num_bigint/biguint/
monty.rs

1use crate::std_alloc::Vec;
2use core::mem;
3use core::ops::Shl;
4use num_traits::{One, Zero};
5
6use crate::big_digit::{self, BigDigit, DoubleBigDigit, SignedDoubleBigDigit};
7use crate::biguint::BigUint;
8
9struct MontyReducer {
10    n0inv: BigDigit,
11}
12
13// k0 = -m**-1 mod 2**BITS. Algorithm from: Dumas, J.G. "On Newton–Raphson
14// Iteration for Multiplicative Inverses Modulo Prime Powers".
15fn inv_mod_alt(b: BigDigit) -> BigDigit {
16    assert_ne!(b & 1, 0);
17
18    let mut k0 = 2 - b as SignedDoubleBigDigit;
19    let mut t = (b - 1) as SignedDoubleBigDigit;
20    let mut i = 1;
21    while i < big_digit::BITS {
22        t = t.wrapping_mul(t);
23        k0 = k0.wrapping_mul(t + 1);
24
25        i <<= 1;
26    }
27    -k0 as BigDigit
28}
29
30impl MontyReducer {
31    fn new(n: &BigUint) -> Self {
32        let n0inv = inv_mod_alt(n.data[0]);
33        MontyReducer { n0inv }
34    }
35}
36
37/// Computes z mod m = x * y * 2 ** (-n*_W) mod m
38/// assuming k = -1/m mod 2**_W
39/// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
40/// https://eprint.iacr.org/2011/239.pdf
41/// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
42/// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
43/// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
44#[allow(clippy::many_single_char_names)]
45fn montgomery(x: &BigUint, y: &BigUint, m: &BigUint, k: BigDigit, n: usize) -> BigUint {
46    // This code assumes x, y, m are all the same length, n.
47    // (required by addMulVVW and the for loop).
48    // It also assumes that x, y are already reduced mod m,
49    // or else the result will not be properly reduced.
50    assert!(
51        x.data.len() == n && y.data.len() == n && m.data.len() == n,
52        "{:?} {:?} {:?} {}",
53        x,
54        y,
55        m,
56        n
57    );
58
59    let mut z = BigUint::zero();
60    z.data.resize(n * 2, 0);
61
62    let mut c: BigDigit = 0;
63    for i in 0..n {
64        let c2 = add_mul_vvw(&mut z.data[i..n + i], &x.data, y.data[i]);
65        let t = z.data[i].wrapping_mul(k);
66        let c3 = add_mul_vvw(&mut z.data[i..n + i], &m.data, t);
67        let cx = c.wrapping_add(c2);
68        let cy = cx.wrapping_add(c3);
69        z.data[n + i] = cy;
70        if cx < c2 || cy < c3 {
71            c = 1;
72        } else {
73            c = 0;
74        }
75    }
76
77    if c == 0 {
78        z.data = z.data[n..].to_vec();
79    } else {
80        {
81            let (mut first, second) = z.data.split_at_mut(n);
82            sub_vv(&mut first, &second, &m.data);
83        }
84        z.data = z.data[..n].to_vec();
85    }
86
87    z
88}
89
90#[inline(always)]
91fn add_mul_vvw(z: &mut [BigDigit], x: &[BigDigit], y: BigDigit) -> BigDigit {
92    let mut c = 0;
93    for (zi, xi) in z.iter_mut().zip(x.iter()) {
94        let (z1, z0) = mul_add_www(*xi, y, *zi);
95        let (c_, zi_) = add_ww(z0, c, 0);
96        *zi = zi_;
97        c = c_ + z1;
98    }
99
100    c
101}
102
103/// The resulting carry c is either 0 or 1.
104#[inline(always)]
105fn sub_vv(z: &mut [BigDigit], x: &[BigDigit], y: &[BigDigit]) -> BigDigit {
106    let mut c = 0;
107    for (i, (xi, yi)) in x.iter().zip(y.iter()).enumerate().take(z.len()) {
108        let zi = xi.wrapping_sub(*yi).wrapping_sub(c);
109        z[i] = zi;
110        // see "Hacker's Delight", section 2-12 (overflow detection)
111        c = ((yi & !xi) | ((yi | !xi) & zi)) >> (big_digit::BITS - 1)
112    }
113
114    c
115}
116
117/// z1<<_W + z0 = x+y+c, with c == 0 or 1
118#[inline(always)]
119fn add_ww(x: BigDigit, y: BigDigit, c: BigDigit) -> (BigDigit, BigDigit) {
120    let yc = y.wrapping_add(c);
121    let z0 = x.wrapping_add(yc);
122    let z1 = if z0 < x || yc < y { 1 } else { 0 };
123
124    (z1, z0)
125}
126
127/// z1 << _W + z0 = x * y + c
128#[inline(always)]
129fn mul_add_www(x: BigDigit, y: BigDigit, c: BigDigit) -> (BigDigit, BigDigit) {
130    let z = x as DoubleBigDigit * y as DoubleBigDigit + c as DoubleBigDigit;
131    ((z >> big_digit::BITS) as BigDigit, z as BigDigit)
132}
133
134/// Calculates x ** y mod m using a fixed, 4-bit window.
135#[allow(clippy::many_single_char_names)]
136pub(super) fn monty_modpow(x: &BigUint, y: &BigUint, m: &BigUint) -> BigUint {
137    assert!(m.data[0] & 1 == 1);
138    let mr = MontyReducer::new(m);
139    let num_words = m.data.len();
140
141    let mut x = x.clone();
142
143    // We want the lengths of x and m to be equal.
144    // It is OK if x >= m as long as len(x) == len(m).
145    if x.data.len() > num_words {
146        x %= m;
147        // Note: now len(x) <= numWords, not guaranteed ==.
148    }
149    if x.data.len() < num_words {
150        x.data.resize(num_words, 0);
151    }
152
153    // rr = 2**(2*_W*len(m)) mod m
154    let mut rr = BigUint::one();
155    rr = (rr.shl(2 * num_words as u64 * u64::from(big_digit::BITS))) % m;
156    if rr.data.len() < num_words {
157        rr.data.resize(num_words, 0);
158    }
159    // one = 1, with equal length to that of m
160    let mut one = BigUint::one();
161    one.data.resize(num_words, 0);
162
163    let n = 4;
164    // powers[i] contains x^i
165    let mut powers = Vec::with_capacity(1 << n);
166    powers.push(montgomery(&one, &rr, m, mr.n0inv, num_words));
167    powers.push(montgomery(&x, &rr, m, mr.n0inv, num_words));
168    for i in 2..1 << n {
169        let r = montgomery(&powers[i - 1], &powers[1], m, mr.n0inv, num_words);
170        powers.push(r);
171    }
172
173    // initialize z = 1 (Montgomery 1)
174    let mut z = powers[0].clone();
175    z.data.resize(num_words, 0);
176    let mut zz = BigUint::zero();
177    zz.data.resize(num_words, 0);
178
179    // same windowed exponent, but with Montgomery multiplications
180    for i in (0..y.data.len()).rev() {
181        let mut yi = y.data[i];
182        let mut j = 0;
183        while j < big_digit::BITS {
184            if i != y.data.len() - 1 || j != 0 {
185                zz = montgomery(&z, &z, m, mr.n0inv, num_words);
186                z = montgomery(&zz, &zz, m, mr.n0inv, num_words);
187                zz = montgomery(&z, &z, m, mr.n0inv, num_words);
188                z = montgomery(&zz, &zz, m, mr.n0inv, num_words);
189            }
190            zz = montgomery(
191                &z,
192                &powers[(yi >> (big_digit::BITS - n)) as usize],
193                m,
194                mr.n0inv,
195                num_words,
196            );
197            mem::swap(&mut z, &mut zz);
198            yi <<= n;
199            j += n;
200        }
201    }
202
203    // convert to regular number
204    zz = montgomery(&z, &one, m, mr.n0inv, num_words);
205
206    zz.normalize();
207    // One last reduction, just in case.
208    // See golang.org/issue/13907.
209    if zz >= *m {
210        // Common case is m has high bit set; in that case,
211        // since zz is the same length as m, there can be just
212        // one multiple of m to remove. Just subtract.
213        // We think that the subtract should be sufficient in general,
214        // so do that unconditionally, but double-check,
215        // in case our beliefs are wrong.
216        // The div is not expected to be reached.
217        zz -= m;
218        if zz >= *m {
219            zz %= m;
220        }
221    }
222
223    zz.normalize();
224    zz
225}