elliptic_curve/ops.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
//! Traits for arithmetic operations on elliptic curve field elements.
pub use core::ops::{Add, AddAssign, Mul, Neg, Sub, SubAssign};
use crypto_bigint::{ArrayEncoding, ByteArray, Integer};
#[cfg(feature = "arithmetic")]
use {group::Group, subtle::CtOption};
#[cfg(feature = "digest")]
use digest::FixedOutput;
/// Perform an inversion on a field element (i.e. base field element or scalar)
pub trait Invert {
/// Field element type
type Output;
/// Invert a field element.
fn invert(&self) -> Self::Output;
}
#[cfg(feature = "arithmetic")]
impl<F: ff::Field> Invert for F {
type Output = CtOption<F>;
fn invert(&self) -> CtOption<F> {
ff::Field::invert(self)
}
}
/// Linear combination.
///
/// This trait enables crates to provide an optimized implementation of
/// linear combinations (e.g. Shamir's Trick), or otherwise provides a default
/// non-optimized implementation.
// TODO(tarcieri): replace this with a trait from the `group` crate? (see zkcrypto/group#25)
#[cfg(feature = "arithmetic")]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub trait LinearCombination: Group {
/// Calculates `x * k + y * l`.
fn lincomb(x: &Self, k: &Self::Scalar, y: &Self, l: &Self::Scalar) -> Self {
(*x * k) + (*y * l)
}
}
/// Modular reduction.
pub trait Reduce<UInt: Integer + ArrayEncoding>: Sized {
/// Perform a modular reduction, returning a field element.
fn from_uint_reduced(n: UInt) -> Self;
/// Interpret the given byte array as a big endian integer and perform
/// a modular reduction.
fn from_be_bytes_reduced(bytes: ByteArray<UInt>) -> Self {
Self::from_uint_reduced(UInt::from_be_byte_array(bytes))
}
/// Interpret the given byte array as a little endian integer and perform a
/// modular reduction.
fn from_le_bytes_reduced(bytes: ByteArray<UInt>) -> Self {
Self::from_uint_reduced(UInt::from_le_byte_array(bytes))
}
/// Interpret a digest as a big endian integer and perform a modular
/// reduction.
#[cfg(feature = "digest")]
#[cfg_attr(docsrs, doc(cfg(feature = "digest")))]
fn from_be_digest_reduced<D>(digest: D) -> Self
where
D: FixedOutput<OutputSize = UInt::ByteSize>,
{
Self::from_be_bytes_reduced(digest.finalize_fixed())
}
/// Interpret a digest as a little endian integer and perform a modular
/// reduction.
#[cfg(feature = "digest")]
#[cfg_attr(docsrs, doc(cfg(feature = "digest")))]
fn from_le_digest_reduced<D>(digest: D) -> Self
where
D: FixedOutput<OutputSize = UInt::ByteSize>,
{
Self::from_le_bytes_reduced(digest.finalize_fixed())
}
}
/// Modular reduction to a non-zero output.
///
/// This trait is primarily intended for use by curve implementations such
/// as the `k256` and `p256` crates.
///
/// End users should use the [`Reduce`] impl on
/// [`NonZeroScalar`][`crate::NonZeroScalar`] instead.
pub trait ReduceNonZero<UInt: Integer + ArrayEncoding>: Sized {
/// Perform a modular reduction, returning a field element.
fn from_uint_reduced_nonzero(n: UInt) -> Self;
}