + IpPacket<I>,
{
send_ip_frame(
self,
bindings_ctx,
device,
destination,
body,
IpLayerPacketMetadata::default(),
Mtu::no_limit(),
)
}
}
/// Sends an Ip packet with the specified metadata.
///
/// # Panics
///
/// Panics if either the source or destination address is the loopback address
/// and the device is a non-loopback device.
pub(crate) fn send_ip_packet_from_device<I, BC, CC, S>(
core_ctx: &mut CC,
bindings_ctx: &mut BC,
meta: SendIpPacketMeta<
I,
&<CC as DeviceIdContext<AnyDevice>>::DeviceId,
Option<SpecifiedAddr<I::Addr>>,
>,
body: S,
packet_metadata: IpLayerPacketMetadata<I, CC::WeakAddressId, BC>,
) -> Result<(), IpSendFrameError<S>>
where
I: IpLayerIpExt,
BC: FilterBindingsContext,
CC: IpLayerEgressContext<I, BC> + IpDeviceEgressStateContext<I> + IpDeviceMtuContext<I>,
S: TransportPacketSerializer<I>,
S::Buffer: BufferMut,
{
let SendIpPacketMeta { device, src_ip, dst_ip, destination, proto, ttl, mtu, dscp_and_ecn } =
meta;
let next_packet_id = gen_ip_packet_id(core_ctx);
let ttl = ttl.unwrap_or_else(|| core_ctx.get_hop_limit(device)).get();
let src_ip = src_ip.map_or(I::UNSPECIFIED_ADDRESS, |a| a.get());
let mut builder = I::PacketBuilder::new(src_ip, dst_ip.get(), ttl, proto);
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Wrap<'a, I: IpLayerIpExt> {
builder: &'a mut I::PacketBuilder,
next_packet_id: I::PacketId,
}
I::map_ip::<_, ()>(
Wrap { builder: &mut builder, next_packet_id },
|Wrap { builder, next_packet_id }| {
builder.id(next_packet_id);
},
|Wrap { builder: _, next_packet_id: () }| {
// IPv6 doesn't have packet IDs.
},
);
builder.set_dscp_and_ecn(dscp_and_ecn);
let ip_frame = body.encapsulate(builder);
send_ip_frame(core_ctx, bindings_ctx, device, destination, ip_frame, packet_metadata, mtu)
.map_err(|ser| ser.map_serializer(|s| s.into_inner()))
}
/// Abstracts access to a [`filter::FilterHandler`] for core contexts.
pub trait FilterHandlerProvider<I: packet_formats::ip::IpExt, BT: FilterBindingsTypes>:
IpDeviceAddressIdContext<I, DeviceId: filter::InterfaceProperties<BT::DeviceClass>>
{
/// The filter handler.
type Handler<'a>: filter::FilterHandler<
I,
BT,
DeviceId = Self::DeviceId,
WeakAddressId = Self::WeakAddressId,
>
where
Self: 'a;
/// Gets the filter handler for this context.
fn filter_handler(&mut self) -> Self::Handler<'_>;
}
#[cfg(any(test, feature = "testutils"))]
pub(crate) mod testutil {
use super::*;
use netstack3_base::testutil::{FakeCoreCtx, FakeStrongDeviceId};
use netstack3_base::{AssignedAddrIpExt, SendFrameContext, SendFrameError, SendableFrameMeta};
use packet::Serializer;
/// A [`SendIpPacketMeta`] for dual stack contextx.
#[derive(Debug, GenericOverIp)]
#[generic_over_ip()]
#[allow(missing_docs)]
pub enum DualStackSendIpPacketMeta<D> {
V4(SendIpPacketMeta<Ipv4, D, SpecifiedAddr<Ipv4Addr>>),
V6(SendIpPacketMeta<Ipv6, D, SpecifiedAddr<Ipv6Addr>>),
}
impl<I: IpExt, D> From<SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>>
for DualStackSendIpPacketMeta<D>
{
fn from(value: SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>) -> Self {
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Wrap<I: IpExt, D>(SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>);
use DualStackSendIpPacketMeta::*;
I::map_ip_in(Wrap(value), |Wrap(value)| V4(value), |Wrap(value)| V6(value))
}
}
impl<I: IpExt, S, DeviceId, BC>
SendableFrameMeta<FakeCoreCtx<S, DualStackSendIpPacketMeta<DeviceId>, DeviceId>, BC>
for SendIpPacketMeta<I, DeviceId, SpecifiedAddr<I::Addr>>
{
fn send_meta<SS>(
self,
core_ctx: &mut FakeCoreCtx<S, DualStackSendIpPacketMeta<DeviceId>, DeviceId>,
bindings_ctx: &mut BC,
frame: SS,
) -> Result<(), SendFrameError<SS>>
where
SS: Serializer,
SS::Buffer: BufferMut,
{
SendFrameContext::send_frame(
&mut core_ctx.frames,
bindings_ctx,
DualStackSendIpPacketMeta::from(self),
frame,
)
}
}
/// Error returned when the IP version doesn't match.
#[derive(Debug)]
pub struct WrongIpVersion;
impl<D> DualStackSendIpPacketMeta<D> {
/// Returns the internal [`SendIpPacketMeta`] if this is carrying the
/// version matching `I`.
pub fn try_as<I: IpExt>(
&self,
) -> Result<&SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>, WrongIpVersion> {
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Wrap<'a, I: IpExt, D>(
Option<&'a SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>>,
);
use DualStackSendIpPacketMeta::*;
let Wrap(dual_stack) = I::map_ip(
self,
|value| {
Wrap(match value {
V4(meta) => Some(meta),
V6(_) => None,
})
},
|value| {
Wrap(match value {
V4(_) => None,
V6(meta) => Some(meta),
})
},
);
dual_stack.ok_or(WrongIpVersion)
}
}
impl<I, BC, S, Meta, DeviceId> FilterHandlerProvider<I, BC> for FakeCoreCtx<S, Meta, DeviceId>
where
I: packet_formats::ip::IpExt + AssignedAddrIpExt,
BC: FilterBindingsContext,
DeviceId: FakeStrongDeviceId + filter::InterfaceProperties<BC::DeviceClass>,
{
type Handler<'a>
= filter::testutil::NoopImpl<DeviceId>
where
Self: 'a;
fn filter_handler(&mut self) -> Self::Handler<'_> {
filter::testutil::NoopImpl::default()
}
}
}