1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

use size_hint;
use Itertools;

use std::mem::replace;
use std::fmt;

macro_rules! clone_fields {
    ($name:ident, $base:expr, $($field:ident),+) => (
        $name {
            $(
                $field : $base . $field .clone()
            ),*
        }
    );
}

/// Head element and Tail iterator pair
///
/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on
/// first items (which are guaranteed to exist).
///
/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in
/// `KMerge` into a min-heap.
#[derive(Debug)]
struct HeadTail<I>
    where I: Iterator
{
    head: I::Item,
    tail: I,
}

impl<I> HeadTail<I>
    where I: Iterator
{
    /// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty.
    fn new(mut it: I) -> Option<HeadTail<I>> {
        let head = it.next();
        head.map(|h| {
            HeadTail {
                head: h,
                tail: it,
            }
        })
    }

    /// Get the next element and update `head`, returning the old head in `Some`.
    ///
    /// Returns `None` when the tail is exhausted (only `head` then remains).
    fn next(&mut self) -> Option<I::Item> {
        if let Some(next) = self.tail.next() {
            Some(replace(&mut self.head, next))
        } else {
            None
        }
    }

    /// Hints at the size of the sequence, same as the `Iterator` method.
    fn size_hint(&self) -> (usize, Option<usize>) {
        size_hint::add_scalar(self.tail.size_hint(), 1)
    }
}

impl<I> Clone for HeadTail<I>
    where I: Iterator + Clone,
          I::Item: Clone
{
    fn clone(&self) -> Self {
        clone_fields!(HeadTail, self, head, tail)
    }
}

/// Make `data` a heap (min-heap w.r.t the sorting).
fn heapify<T, S>(data: &mut [T], mut less_than: S)
    where S: FnMut(&T, &T) -> bool
{
    for i in (0..data.len() / 2).rev() {
        sift_down(data, i, &mut less_than);
    }
}

/// Sift down element at `index` (`heap` is a min-heap wrt the ordering)
fn sift_down<T, S>(heap: &mut [T], index: usize, mut less_than: S)
    where S: FnMut(&T, &T) -> bool
{
    debug_assert!(index <= heap.len());
    let mut pos = index;
    let mut child = 2 * pos + 1;
    // the `pos` conditional is to avoid a bounds check
    while pos < heap.len() && child < heap.len() {
        let right = child + 1;

        // pick the smaller of the two children
        if right < heap.len() && less_than(&heap[right], &heap[child]) {
            child = right;
        }

        // sift down is done if we are already in order
        if !less_than(&heap[child], &heap[pos]) {
            return;
        }
        heap.swap(pos, child);
        pos = child;
        child = 2 * pos + 1;
    }
}

/// An iterator adaptor that merges an abitrary number of base iterators in ascending order.
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge()`](../trait.Itertools.html#method.kmerge) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct KMerge<I>
    where I: Iterator
{
    heap: Vec<HeadTail<I>>,
}

impl<I> fmt::Debug for KMerge<I>
    where I: Iterator + fmt::Debug,
          I::Item: fmt::Debug,
{
    debug_fmt_fields!(KMerge, heap);
}

/// Create an iterator that merges elements of the contained iterators using
/// the ordering function.
///
/// Equivalent to `iterable.into_iter().kmerge()`.
///
/// ```
/// use itertools::kmerge;
///
/// for elt in kmerge(vec![vec![0, 2, 4], vec![1, 3, 5], vec![6, 7]]) {
///     /* loop body */
/// }
/// ```
pub fn kmerge<I>(iterable: I) -> KMerge<<I::Item as IntoIterator>::IntoIter>
    where I: IntoIterator,
          I::Item: IntoIterator,
          <<I as IntoIterator>::Item as IntoIterator>::Item: PartialOrd
{
    let iter = iterable.into_iter();
    let (lower, _) = iter.size_hint();
    let mut heap = Vec::with_capacity(lower);
    heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
    heapify(&mut heap, |a, b| a.head < b.head);
    KMerge { heap: heap }
}

impl<I> Clone for KMerge<I>
    where I: Iterator + Clone,
          I::Item: Clone
{
    fn clone(&self) -> KMerge<I> {
        clone_fields!(KMerge, self, heap)
    }
}

impl<I> Iterator for KMerge<I>
    where I: Iterator,
          I::Item: PartialOrd
{
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        if self.heap.is_empty() {
            return None;
        }
        let result = if let Some(next) = self.heap[0].next() {
            next
        } else {
            self.heap.swap_remove(0).head
        };
        sift_down(&mut self.heap, 0, |a, b| a.head < b.head);
        Some(result)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.heap.iter()
                 .map(|i| i.size_hint())
                 .fold1(size_hint::add)
                 .unwrap_or((0, Some(0)))
    }
}

/// An iterator adaptor that merges an abitrary number of base iterators
/// according to an ordering function.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge_by()`](../trait.Itertools.html#method.kmerge_by) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct KMergeBy<I, F>
    where I: Iterator,
{
    heap: Vec<HeadTail<I>>,
    less_than: F,
}

impl<I, F> fmt::Debug for KMergeBy<I, F>
    where I: Iterator + fmt::Debug,
          I::Item: fmt::Debug,
{
    debug_fmt_fields!(KMergeBy, heap);
}

/// Create an iterator that merges elements of the contained iterators.
///
/// Equivalent to `iterable.into_iter().kmerge_by(less_than)`.
pub fn kmerge_by<I, F>(iterable: I, mut less_than: F)
    -> KMergeBy<<I::Item as IntoIterator>::IntoIter, F>
    where I: IntoIterator,
          I::Item: IntoIterator,
          F: FnMut(&<<I as IntoIterator>::Item as IntoIterator>::Item,
                   &<<I as IntoIterator>::Item as IntoIterator>::Item) -> bool
{
    let iter = iterable.into_iter();
    let (lower, _) = iter.size_hint();
    let mut heap: Vec<_> = Vec::with_capacity(lower);
    heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
    heapify(&mut heap, |a, b| less_than(&a.head, &b.head));
    KMergeBy { heap: heap, less_than: less_than }
}


impl<I, F> Iterator for KMergeBy<I, F>
    where I: Iterator,
          F: FnMut(&I::Item, &I::Item) -> bool
{
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        if self.heap.is_empty() {
            return None;
        }
        let result = if let Some(next) = self.heap[0].next() {
            next
        } else {
            self.heap.swap_remove(0).head
        };
        let less_than = &mut self.less_than;
        sift_down(&mut self.heap, 0, |a, b| less_than(&a.head, &b.head));
        Some(result)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.heap.iter()
                 .map(|i| i.size_hint())
                 .fold1(size_hint::add)
                 .unwrap_or((0, Some(0)))
    }
}