1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#![deny(missing_docs)]

use {
    crate::net::EventedFd,
    futures::{
        future::Future,
        io::{AsyncRead, AsyncWrite},
        ready,
        stream::Stream,
        task::{Context, Poll},
    },
    std::{
        io::{self, Write},
        net::{self, Shutdown, SocketAddr},
        ops::Deref,
        os::unix::io::FromRawFd as _,
        pin::Pin,
    },
};

/// An I/O object representing a TCP socket listening for incoming connections.
///
/// This object can be converted into a stream of incoming connections for
/// various forms of processing.
#[derive(Debug)]
pub struct TcpListener(EventedFd<net::TcpListener>);

impl Unpin for TcpListener {}

impl Deref for TcpListener {
    type Target = EventedFd<net::TcpListener>;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl TcpListener {
    /// Creates a new `TcpListener` bound to the provided socket.
    pub fn bind(addr: &SocketAddr) -> io::Result<TcpListener> {
        let domain = match *addr {
            SocketAddr::V4(..) => socket2::Domain::IPV4,
            SocketAddr::V6(..) => socket2::Domain::IPV6,
        };
        let socket =
            socket2::Socket::new(domain, socket2::Type::STREAM, Some(socket2::Protocol::TCP))?;
        // Allow this socket to be rebound while it is in TIME_WAIT.
        //
        // This is borrowed from std::net::TcpListener::bind. See
        // https://github.com/rust-lang/rust/blob/db492ec/library/std/src/sys_common/net.rs#L371-L379.
        let () = socket.set_reuse_address(true)?;
        let addr = (*addr).into();
        let () = socket.bind(&addr)?;
        let () = socket.listen(1024)?;
        TcpListener::from_std(socket.into())
    }

    /// Consumes this listener and returns a `Future` that resolves to an
    /// `io::Result<(TcpListener, TcpStream, SocketAddr)>`.
    pub fn accept(self) -> Acceptor {
        Acceptor(Some(self))
    }

    /// Consumes this listener and returns a `Stream` that resolves to elements
    /// of type `io::Result<(TcpStream, SocketAddr)>`.
    pub fn accept_stream(self) -> AcceptStream {
        AcceptStream(self)
    }

    /// Poll on `accept`ing a new `TcpStream` from this listener.
    /// This function is mainly intended for usage in manual `Future` or `Stream`
    /// implementations.
    pub fn async_accept(
        &mut self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<(TcpStream, SocketAddr)>> {
        ready!(EventedFd::poll_readable(&self.0, cx))?;
        match self.0.as_ref().accept() {
            Err(e) => {
                if e.kind() == io::ErrorKind::WouldBlock {
                    self.0.need_read(cx);
                    Poll::Pending
                } else {
                    Poll::Ready(Err(e))
                }
            }
            Ok((sock, addr)) => Poll::Ready(Ok((TcpStream::from_std(sock)?, addr))),
        }
    }

    /// Creates a new instance of `fuchsia_async::net::TcpListener` from an
    /// `std::net::TcpListener`.
    pub fn from_std(listener: net::TcpListener) -> io::Result<TcpListener> {
        let listener: socket2::Socket = listener.into();
        let () = listener.set_nonblocking(true)?;
        let listener = listener.into();
        let listener = unsafe { EventedFd::new(listener)? };
        Ok(TcpListener(listener))
    }

    /// Returns a reference to the underlying `std::net::TcpListener`.
    pub fn std(&self) -> &net::TcpListener {
        self.as_ref()
    }

    /// Returns the local socket address of the listener.
    pub fn local_addr(&self) -> io::Result<net::SocketAddr> {
        self.std().local_addr()
    }
}

/// A future which resolves to an `io::Result<(TcpListener, TcpStream, SocketAddr)>`.
#[derive(Debug)]
pub struct Acceptor(Option<TcpListener>);

impl Future for Acceptor {
    type Output = io::Result<(TcpListener, TcpStream, SocketAddr)>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let (stream, addr);
        {
            let listener = self.0.as_mut().expect("polled an Acceptor after completion");
            let (s, a) = ready!(listener.async_accept(cx))?;
            stream = s;
            addr = a;
        }
        let listener = self.0.take().unwrap();
        Poll::Ready(Ok((listener, stream, addr)))
    }
}

/// A stream which resolves to an `io::Result<(TcpStream, SocketAddr)>`.
#[derive(Debug)]
pub struct AcceptStream(TcpListener);

impl Stream for AcceptStream {
    type Item = io::Result<(TcpStream, SocketAddr)>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let (stream, addr) = ready!(self.0.async_accept(cx)?);
        Poll::Ready(Some(Ok((stream, addr))))
    }
}

/// A single TCP connection.
///
/// This type and references to it implement the `AsyncRead` and `AsyncWrite`
/// traits. For more on using this type, see the `AsyncReadExt` and `AsyncWriteExt`
/// traits.
#[derive(Debug)]
pub struct TcpStream {
    stream: EventedFd<net::TcpStream>,
}

impl Deref for TcpStream {
    type Target = EventedFd<net::TcpStream>;

    fn deref(&self) -> &Self::Target {
        &self.stream
    }
}

impl TcpStream {
    /// Creates a new `TcpStream` connected to a specific socket address from an existing socket
    /// descriptor.
    /// This function returns a future which resolves to an `io::Result<TcpStream>`.
    pub fn connect_from_raw(
        socket: impl std::os::unix::io::IntoRawFd,
        addr: SocketAddr,
    ) -> io::Result<TcpConnector> {
        // This is safe because `into_raw_fd()` consumes ownership of the socket, so we are
        // guaranteed that the returned value is not shared among more than one owner at this
        // point.
        let socket = unsafe { socket2::Socket::from_raw_fd(socket.into_raw_fd()) };
        Self::from_socket2(socket, addr)
    }

    /// Creates a new `TcpStream` connected to a specific socket address.
    ///
    /// This function returns a future which resolves to an `io::Result<TcpStream>`.
    pub fn connect(addr: SocketAddr) -> io::Result<TcpConnector> {
        let domain = match addr {
            SocketAddr::V4(..) => socket2::Domain::IPV4,
            SocketAddr::V6(..) => socket2::Domain::IPV6,
        };
        let socket =
            socket2::Socket::new(domain, socket2::Type::STREAM, Some(socket2::Protocol::TCP))?;
        Self::from_socket2(socket, addr)
    }

    // This function is intentionally kept private to avoid socket2 appearing in the public API.
    fn from_socket2(socket: socket2::Socket, addr: SocketAddr) -> io::Result<TcpConnector> {
        let () = socket.set_nonblocking(true)?;
        let addr = addr.into();
        let () = match socket.connect(&addr) {
            Err(e) if e.raw_os_error() == Some(libc::EINPROGRESS) => Ok(()),
            res => res,
        }?;
        let stream = socket.into();
        // This is safe because the file descriptor for stream will live as long as the TcpStream.
        let stream = unsafe { EventedFd::new(stream)? };
        let stream = Some(TcpStream { stream });

        Ok(TcpConnector { need_write: true, stream })
    }

    /// Shuts down the connection, see `std::net::TcpStream.shutdown`
    pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
        self.std().shutdown(how)
    }

    /// Flushes the connection, see `std::net::TcpStream.flush`
    fn flush(&mut self) -> io::Result<()> {
        self.std_mut().flush()
    }

    /// Creates a new `fuchsia_async::net::TcpStream` from a `std::net::TcpStream`.
    fn from_std(stream: net::TcpStream) -> io::Result<TcpStream> {
        let stream: socket2::Socket = stream.into();
        let () = stream.set_nonblocking(true)?;
        let stream = stream.into();
        // This is safe because the file descriptor for stream will live as long as the TcpStream.
        let stream = unsafe { EventedFd::new(stream)? };
        Ok(TcpStream { stream })
    }

    /// Returns a reference to the underlying `std::net::TcpStream`
    pub fn std(&self) -> &net::TcpStream {
        self.as_ref()
    }

    fn std_mut<'a>(&'a mut self) -> &'a mut net::TcpStream {
        self.stream.as_mut()
    }
}

impl AsyncRead for TcpStream {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.stream).poll_read(cx, buf)
    }

    // TODO: override poll_vectored_read and call readv on the underlying stream
}

impl AsyncWrite for TcpStream {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.stream).poll_write(cx, buf)
    }

    fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        match self.get_mut().flush() {
            Err(err) if err.kind() == io::ErrorKind::WouldBlock => Poll::Pending,
            Err(e) => Poll::Ready(Err(e)),
            Ok(()) => Poll::Ready(Ok(())),
        }
    }

    fn poll_close(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(self.as_ref().shutdown(Shutdown::Write))
    }

    // TODO: override poll_vectored_write and call writev on the underlying stream
}

/// A future which resolves to a connected `TcpStream`.
#[derive(Debug)]
pub struct TcpConnector {
    // The stream needs to have `need_write` called on it to defeat the optimization in
    // EventedFd::new which assumes that the operand is immediately readable and writable.
    need_write: bool,
    stream: Option<TcpStream>,
}

impl Future for TcpConnector {
    type Output = io::Result<TcpStream>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = &mut *self;
        {
            let stream = this.stream.as_mut().expect("polled a TcpConnector after completion");
            if this.need_write {
                this.need_write = false;
                stream.need_write(cx);
                return Poll::Pending;
            }
            let () = ready!(stream.poll_writable(cx)?);
            let () = match stream.as_ref().take_error() {
                Ok(None) => Ok(()),
                Ok(Some(err)) | Err(err) => Err(err),
            }?;
        }
        let stream = this.stream.take().unwrap();
        Poll::Ready(Ok(stream))
    }
}

#[cfg(test)]
mod tests {
    use {
        super::{TcpListener, TcpStream},
        crate::TestExecutor,
        futures::{
            io::{AsyncReadExt, AsyncWriteExt},
            stream::StreamExt,
        },
        std::{
            io::{Error, ErrorKind},
            net::{self, Ipv4Addr, SocketAddr},
        },
    };

    #[test]
    fn choose_listen_port() {
        let _exec = TestExecutor::new();
        let addr_request = SocketAddr::new(Ipv4Addr::LOCALHOST.into(), 0);
        let listener = TcpListener::bind(&addr_request).expect("could not create listener");
        let actual_addr = listener.local_addr().expect("local_addr query to succeed");
        assert_eq!(actual_addr.ip(), addr_request.ip());
        assert_ne!(actual_addr.port(), 0);
    }

    #[test]
    fn choose_listen_port_from_std() {
        let _exec = TestExecutor::new();
        let addr_request = SocketAddr::new(Ipv4Addr::LOCALHOST.into(), 0);
        let inner = net::TcpListener::bind(&addr_request).expect("could not create inner listener");
        let listener = TcpListener::from_std(inner).expect("could not create listener");
        let actual_addr = listener.local_addr().expect("local_addr query to succeed");
        assert_eq!(actual_addr.ip(), addr_request.ip());
        assert_ne!(actual_addr.port(), 0);
    }

    #[test]
    fn connect_to_nonlistening_endpoint() {
        let mut exec = TestExecutor::new();

        // bind to a port to find an unused one, but don't start listening.
        let addr = SocketAddr::new(Ipv4Addr::LOCALHOST.into(), 0).into();
        let socket = socket2::Socket::new(
            socket2::Domain::IPV4,
            socket2::Type::STREAM,
            Some(socket2::Protocol::TCP),
        )
        .expect("could not create socket");
        let () = socket.bind(&addr).expect("could not bind");
        let addr = socket.local_addr().expect("local addr query to succeed");
        let addr = addr.as_socket().expect("local addr to be ipv4 or ipv6");

        // connecting to the nonlistening port should fail.
        let connector = TcpStream::connect(addr).expect("could not create client");
        let fut = async move {
            let res = connector.await;
            assert!(res.is_err());
            Ok::<(), Error>(())
        };

        exec.run_singlethreaded(fut).expect("failed to run tcp socket test");
    }

    #[test]
    fn send_recv() {
        let mut exec = TestExecutor::new();

        let addr = SocketAddr::new(Ipv4Addr::LOCALHOST.into(), 0);
        let listener = TcpListener::bind(&addr).expect("could not create listener");
        let addr = listener.local_addr().expect("local_addr query to succeed");
        let mut listener = listener.accept_stream();

        let query = b"ping";
        let response = b"pong";

        let server = async move {
            let (mut socket, _clientaddr) =
                listener.next().await.expect("stream to not be done").expect("client to connect");
            drop(listener);

            let mut buf = [0u8; 20];
            let n = socket.read(&mut buf[..]).await.expect("server read to succeed");
            assert_eq!(query, &buf[..n]);

            socket.write_all(&response[..]).await.expect("server write to succeed");

            let err = socket.read_exact(&mut buf[..]).await.unwrap_err();
            assert_eq!(err.kind(), ErrorKind::UnexpectedEof);
        };

        let client = async move {
            let connector = TcpStream::connect(addr).expect("could not create client");
            let mut socket = connector.await.expect("client to connect to server");

            socket.write_all(&query[..]).await.expect("client write to succeed");

            let mut buf = [0u8; 20];
            let n = socket.read(&mut buf[..]).await.expect("client read to succeed");
            assert_eq!(response, &buf[..n]);
        };

        exec.run_singlethreaded(futures::future::join(server, client));
    }

    #[test]
    fn send_recv_large() {
        let mut exec = TestExecutor::new();
        let addr = "127.0.0.1:0".parse().unwrap();

        const BUF_SIZE: usize = 10 * 1024;
        const WRITES: usize = 1024;
        const LENGTH: usize = WRITES * BUF_SIZE;

        let listener = TcpListener::bind(&addr).expect("could not create listener");
        let addr = listener.local_addr().expect("query local_addr");
        let mut listener = listener.accept_stream();

        let server = async move {
            let (mut socket, _clientaddr) =
                listener.next().await.expect("stream to not be done").expect("client to connect");
            drop(listener);

            let buf = [0u8; BUF_SIZE];
            for _ in 0usize..WRITES {
                socket.write_all(&buf[..]).await.expect("server write to succeed");
            }
        };

        let client = async move {
            let connector = TcpStream::connect(addr).expect("could not create client");
            let mut socket = connector.await.expect("client to connect to server");

            let zeroes = Box::new([0u8; BUF_SIZE]);
            let mut read = 0;
            while read < LENGTH {
                let mut buf = Box::new([1u8; BUF_SIZE]);
                let n = socket.read(&mut buf[..]).await.expect("client read to succeed");
                assert_eq!(&buf[0..n], &zeroes[0..n]);
                read += n;
            }
        };

        exec.run_singlethreaded(futures::future::join(server, client));
    }
}