deflate/huffman_lengths.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
use length_encode::{EncodedLength, encode_lengths_m, huffman_lengths_from_frequency_m,
COPY_PREVIOUS, REPEAT_ZERO_3_BITS, REPEAT_ZERO_7_BITS};
use huffman_table::{HuffmanTable, create_codes_in_place, num_extra_bits_for_length_code,
num_extra_bits_for_distance_code, NUM_LITERALS_AND_LENGTHS,
NUM_DISTANCE_CODES, MAX_CODE_LENGTH, FIXED_CODE_LENGTHS, LENGTH_BITS_START};
use bitstream::LsbWriter;
use output_writer::FrequencyType;
use stored_block::MAX_STORED_BLOCK_LENGTH;
use deflate_state::LengthBuffers;
use std::cmp;
// The minimum number of literal/length values
pub const MIN_NUM_LITERALS_AND_LENGTHS: usize = 257;
// The minimum number of distances
pub const MIN_NUM_DISTANCES: usize = 1;
const NUM_HUFFMAN_LENGTHS: usize = 19;
// The output ordering of the lengths for the huffman codes used to encode the lengths
// used to build the full huffman tree for length/literal codes.
// http://www.gzip.org/zlib/rfc-deflate.html#dyn
const HUFFMAN_LENGTH_ORDER: [u8; NUM_HUFFMAN_LENGTHS] = [
16,
17,
18,
0,
8,
7,
9,
6,
10,
5,
11,
4,
12,
3,
13,
2,
14,
1,
15,
];
// Number of bits used for the values specifying the number of codes
const HLIT_BITS: u8 = 5;
const HDIST_BITS: u8 = 5;
const HCLEN_BITS: u8 = 4;
// The longest a huffman code describing another huffman length can be
const MAX_HUFFMAN_CODE_LENGTH: usize = 7;
// How many bytes (not including padding and the 3-bit block type) the stored block header takes up.
const STORED_BLOCK_HEADER_LENGTH: u64 = 4;
const BLOCK_MARKER_LENGTH: u8 = 3;
/// Creates a new slice from the input slice that stops at the final non-zero value
pub fn remove_trailing_zeroes<T: From<u8> + PartialEq>(input: &[T], min_length: usize) -> &[T] {
let num_zeroes = input.iter().rev().take_while(|&a| *a == T::from(0)).count();
&input[0..cmp::max(input.len() - num_zeroes, min_length)]
}
/// How many extra bits the huffman length code uses to represent a value.
fn extra_bits_for_huffman_length_code(code: u8) -> u8 {
match code {
16...17 => 3,
18 => 7,
_ => 0,
}
}
/// Calculate how many bits the huffman-encoded huffman lengths will use.
fn calculate_huffman_length(frequencies: &[FrequencyType], code_lengths: &[u8]) -> u64 {
frequencies.iter().zip(code_lengths).enumerate().fold(
0,
|acc, (n, (&f, &l))| {
acc +
(u64::from(f) *
(u64::from(l) + u64::from(extra_bits_for_huffman_length_code(n as u8))))
},
)
}
/// Calculate how many bits data with the given frequencies will use when compressed with dynamic
/// code lengths (first return value) and static code lengths (second return value).
///
/// Parameters:
/// Frequencies, length of dynamic codes, and a function to get how many extra bits in addition
/// to the length of the huffman code the symbol will use.
fn calculate_block_length<F>(
frequencies: &[FrequencyType],
dyn_code_lengths: &[u8],
get_num_extra_bits: &F,
) -> (u64, u64)
where
F: Fn(usize) -> u64,
{
// Length of data represented by dynamic codes.
let mut d_ll_length = 0u64;
// length of data represented by static codes.
let mut s_ll_length = 0u64;
let iter = frequencies
.iter()
.zip(dyn_code_lengths.iter().zip(FIXED_CODE_LENGTHS.iter()))
.enumerate();
// This could maybe be optimised a bit by splitting the iteration of codes using extra bits and
// codes not using extra bits, but the extra complexity may not be worth it.
for (c, (&f, (&l, &fl))) in iter {
// Frequency
let f = u64::from(f);
// How many extra bits the current code number needs.
let extra_bits_for_code = get_num_extra_bits(c);
d_ll_length += f * (u64::from(l) + extra_bits_for_code);
s_ll_length += f * (u64::from(fl) + extra_bits_for_code);
}
(d_ll_length, s_ll_length)
}
/// Get how extra padding bits after a block start header a stored block would use.
///
/// # Panics
/// Panics if `pending_bits > 8`
fn stored_padding(pending_bits: u8) -> u64 {
assert!(pending_bits <= 8);
let free_space = 8 - pending_bits;
if free_space >= BLOCK_MARKER_LENGTH {
// There is space in the current byte for the header.
free_space - BLOCK_MARKER_LENGTH
} else {
// The header will require an extra byte.
8 - (BLOCK_MARKER_LENGTH - free_space)
}.into()
}
/// Calculate the number of bits storing the data in stored blocks will take up, excluding the
/// first block start code and potential padding bits. As stored blocks have a maximum length,
/// (as opposed to fixed and dynamic ones), multiple blocks may have to be utilised.
///
/// # Panics
/// Panics if `input_bytes` is 0.
fn stored_length(input_bytes: u64) -> u64 {
// Check how many stored blocks these bytes would take up.
// (Integer divison rounding up.)
let num_blocks = (input_bytes
.checked_sub(1)
.expect("Underflow calculating stored block length!") /
MAX_STORED_BLOCK_LENGTH as u64) + 1;
// The length will be the input length and the headers for each block. (Excluding the start
// of block code for the first one)
(input_bytes + (STORED_BLOCK_HEADER_LENGTH as u64 * num_blocks) + (num_blocks - 1)) * 8
}
pub enum BlockType {
Stored,
Fixed,
Dynamic(DynamicBlockHeader),
}
/// A struct containing the different data needed to write the header for a dynamic block.
///
/// The code lengths are stored directly in the `HuffmanTable` struct.
/// TODO: Do the same for other things here.
pub struct DynamicBlockHeader {
/// Length of the run-length encoding symbols.
pub huffman_table_lengths: Vec<u8>,
/// Number of lengths for values describing the huffman table that encodes the length values
/// of the main huffman tables.
pub used_hclens: usize,
}
/// Generate the lengths of the huffman codes we will be using, using the
/// frequency of the different symbols/lengths/distances, and determine what block type will give
/// the shortest representation.
/// TODO: This needs a test
pub fn gen_huffman_lengths(
l_freqs: &[FrequencyType],
d_freqs: &[FrequencyType],
num_input_bytes: u64,
pending_bits: u8,
l_lengths: &mut [u8; 288],
d_lengths: &mut [u8; 32],
length_buffers: &mut LengthBuffers,
) -> BlockType {
// Avoid corner cases and issues if this is called for an empty block.
// For blocks this short, a fixed block will be the shortest.
// TODO: Find the minimum value it's worth doing calculations for.
if num_input_bytes <= 4 {
return BlockType::Fixed;
};
let l_freqs = remove_trailing_zeroes(l_freqs, MIN_NUM_LITERALS_AND_LENGTHS);
let d_freqs = remove_trailing_zeroes(d_freqs, MIN_NUM_DISTANCES);
// The huffman spec allows us to exclude zeroes at the end of the
// table of huffman lengths.
// Since a frequency of 0 will give an huffman
// length of 0. We strip off the trailing zeroes before even
// generating the lengths to save some work.
// There is however a minimum number of values we have to keep
// according to the deflate spec.
// TODO: We could probably compute some of this in parallel.
huffman_lengths_from_frequency_m(
l_freqs,
MAX_CODE_LENGTH,
&mut length_buffers.leaf_buf,
l_lengths,
);
huffman_lengths_from_frequency_m(
d_freqs,
MAX_CODE_LENGTH,
&mut length_buffers.leaf_buf,
d_lengths,
);
let used_lengths = l_freqs.len();
let used_distances = d_freqs.len();
// Encode length values
let mut freqs = [0u16; 19];
encode_lengths_m(
l_lengths[..used_lengths]
.iter()
.chain(&d_lengths[..used_distances]),
&mut length_buffers.length_buf,
&mut freqs,
);
// Create huffman lengths for the length/distance code lengths
let mut huffman_table_lengths = vec![0; freqs.len()];
huffman_lengths_from_frequency_m(
&freqs,
MAX_HUFFMAN_CODE_LENGTH,
&mut length_buffers.leaf_buf,
huffman_table_lengths.as_mut_slice(),
);
// Count how many of these lengths we use.
let used_hclens = HUFFMAN_LENGTH_ORDER.len() -
HUFFMAN_LENGTH_ORDER
.iter()
.rev()
.take_while(|&&n| huffman_table_lengths[n as usize] == 0)
.count();
// There has to be at least 4 hclens, so if there isn't, something went wrong.
debug_assert!(used_hclens >= 4);
// Calculate how many bytes of space this block will take up with the different block types
// (excluding the 3-bit block header since it's used in all block types).
// Total length of the compressed literals/lengths.
let (d_ll_length, s_ll_length) = calculate_block_length(l_freqs, l_lengths, &|c| {
num_extra_bits_for_length_code(c.saturating_sub(LENGTH_BITS_START as usize) as u8).into()
});
// Total length of the compressed distances.
let (d_dist_length, s_dist_length) = calculate_block_length(d_freqs, d_lengths, &|c| {
num_extra_bits_for_distance_code(c as u8).into()
});
// Total length of the compressed huffman code lengths.
let huff_table_length = calculate_huffman_length(&freqs, &huffman_table_lengths);
// For dynamic blocks the huffman tables takes up some extra space.
let dynamic_length = d_ll_length + d_dist_length + huff_table_length +
(used_hclens as u64 * 3) + u64::from(HLIT_BITS) +
u64::from(HDIST_BITS) + u64::from(HCLEN_BITS);
// Static blocks don't have any extra header data.
let static_length = s_ll_length + s_dist_length;
// Calculate how many bits it will take to store the data in uncompressed (stored) block(s).
let stored_length = stored_length(num_input_bytes) + stored_padding(pending_bits % 8);
let used_length = cmp::min(cmp::min(dynamic_length, static_length), stored_length);
// Check if the block is actually compressed. If using a dynamic block
// increases the length of the block (for instance if the input data is mostly random or
// already compressed), we want to output a stored(uncompressed) block instead to avoid wasting
// space.
if used_length == static_length {
BlockType::Fixed
} else if used_length == stored_length {
BlockType::Stored
} else {
BlockType::Dynamic(DynamicBlockHeader {
huffman_table_lengths: huffman_table_lengths,
used_hclens: used_hclens,
})
}
}
/// Write the specified huffman lengths to the bit writer
pub fn write_huffman_lengths(
header: &DynamicBlockHeader,
huffman_table: &HuffmanTable,
encoded_lengths: &[EncodedLength],
writer: &mut LsbWriter,
) {
// Ignore trailing zero lengths as allowed by the deflate spec.
let (literal_len_lengths, distance_lengths) = huffman_table.get_lengths();
let literal_len_lengths =
remove_trailing_zeroes(literal_len_lengths, MIN_NUM_LITERALS_AND_LENGTHS);
let distance_lengths = remove_trailing_zeroes(distance_lengths, MIN_NUM_DISTANCES);
let huffman_table_lengths = &header.huffman_table_lengths;
let used_hclens = header.used_hclens;
assert!(literal_len_lengths.len() <= NUM_LITERALS_AND_LENGTHS);
assert!(literal_len_lengths.len() >= MIN_NUM_LITERALS_AND_LENGTHS);
assert!(distance_lengths.len() <= NUM_DISTANCE_CODES);
assert!(distance_lengths.len() >= MIN_NUM_DISTANCES);
// Number of length codes - 257.
let hlit = (literal_len_lengths.len() - MIN_NUM_LITERALS_AND_LENGTHS) as u16;
writer.write_bits(hlit, HLIT_BITS);
// Number of distance codes - 1.
let hdist = (distance_lengths.len() - MIN_NUM_DISTANCES) as u16;
writer.write_bits(hdist, HDIST_BITS);
// Number of huffman table lengths - 4.
let hclen = used_hclens.saturating_sub(4);
// Write HCLEN.
// Casting to u16 is safe since the length can never be more than the length of
// `HUFFMAN_LENGTH_ORDER` anyhow.
writer.write_bits(hclen as u16, HCLEN_BITS);
// Write the lengths for the huffman table describing the huffman table
// Each length is 3 bits
for n in &HUFFMAN_LENGTH_ORDER[..used_hclens] {
writer.write_bits(huffman_table_lengths[usize::from(*n)] as u16, 3);
}
// Generate codes for the main huffman table using the lengths we just wrote
let mut codes = [0u16; NUM_HUFFMAN_LENGTHS];
create_codes_in_place(&mut codes[..], huffman_table_lengths);
// Write the actual huffman lengths
for v in encoded_lengths {
match *v {
EncodedLength::Length(n) => {
let (c, l) = (codes[usize::from(n)], huffman_table_lengths[usize::from(n)]);
writer.write_bits(c, l);
}
EncodedLength::CopyPrevious(n) => {
let (c, l) = (codes[COPY_PREVIOUS], huffman_table_lengths[COPY_PREVIOUS]);
writer.write_bits(c, l);
debug_assert!(n >= 3);
debug_assert!(n <= 6);
writer.write_bits((n - 3).into(), 2);
}
EncodedLength::RepeatZero3Bits(n) => {
let (c, l) = (
codes[REPEAT_ZERO_3_BITS],
huffman_table_lengths[REPEAT_ZERO_3_BITS],
);
writer.write_bits(c, l);
debug_assert!(n >= 3);
writer.write_bits((n - 3).into(), 3);
}
EncodedLength::RepeatZero7Bits(n) => {
let (c, l) = (
codes[REPEAT_ZERO_7_BITS],
huffman_table_lengths[REPEAT_ZERO_7_BITS],
);
writer.write_bits(c, l);
debug_assert!(n >= 11);
debug_assert!(n <= 138);
writer.write_bits((n - 11).into(), 7);
}
}
}
}
#[cfg(test)]
mod test {
use super::stored_padding;
#[test]
fn padding() {
assert_eq!(stored_padding(0), 5);
assert_eq!(stored_padding(1), 4);
assert_eq!(stored_padding(2), 3);
assert_eq!(stored_padding(3), 2);
assert_eq!(stored_padding(4), 1);
assert_eq!(stored_padding(5), 0);
assert_eq!(stored_padding(6), 7);
assert_eq!(stored_padding(7), 6);
}
}