alarms/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Alarm management subsystem.
//!
//! This subsystem serves the FIDL API `fuchsia.time.alarms/Wake`. To instantiate,
//! you can use the following approach:
//!
//! ```ignore
//! let proxy = client::connect_to_protocol::<ffhh::DeviceMarker>().map_err(
//! |e| error!("error: {}", e)).expect("add proper error handling");
//! let timer_loop = alarms::Handle::new(proxy);
//! ```
//!
//! From here, use the standard approach with [ServiceFs::new] to expose the
//! discoverable FIDL endpoint and call:
//!
//! ```ignore
//! let stream: fidl_fuchsia_time_alarms::WakeRequestStream = ... ;
//! alarms::serve(timer_loop, stream).await;
//! // ...
//! ```
//!
//! Of course, for everything to work well, your component will need appropriate
//! capability routing. Refer to capability routing docs for those details.
use anyhow::{anyhow, Result};
use fidl::encoding::ProxyChannelBox;
use fidl::endpoints::RequestStream;
use fidl::HandleBased;
use futures::channel::mpsc;
use futures::sink::SinkExt;
use futures::StreamExt;
use log::{debug, error, warn};
use scopeguard::defer;
use std::cell::RefCell;
use std::cmp;
use std::collections::{BTreeMap, BinaryHeap, HashMap};
use std::rc::Rc;
use std::sync::LazyLock;
use zx::AsHandleRef;
use {
fidl_fuchsia_hardware_hrtimer as ffhh, fidl_fuchsia_time_alarms as fta,
fuchsia_async as fasync, fuchsia_trace as trace,
};
static I64_MAX_AS_U64: LazyLock<u64> = LazyLock::new(|| i64::MAX.try_into().expect("infallible"));
static I32_MAX_AS_U64: LazyLock<u64> = LazyLock::new(|| i32::MAX.try_into().expect("infallible"));
/// The largest value of timer "ticks" that is still considered useful.
static MAX_USEFUL_TICKS: LazyLock<u64> = LazyLock::new(|| *I32_MAX_AS_U64);
/// The hrtimer ID used for scheduling wake alarms. This ID is reused from
/// Starnix, and should eventually no longer be critical.
const MAIN_TIMER_ID: usize = 6;
/// TODO(b/383062441): remove this special casing once Starnix hrtimer is fully
/// migrated to multiplexed timer.
/// A special-cased Starnix timer ID, used to allow cross-connection setup
/// for Starnix only.
const TEMPORARY_STARNIX_TIMER_ID: &str = "starnix-hrtimer";
static TEMPORARY_STARNIX_CID: LazyLock<zx::Event> = LazyLock::new(|| zx::Event::create());
// This may be already handled by something, but I don't want new deps.
const USEC_IN_NANOS: i64 = 1000;
const MSEC_IN_NANOS: i64 = 1000 * USEC_IN_NANOS;
const SEC_IN_NANOS: i64 = 1000 * MSEC_IN_NANOS;
const MIN_IN_NANOS: i64 = SEC_IN_NANOS * 60;
const HOUR_IN_NANOS: i64 = MIN_IN_NANOS * 60;
const DAY_IN_NANOS: i64 = HOUR_IN_NANOS * 24;
const WEEK_IN_NANOS: i64 = DAY_IN_NANOS * 7;
const YEAR_IN_NANOS: i64 = DAY_IN_NANOS * 365; // Approximate.
static UNITS: LazyLock<Vec<(i64, &'static str)>> = LazyLock::new(|| {
vec![
(YEAR_IN_NANOS, "year(s)"),
(WEEK_IN_NANOS, "week(s)"),
(DAY_IN_NANOS, "day(s)"),
(HOUR_IN_NANOS, "h"),
(MIN_IN_NANOS, "min"),
(SEC_IN_NANOS, "s"),
(MSEC_IN_NANOS, "ms"),
(USEC_IN_NANOS, "μs"),
(1, "ns"),
]
});
// Formats a time value into a simplistic human-readable string. This is meant
// to be a human-friendly, but not an impeccable format.
fn format_common(mut value: i64) -> String {
let value_copy = value;
let mut repr: Vec<String> = vec![];
for (unit_value, unit_str) in UNITS.iter() {
if value == 0 {
break;
}
let num_units = value / unit_value;
if num_units.abs() > 0 {
repr.push(format!("{}{}", num_units, unit_str));
value = value % unit_value;
}
}
if repr.len() == 0 {
repr.push("0ns".to_string());
}
// 1year(s)_3week(s)_4day(s)_1h_2m_340ms. Not ideal but user-friendly enough.
let repr = repr.join("_");
let mut ret = vec![];
ret.push(repr);
// Also add the full nanosecond value too.
ret.push(format!("({})", value_copy));
ret.join(" ")
}
// Pretty prints a timer value into a simplistic format.
fn format_timer<T: zx::Timeline>(timer: zx::Instant<T>) -> String {
format_common(timer.into_nanos())
}
// Pretty prints a duration into a simplistic format.
fn format_duration<T: zx::Timeline>(duration: zx::Duration<T>) -> String {
format_common(duration.into_nanos())
}
/// Compares two optional deadlines and returns true if the `before is different from `after.
/// Nones compare as equal.
fn is_deadline_changed(
before: Option<fasync::BootInstant>,
after: Option<fasync::BootInstant>,
) -> bool {
match (before, after) {
(None, None) => false,
(None, Some(_)) | (Some(_), None) => true,
(Some(before), Some(after)) => before != after,
}
}
/// Stops a currently running hardware timer.
async fn stop_hrtimer(hrtimer: &ffhh::DeviceProxy) {
trace::duration!(c"alarms", c"hrtimer:stop");
debug!("stop_hrtimer: stopping hardware timer");
let _ = hrtimer
.stop(MAIN_TIMER_ID.try_into().expect("infallible"))
.await
.map(|result| {
let _ = result.map_err(|e| warn!("stop_hrtimer: driver error: {:?}", e));
})
.map_err(|e| warn!("stop_hrtimer: could not stop prior timer: {}", e));
}
// The default size of the channels created in this module.
const CHANNEL_SIZE: usize = 100;
/// A type handed around between the concurrent loops run by this module.
#[derive(Debug)]
enum Cmd {
/// Request a timer to be started.
Start {
/// The unique connection ID.
cid: zx::Koid,
/// A timestamp (presumably in the future), at which to expire the timer.
deadline: fasync::BootInstant,
/// A wake lease token. Hold onto this value while we must prevent the
/// system from going to sleep.
///
/// This is important so that wake alarms can be scheduled before we
/// allow the system to go to sleep.
setup_done: zx::Event,
/// An alarm identifier, chosen by the caller.
alarm_id: String,
/// A responder that will be called when the timer expires. The
/// client end of the connection will block until we send something
/// on this responder.
///
/// This is packaged into a Rc... only because both the "happy path"
/// and the error path must consume the responder. This allows them
/// to be consumed, without the responder needing to implement Default.
responder: Rc<RefCell<Option<fta::WakeSetAndWaitResponder>>>,
},
StopById {
done: zx::Event,
timer_id: TimerId,
},
Alarm {
expired_deadline: fasync::BootInstant,
keep_alive: fidl::EventPair,
},
AlarmFidlError {
expired_deadline: fasync::BootInstant,
error: fidl::Error,
},
AlarmDriverError {
expired_deadline: fasync::BootInstant,
error: ffhh::DriverError,
},
}
impl std::fmt::Display for Cmd {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Cmd::Start { cid, deadline, alarm_id, .. } => {
write!(
f,
"Start[alarm_id=\"{}\", cid={:?}, deadline={}]",
alarm_id,
cid,
format_timer((*deadline).into())
)
}
Cmd::Alarm { expired_deadline, .. } => {
write!(f, "Alarm[deadline={}]", format_timer((*expired_deadline).into()))
}
Cmd::AlarmFidlError { expired_deadline, error } => {
write!(
f,
"FIDLError[deadline={}, err={}, NO_WAKE_LEASE!]",
format_timer((*expired_deadline).into()),
error
)
}
Cmd::AlarmDriverError { expired_deadline, error } => {
write!(
f,
"DriverError[deadline={}, err={:?}, NO_WAKE_LEASE!]",
format_timer((*expired_deadline).into()),
error
)
}
Cmd::StopById { timer_id, done: _ } => {
write!(f, "StopById[timerId={}]", timer_id,)
}
}
}
}
/// Extracts a KOID from the undelrying channel of the provided [stream].
///
/// # Returns
/// - zx::Koid: the KOID you wanted.
/// - fta::WakeRequestStream: the stream; we had to deconstruct it briefly,
/// so this gives it back to you.
pub fn get_stream_koid(stream: fta::WakeRequestStream) -> (zx::Koid, fta::WakeRequestStream) {
let (inner, is_terminated) = stream.into_inner();
let koid = inner.channel().as_channel().get_koid().expect("infallible");
let stream = fta::WakeRequestStream::from_inner(inner, is_terminated);
(koid, stream)
}
/// Serves a single Wake API client.
pub async fn serve(timer_loop: Rc<Loop>, requests: fta::WakeRequestStream) {
// Compute the request ID somehow.
fasync::Task::local(async move {
let timer_loop = timer_loop.clone();
let timer_loop_send = || timer_loop.get_sender();
let (cid, mut requests) = get_stream_koid(requests);
let mut request_count = 0;
debug!("alarms::serve: opened connection: {:?}", cid);
while let Some(maybe_request) = requests.next().await {
request_count += 1;
debug!("alarms::serve: cid: {:?} incoming request: {}", cid, request_count);
match maybe_request {
Ok(request) => {
// Should return quickly.
handle_request(cid, timer_loop_send(), request).await;
}
Err(e) => {
warn!("alarms::serve: error in request: {:?}", e);
}
}
debug!("alarms::serve: cid: {:?} done request: {}", cid, request_count);
}
// Check if connection closure was intentional. It is way too easy to close
// a FIDL connection inadvertently if doing non-mainstream things with FIDL.
warn!("alarms::serve: CLOSED CONNECTION: cid: {:?}", cid);
})
.detach();
}
// Inject a constant KOID as connection ID (cid) if the singular alarm ID corresponds to a Starnix
// alarm.
// TODO(b/383062441): remove this special casing.
fn compute_cid(cid: zx::Koid, alarm_id: &str) -> zx::Koid {
if alarm_id == TEMPORARY_STARNIX_TIMER_ID {
// Temporarily, the Starnix timer is a singleton and always gets the
// same CID.
TEMPORARY_STARNIX_CID.as_handle_ref().get_koid().expect("infallible")
} else {
cid
}
}
async fn handle_cancel(alarm_id: String, cid: zx::Koid, cmd: &mut mpsc::Sender<Cmd>) {
let done = zx::Event::create();
let cid = compute_cid(cid, &alarm_id);
let timer_id = TimerId { alarm_id: alarm_id.clone(), cid };
if let Err(e) = cmd.send(Cmd::StopById { timer_id, done: clone_handle(&done) }).await {
warn!("handle_request: error while trying to cancel: {}: {:?}", alarm_id, e);
}
wait_signaled(&done).await;
}
/// Processes a single Wake API request from a single client.
/// This function is expected to return quickly.
///
/// # Args
/// - `cid`: the unique identifier of the connection producing these requests.
/// - `cmd`: the outbound queue of commands to deliver to the timer manager.
/// - `request`: a single inbound Wake FIDL API request.
async fn handle_request(cid: zx::Koid, mut cmd: mpsc::Sender<Cmd>, request: fta::WakeRequest) {
match request {
fta::WakeRequest::SetAndWait { deadline, setup_done, alarm_id, responder } => {
// Since responder is consumed by the happy path and the error path, but not both,
// and because the responder does not implement Default, this is a way to
// send it in two mutually exclusive directions. Each direction will reverse
// this wrapping once the responder makes it to the other side.
//
// Rc required because of sharing a noncopyable struct; RefCell required because
// borrow_mut() is needed to move out; and Option is required so we can
// use take() to replace the struct with None so it does not need to leave
// a Default in its place.
let responder = Rc::new(RefCell::new(Some(responder)));
let cid = compute_cid(cid, &alarm_id);
// Alarm is not scheduled yet!
debug!(
"handle_request: scheduling alarm_id: \"{}\", cid: {:?}, deadline: {}",
alarm_id,
cid,
format_timer(deadline.into())
);
// Expected to return quickly.
if let Err(e) = cmd
.send(Cmd::Start {
cid,
deadline: deadline.into(),
setup_done,
alarm_id: alarm_id.clone(),
responder: responder.clone(),
})
.await
{
warn!("handle_request: error while trying to schedule `{}`: {:?}", alarm_id, e);
responder
.borrow_mut()
.take()
.expect("always present if call fails")
.send(Err(fta::WakeError::Internal))
.unwrap();
}
}
fta::WakeRequest::Cancel { alarm_id, .. } => {
// TODO: b/383062441 - make this into an async task so that we wait
// less to schedule the next alarm.
handle_cancel(alarm_id, cid, &mut cmd).await;
}
// Similar to above, but wait for the cancel to complete.
fta::WakeRequest::CancelSync { alarm_id, responder, .. } => {
handle_cancel(alarm_id, cid, &mut cmd).await;
responder.send(Ok(())).expect("infallible");
}
fta::WakeRequest::GetProperties { responder, .. } => {
let response =
fta::WakeGetPropertiesResponse { is_supported: Some(true), ..Default::default() };
responder.send(&response).expect("send success");
}
fta::WakeRequest::_UnknownMethod { .. } => {}
};
}
/// Represents a single alarm event processing loop.
///
/// One instance is created per each alarm-capable low-level device.
pub struct Loop {
// The task executing the alarm event processing [Loop].
_task: fasync::Task<()>,
// Given to any clients that need to send messages to `_task`
// via [get_sender].
snd_cloneable: mpsc::Sender<Cmd>,
}
impl Loop {
/// Creates a new instance of [Loop].
///
/// `device_proxy` is a connection to a low-level timer device.
pub fn new(device_proxy: ffhh::DeviceProxy) -> Self {
let (snd, rcv) = mpsc::channel(CHANNEL_SIZE);
let snd_clone = snd.clone();
let _task =
fasync::Task::local(async move { wake_timer_loop(snd_clone, rcv, device_proxy).await });
Self { _task, snd_cloneable: snd }
}
/// Gets a copy of a channel through which async commands may be sent to
/// the [Loop].
fn get_sender(&self) -> mpsc::Sender<Cmd> {
self.snd_cloneable.clone()
}
}
/// A representation of the state of a single Timer.
#[derive(Debug)]
struct TimerNode {
/// The deadline at which the timer expires.
deadline: fasync::BootInstant,
/// The unique alarm ID associated with this timer.
alarm_id: String,
/// The unique connection ID that this timer belongs to. Multiple timers
/// may share the same `cid`.
cid: zx::Koid,
/// The responder that is blocked until the timer expires. Used to notify
/// the alarms subsystem client when this alarm expires.
responder: Option<fta::WakeSetAndWaitResponder>,
}
impl TimerNode {
fn new(
deadline: fasync::BootInstant,
alarm_id: String,
cid: zx::Koid,
responder: fta::WakeSetAndWaitResponder,
) -> Self {
Self { deadline, alarm_id, cid, responder: Some(responder) }
}
fn get_alarm_id(&self) -> &str {
&self.alarm_id[..]
}
fn get_cid(&self) -> &zx::Koid {
&self.cid
}
fn get_id(&self) -> TimerId {
TimerId { alarm_id: self.alarm_id.clone(), cid: self.cid.clone() }
}
fn get_deadline(&self) -> &fasync::BootInstant {
&self.deadline
}
fn take_responder(&mut self) -> Option<fta::WakeSetAndWaitResponder> {
self.responder.take()
}
}
impl Drop for TimerNode {
// If the TimerNode was evicted without having expired, notify the other
// end that the timer has been canceled.
fn drop(&mut self) {
let responder = self.take_responder();
responder.map(|r| {
// If the TimerNode is dropped, notify the client that may have
// been waiting. We can not drop a responder, because that kills
// the FIDL connection.
r.send(Err(fta::WakeError::Dropped))
.map_err(|e| error!("could not drop responder: {:?}", e))
});
}
}
/// This and other comparison trait implementation are needed to establish
/// a total ordering of TimerNodes.
impl std::cmp::Eq for TimerNode {}
impl std::cmp::PartialEq for TimerNode {
fn eq(&self, other: &Self) -> bool {
self.deadline == other.deadline && self.alarm_id == other.alarm_id && self.cid == other.cid
}
}
impl std::cmp::PartialOrd for TimerNode {
/// Order by deadline first, but timers with same deadline are ordered
/// by respective IDs to avoid ordering nondeterminism.
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for TimerNode {
/// Compares two [TimerNode]s, by "which is sooner".
///
/// Ties are broken by alarm ID, then by connection ID.
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
let ordering = other.deadline.cmp(&self.deadline);
if ordering == std::cmp::Ordering::Equal {
let ordering = self.alarm_id.cmp(&self.alarm_id);
if ordering == std::cmp::Ordering::Equal {
self.cid.cmp(&other.cid)
} else {
ordering
}
} else {
ordering
}
}
}
/// A full timer identifier.
#[derive(Debug, PartialEq, Eq, Hash)]
struct TimerId {
/// Connection-unique alarm ID.
alarm_id: String,
/// Connection identifier, unique per each client connection.
cid: zx::Koid,
}
impl std::fmt::Display for TimerId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "TimerId[alarm_id:{},cid:{:?}]", self.alarm_id, self.cid)
}
}
/// Contains all the timers known by the alarms subsystem.
///
/// [Timers] can efficiently find a timer with the earliest deadline,
/// and given a cutoff can expire one timer for which the deadline has
/// passed.
struct Timers {
timers: BinaryHeap<TimerNode>,
deadline_by_id: HashMap<TimerId, fasync::BootInstant>,
}
impl std::fmt::Display for Timers {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let now = fasync::BootInstant::now();
let sorted = self
.timers
.iter()
.map(|n| (n.deadline, n.alarm_id.clone()))
.collect::<BTreeMap<_, _>>()
.into_iter()
.map(|(k, v)| {
let remaining = k - now;
format!(
"Timeout: {} => timer_id: {}, remaining: {}",
format_timer(k.into()),
v,
format_duration(remaining.into())
)
})
.collect::<Vec<_>>();
let joined = sorted.join("\n\t");
write!(f, "\n\t{}", joined)
}
}
impl Timers {
/// Creates an empty [AllTimers].
fn new() -> Self {
Self { timers: BinaryHeap::new(), deadline_by_id: HashMap::new() }
}
/// Adds a [TimerNode] to [Timers].
///
/// If the inserted node is identical to an already existing node, then
/// nothing is changed. If the deadline is different, then the timer node
/// is replaced.
fn push(&mut self, n: TimerNode) {
let new_id = n.get_id();
if let Some(deadline) = self.deadline_by_id.get(&new_id) {
// There already is a deadline for this timer.
if n.deadline == *deadline {
return;
}
// Else replace. The deadline may be pushed out or pulled in.
self.deadline_by_id.insert(new_id, n.deadline.clone());
self.timers.retain(|t| t.get_id() != n.get_id());
self.timers.push(n);
} else {
// New timer node.
self.deadline_by_id.insert(new_id, n.deadline);
self.timers.push(n);
}
}
/// Returns a reference to the stored timer with the earliest deadline.
fn peek(&self) -> Option<&TimerNode> {
self.timers.peek()
}
/// Returns the deadline of the proximate timer in [Timers].
fn peek_deadline(&self) -> Option<fasync::BootInstant> {
self.peek().map(|t| t.deadline)
}
fn peek_id(&self) -> Option<TimerId> {
self.peek().map(|t| TimerId { alarm_id: t.alarm_id.clone(), cid: t.cid })
}
/// Args:
/// - `now` is the current time.
/// - `deadline` is the timer deadline to check for expiry.
fn expired(now: fasync::BootInstant, deadline: fasync::BootInstant) -> bool {
deadline <= now
}
/// Returns true if there are no known timers.
fn is_empty(&self) -> bool {
let empty1 = self.timers.is_empty();
let empty2 = self.deadline_by_id.is_empty();
assert!(empty1 == empty2, "broken invariant: empty1: {} empty2:{}", empty1, empty2);
empty1
}
/// Attempts to expire the earliest timer.
///
/// If a timer is expired, it is removed from [Timers] and returned to the caller. Note that
/// there may be more timers that need expiring at the provided `reference instant`. To drain
/// [Timers] of all expired timers, one must repeat the call to this method with the same
/// value of `reference_instant` until it returns `None`.
///
/// Args:
/// - `now`: the time instant to compare the stored timers against. Timers for
/// which the deadline has been reached or surpassed are eligible for expiry.
fn maybe_expire_earliest(&mut self, now: fasync::BootInstant) -> Option<TimerNode> {
self.peek_deadline()
.map(|d| {
if Timers::expired(now, d) {
self.timers.pop().map(|e| {
self.deadline_by_id.remove(&e.get_id());
e
})
} else {
None
}
})
.flatten()
}
/// Removes an alarm by ID. If the earliest alarm is the alarm to be removed,
/// it is returned.
fn remove_by_id(&mut self, timer_id: &TimerId) -> Option<TimerNode> {
let ret = if let Some(t) = self.peek_id() {
if t == *timer_id {
self.timers.pop()
} else {
None
}
} else {
None
};
self.timers.retain(|t| t.alarm_id != timer_id.alarm_id || t.cid != timer_id.cid);
self.deadline_by_id.remove(timer_id);
ret
}
/// Returns the number of currently pending timers.
fn timer_count(&self) -> usize {
let count1 = self.timers.len();
let count2 = self.deadline_by_id.len();
assert!(count1 == count2, "broken invariant: count1: {}, count2: {}", count1, count2);
count1
}
}
// Clones a handle. Needed for 1:N notifications.
fn clone_handle<H: HandleBased>(handle: &H) -> H {
handle.duplicate_handle(zx::Rights::SAME_RIGHTS).expect("infallible")
}
async fn wait_signaled<H: HandleBased>(handle: &H) {
fasync::OnSignals::new(handle, zx::Signals::EVENT_SIGNALED).await.expect("infallible");
}
fn signal<H: HandleBased>(handle: &H) {
handle.signal_handle(zx::Signals::NONE, zx::Signals::EVENT_SIGNALED).expect("infallible");
}
/// A [TimerDuration] represents a duration of time that can be expressed by
/// a discrete timer register.
///
/// This is a low-level representation of time duration, used in interaction with
/// hardware devices. It is therefore necessarily discretized, with adaptive
/// resolution, depending on the physical characteristics of the underlying
/// hardware timer that it models.
#[derive(Debug, Clone, Copy)]
struct TimerDuration {
// The resolution of each one of the `ticks` below.
resolution: zx::BootDuration,
// The number of ticks that encodes time duration. Each "tick" represents
// one unit of `resolution` above.
ticks: u64,
}
/// This and the comparison traits below are used to allow TimerDuration
/// calculations in a compact form.
impl Eq for TimerDuration {}
impl std::cmp::PartialOrd for TimerDuration {
fn partial_cmp(&self, other: &TimerDuration) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl std::cmp::PartialEq for TimerDuration {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == std::cmp::Ordering::Equal
}
}
impl std::cmp::Ord for TimerDuration {
/// Two [TimerDuration]s compare equal if they model exactly the same duration of time,
/// no matter the resolutions.
fn cmp(&self, other: &TimerDuration) -> std::cmp::Ordering {
let self_nanos = self.resolution_as_nanos() * self.ticks;
let other_nanos = other.resolution_as_nanos() * other.ticks;
self_nanos.cmp(&other_nanos)
}
}
impl std::fmt::Display for TimerDuration {
/// Human readable TimerDuration exposes both the tick count and the resolution,
/// in the format of "ticks x resolution", with an end result of
/// `10x5ms` for example.
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let ticks = self.ticks;
let resolution = self.resolution();
// Example: 10x1ms
write!(f, "{}x{}", ticks, format_duration(resolution),)
}
}
impl TimerDuration {
/// The maximum representable TimerDuration that we allow.
fn max() -> Self {
TimerDuration::new(zx::BootDuration::from_nanos(1), *I64_MAX_AS_U64)
}
/// The zero [TimerDuration].
fn zero() -> Self {
TimerDuration::new(zx::BootDuration::from_nanos(1), 0)
}
/// Creates a new timer duration with the given parameters.
fn new(resolution: zx::BootDuration, ticks: u64) -> Self {
Self { resolution, ticks }
}
/// Creates a new timer duration using the resolution from `res_source` and
/// a specified number of ticks.
fn new_with_resolution(res_source: &TimerDuration, ticks: u64) -> Self {
Self::new(res_source.resolution, ticks)
}
/// Returns the time duration represented by this TimerDuration.
///
/// Due to the way duration is expressed, the same time duration
/// can be represented in multiple ways.
fn duration(&self) -> zx::BootDuration {
let duration_as_nanos = self.resolution_as_nanos() * self.ticks;
let clamp_duration = std::cmp::min(*I32_MAX_AS_U64, duration_as_nanos);
zx::BootDuration::from_nanos(clamp_duration.try_into().expect("result was clamped"))
}
/// The resolution of this TimerDuration
fn resolution(&self) -> zx::BootDuration {
self.resolution
}
fn resolution_as_nanos(&self) -> u64 {
self.resolution().into_nanos().try_into().expect("resolution is never negative")
}
/// The number of ticks of this [TimerDuration].
fn ticks(&self) -> u64 {
self.ticks
}
}
impl From<zx::BootDuration> for TimerDuration {
fn from(d: zx::BootDuration) -> TimerDuration {
let nanos = d.into_nanos();
assert!(nanos >= 0);
let nanos_u64 = nanos.try_into().expect("guarded by assert");
TimerDuration::new(zx::BootDuration::from_nanos(1), nanos_u64)
}
}
impl std::ops::Div for TimerDuration {
type Output = u64;
fn div(self, rhs: Self) -> Self::Output {
let self_nanos = self.resolution_as_nanos() * self.ticks;
let rhs_nanos = rhs.resolution_as_nanos() * rhs.ticks;
self_nanos / rhs_nanos
}
}
impl std::ops::Mul<u64> for TimerDuration {
type Output = Self;
fn mul(self, rhs: u64) -> Self::Output {
Self::new(self.resolution, self.ticks * rhs)
}
}
/// Contains the configuration of a specific timer.
#[derive(Debug)]
struct TimerConfig {
/// The resolutions supported by this timer. Each entry is one possible
/// duration for on timer "tick". The resolution is picked when a timer
/// request is sent.
resolutions: Vec<zx::BootDuration>,
/// The maximum count of "ticks" that the timer supports. The timer usually
/// has a register that counts up or down based on a clock signal with
/// the period specified by `resolutions`. This is the maximum value that
/// the counter can count to without overflowing.
max_ticks: u64,
}
impl TimerConfig {
/// Creates a new timer config with supported timer resolutions and the max
/// ticks value for the timer's counter.
fn new_from_data(resolutions: &[zx::BootDuration], max_ticks: u64) -> Self {
debug!(
"TimerConfig: resolutions: {:?}, max_ticks: {}",
resolutions.iter().map(|r| format_duration(*r)).collect::<Vec<_>>(),
max_ticks
);
let resolutions = resolutions.iter().map(|d| *d).collect::<Vec<zx::BootDuration>>();
TimerConfig { resolutions, max_ticks }
}
fn new_empty() -> Self {
error!("TimerConfig::new_empty() called, this is not OK.");
TimerConfig { resolutions: vec![], max_ticks: 0 }
}
// Picks the most appropriate timer setting for it to fire as close as possible
// when `duration` expires.
//
// If duration is too far in the future for what the timer supports,
// return a smaller value, to allow the timer to be reprogrammed multiple
// times.
//
// If the available menu of resolutions is such that we can wake only after
// the intended deadline, begrudgingly return that option.
fn pick_setting(&self, duration: zx::BootDuration) -> TimerDuration {
// 0 |-------------->|<---------------|
// |---------+---------------+----------------+---->
// |---------^ | |
// | best positive slack | |
// |-------------------------^ duration |
// |------------------------------------------^ best negative slack.
let mut best_positive_slack = TimerDuration::zero();
let mut best_negative_slack = TimerDuration::max();
if self.max_ticks == 0 {
return TimerDuration::new(zx::BootDuration::from_millis(1), 0);
}
let duration_slack: TimerDuration = duration.into();
for res1 in self.resolutions.iter() {
let smallest_unit = TimerDuration::new(*res1, 1);
let max_tick_at_res = TimerDuration::new(*res1, self.max_ticks);
let smallest_slack_larger_than_duration = smallest_unit > duration_slack;
let largest_slack_smaller_than_duration = max_tick_at_res < duration_slack;
if smallest_slack_larger_than_duration {
if smallest_unit < best_negative_slack {
best_negative_slack = smallest_unit;
}
}
if largest_slack_smaller_than_duration {
if max_tick_at_res > best_positive_slack
|| best_positive_slack == TimerDuration::zero()
{
best_positive_slack = max_tick_at_res;
}
}
// "Regular" case.
if !smallest_slack_larger_than_duration && !largest_slack_smaller_than_duration {
// Check whether duration divides evenly into the available slack options
// for this resolution. If it does, then that is the slack we're looking for.
let q = duration_slack / smallest_unit;
let d = smallest_unit * q;
if d == duration_slack {
// Exact match, we can return right now.
return d;
} else {
// Not an exact match, so q ticks is before, but q+1 is after.
if d > best_positive_slack {
best_positive_slack = TimerDuration::new_with_resolution(&smallest_unit, q);
}
let d_plus = TimerDuration::new_with_resolution(&smallest_unit, q + 1);
if d_plus < best_negative_slack {
best_negative_slack = d_plus;
}
}
}
}
let p_slack = duration - best_positive_slack.duration();
let n_slack = best_negative_slack.duration() - duration;
// If the closest approximation is 0ns, then we can not advance time, so we reject it.
// Otherwise pick the smallest slack. Note that when we pick the best positive slack,
// we will wake *before* the actual deadline. In multi-resolution counters, this enables
// us to pick a finer count in the next go.
let ret = if p_slack < n_slack && best_positive_slack.duration().into_nanos() > 0 {
best_positive_slack
} else {
best_negative_slack
};
debug!("TimerConfig: picked slack: {} for duration: {}", ret, format_duration(duration));
assert!(
ret.duration().into_nanos() > 0,
"ret: {}, p_slack: {}, n_slack: {}, orig.duration: {}\n\tbest_p_slack: {}\n\tbest_n_slack: {}\n\ttarget: {}\n\t 1: {} 2: {:?}, 3: {:?}",
ret,
format_duration(p_slack),
format_duration(n_slack),
format_duration(duration),
best_positive_slack,
best_negative_slack,
duration_slack,
p_slack != zx::BootDuration::ZERO,
p_slack,
zx::BootDuration::ZERO,
);
ret
}
}
async fn get_timer_properties(hrtimer: &ffhh::DeviceProxy) -> TimerConfig {
debug!("get_timer_properties: requesting timer properties.");
match hrtimer.get_properties().await {
Ok(p) => {
let timers_properties = &p.timers_properties.expect("timers_properties must exist");
let main_timer_properties = &timers_properties[MAIN_TIMER_ID];
debug!("alarms: main_timer_properties: {:?}", main_timer_properties);
// Not sure whether it is useful to have more ticks than this, so limit it.
let max_ticks: u64 = std::cmp::min(
main_timer_properties.max_ticks.unwrap_or(*MAX_USEFUL_TICKS),
*MAX_USEFUL_TICKS,
);
let resolutions = &main_timer_properties
.supported_resolutions
.as_ref()
.expect("supported_resolutions is populated")
.iter()
.last() // Limits the resolution to the coarsest available.
.map(|r| match *r {
ffhh::Resolution::Duration(d) => d,
_ => {
error!(
"get_timer_properties: Unknown resolution type, returning millisecond."
);
MSEC_IN_NANOS
}
})
.map(|d| zx::BootDuration::from_nanos(d))
.into_iter() // Used with .last() above.
.collect::<Vec<_>>();
TimerConfig::new_from_data(resolutions, max_ticks)
}
Err(e) => {
error!("could not get timer properties: {:?}", e);
TimerConfig::new_empty()
}
}
}
/// The state of a single hardware timer that we must bookkeep.
struct TimerState {
// The task waiting for the proximate timer to expire.
task: fasync::Task<()>,
// The deadline that the above task is waiting for.
deadline: fasync::BootInstant,
}
/// The command loop for timer interaction. All changes to the wake alarm device programming
/// come in form of commands through `cmd`.
///
/// Args:
/// - `snd`: the send end of `cmd` below, a clone is given to each spawned sub-task.
/// - `cmds``: the input queue of alarm related commands.
/// - `timer_proxy`: the FIDL API proxy for interacting with the hardware device.
async fn wake_timer_loop(
snd: mpsc::Sender<Cmd>,
mut cmds: mpsc::Receiver<Cmd>,
timer_proxy: ffhh::DeviceProxy,
) {
debug!("wake_timer_loop: started");
let mut timers = Timers::new();
let timer_config = get_timer_properties(&timer_proxy).await;
// Keeps the currently executing HrTimer closure. This is not read from, but
// keeps the timer task active.
#[allow(clippy::collection_is_never_read)]
let mut hrtimer_status: Option<TimerState> = None;
while let Some(cmd) = cmds.next().await {
trace::duration!(c"alarms", c"Cmd");
// Use a consistent notion of "now" across commands.
let now = fasync::BootInstant::now();
trace::instant!(c"alarms", c"wake_timer_loop", trace::Scope::Process, "now" => now.into_nanos());
match cmd {
Cmd::Start { cid, deadline, setup_done, alarm_id, responder } => {
trace::duration!(c"alarms", c"Cmd::Start");
let responder = responder.borrow_mut().take().expect("responder is always present");
// NOTE: hold keep_alive until all work is done.
debug!(
"wake_timer_loop: START alarm_id: \"{}\", cid: {:?}\n\tdeadline: {}\n\tnow: {}",
alarm_id,
cid,
format_timer(deadline.into()),
format_timer(now.into()),
);
defer! {
// Must signal once the setup is completed.
signal(&setup_done);
};
if Timers::expired(now, deadline) {
trace::duration!(c"alarms", c"Cmd::Start:immediate");
// A timer set into now or the past expires right away.
let (_lease, keep_alive) = zx::EventPair::create();
responder
.send(Ok(keep_alive))
.map(|_| {
debug!(
concat!(
"wake_timer_loop: cid: {:?}, alarm: {}: expired immediately: ",
"deadline({}) <= now({})"
),
cid,
alarm_id,
format_timer(deadline.into()),
format_timer(now.into())
)
})
.map_err(|e| {
error!(
"wake_timer_loop: cid: {:?}, alarm: {}: could not notify, dropping: {}",
cid, alarm_id, e)
})
.unwrap_or(());
} else {
// A timer scheduled for the future gets inserted into the timer heap.
let was_empty = timers.is_empty();
let deadline_before = timers.peek_deadline();
timers.push(TimerNode::new(deadline, alarm_id, cid, responder));
let deadline_after = timers.peek_deadline();
let deadline_changed = is_deadline_changed(deadline_before, deadline_after);
let needs_cancel = !was_empty && deadline_changed;
let needs_reschedule = was_empty || deadline_changed;
if needs_reschedule {
// Always schedule the proximate deadline.
let schedulable_deadline = deadline_after.unwrap_or(deadline);
if needs_cancel {
stop_hrtimer(&timer_proxy).await;
}
hrtimer_status = Some(
schedule_hrtimer(
now,
&timer_proxy,
schedulable_deadline,
snd.clone(),
&timer_config,
)
.await,
);
}
}
}
Cmd::StopById { timer_id, done } => {
trace::duration!(c"alarms", c"Cmd::StopById", "alarm_id" => &timer_id.alarm_id[..]);
debug!("wake_timer_loop: STOP timer: {}", timer_id);
let deadline_before = timers.peek_deadline();
if let Some(mut timer_node) = timers.remove_by_id(&timer_id) {
let deadline_after = timers.peek_deadline();
if let Some(responder) = timer_node.take_responder() {
// We must reply to the responder to keep the connection open.
responder.send(Err(fta::WakeError::Dropped)).expect("infallible");
}
if is_deadline_changed(deadline_before, deadline_after) {
stop_hrtimer(&timer_proxy).await;
}
if let Some(deadline) = deadline_after {
// Reschedule the hardware timer if the removed timer is the earliest one,
// and another one exists.
let new_timer_state = schedule_hrtimer(
now,
&timer_proxy,
deadline,
snd.clone(),
&timer_config,
)
.await;
let old_hrtimer_status = hrtimer_status.replace(new_timer_state);
if let Some(task) = old_hrtimer_status.map(|ev| ev.task) {
// Allow the task to complete, I suppose.
task.await;
}
} else {
// No next timer, clean up the hrtimer status.
hrtimer_status = None;
}
}
signal(&done);
}
Cmd::Alarm { expired_deadline, keep_alive } => {
trace::duration!(c"alarms", c"Cmd::Alarm");
// Expire all eligible timers, based on "now". This is because
// we may have woken up earlier than the actual deadline. This
// happens for example if the timer can not make the actual
// deadline and needs to be re-programmed.
debug!(
"wake_timer_loop: ALARM!!! reached deadline: {}, wakey-wakey!",
format_timer(expired_deadline.into())
);
let expired_count =
notify_all(&mut timers, &keep_alive, now).expect("notification succeeds");
if expired_count == 0 {
// This could be a resolution switch, or a straggler notification.
// Either way, the hardware timer is still ticking, cancel it.
debug!("wake_timer_loop: no expired alarms, reset hrtimer state");
stop_hrtimer(&timer_proxy).await;
}
// There is a timer to reschedule, do that now.
hrtimer_status = match timers.peek_deadline() {
None => None,
Some(deadline) => Some(
schedule_hrtimer(now, &timer_proxy, deadline, snd.clone(), &timer_config)
.await,
),
}
}
Cmd::AlarmFidlError { expired_deadline, error } => {
trace::duration!(c"alarms", c"Cmd::AlarmFidlError");
// We do not have a wake lease, so the system may sleep before
// we get to schedule a new timer. We have no way to avoid it
// today.
warn!(
"wake_timer_loop: FIDL error: {:?}, deadline: {}, now: {}",
error,
format_timer(expired_deadline.into()),
format_timer(now.into()),
);
// Manufacture a fake lease to make the code below work.
// Maybe use Option instead?
let (_dummy_lease, peer) = zx::EventPair::create();
notify_all(&mut timers, &peer, now).expect("notification succeeds");
hrtimer_status = match timers.peek_deadline() {
None => None, // No remaining timers, nothing to schedule.
Some(deadline) => Some(
schedule_hrtimer(now, &timer_proxy, deadline, snd.clone(), &timer_config)
.await,
),
}
}
Cmd::AlarmDriverError { expired_deadline, error } => {
trace::duration!(c"alarms", c"Cmd::AlarmDriverError");
let (_dummy_lease, peer) = zx::EventPair::create();
notify_all(&mut timers, &peer, now).expect("notification succeeds");
match error {
fidl_fuchsia_hardware_hrtimer::DriverError::Canceled => {
// Nothing to do here, cancelation is handled in Stop code.
debug!(
"wake_timer_loop: CANCELED timer at deadline: {}",
format_timer(expired_deadline.into())
);
}
_ => {
error!(
"wake_timer_loop: DRIVER SAYS: {:?}, deadline: {}, now: {}",
error,
format_timer(expired_deadline.into()),
format_timer(now.into()),
);
// We do not have a wake lease, so the system may sleep before
// we get to schedule a new timer. We have no way to avoid it
// today.
hrtimer_status = match timers.peek_deadline() {
None => None,
Some(deadline) => Some(
schedule_hrtimer(
now,
&timer_proxy,
deadline,
snd.clone(),
&timer_config,
)
.await,
),
}
}
}
}
}
debug!("wake_timer_loop: now: {}", format_timer(now.into()));
debug!("wake_timer_loop: currently pending timer count: {}", timers.timer_count());
debug!("wake_timer_loop: currently pending timers: {}", timers);
debug!(
"wake_timer_loop: current hardware timer deadline: {:?}",
hrtimer_status.as_ref().map(|s| format!("{}", format_timer(s.deadline.into())))
);
debug!(
"wake_timer_loop: remaining duration until alarm: {:?}",
hrtimer_status
.as_ref()
.map(|s| format!("{}", format_duration((s.deadline - now).into())))
);
debug!("---");
}
debug!("wake_timer_loop: exiting. This is unlikely in prod code.");
}
/// Schedules a wake alarm.
///
/// Args:
/// - `now`: the time instant used as the value of current instant.
/// - `hrtimer`: the proxy for the hrtimer device driver.
/// - `deadline`: the time instant in the future at which the alarm should fire.
/// - `command_send`: the sender channel to use when the timer expires.
/// - `timer_config`: a configuration of the hardware timer showing supported resolutions and
/// max tick value.
/// - `needs_cancel`: if set, we must first cancel a hrtimer before scheduling a new one.
async fn schedule_hrtimer(
now: fasync::BootInstant,
hrtimer: &ffhh::DeviceProxy,
deadline: fasync::BootInstant,
mut command_send: mpsc::Sender<Cmd>,
timer_config: &TimerConfig,
) -> TimerState {
let timeout = deadline - now;
trace::duration!(c"alarms", c"schedule_hrtimer", "timeout" => timeout.into_nanos());
assert!(
now < deadline,
"now: {}, deadline: {}, diff: {}",
format_timer(now.into()),
format_timer(deadline.into()),
format_duration(timeout),
);
// When signaled, the hrtimer has been scheduled.
let hrtimer_scheduled = zx::Event::create();
debug!(
"schedule_hrtimer: now: {}, deadline: {}, timeout: {}",
format_timer(now.into()),
format_timer(deadline.into()),
format_duration(timeout),
);
let slack = timer_config.pick_setting(timeout);
let resolution_nanos = slack.resolution.into_nanos();
let ticks = slack.ticks();
trace::instant!(c"alarms", c"hrtimer:programmed",
trace::Scope::Process,
"resolution_ns" => resolution_nanos,
"ticks" => ticks
);
let start_and_wait_fut = hrtimer.start_and_wait(
MAIN_TIMER_ID.try_into().expect("infallible"),
&ffhh::Resolution::Duration(resolution_nanos),
ticks,
clone_handle(&hrtimer_scheduled),
);
let hrtimer_task = fasync::Task::local(async move {
debug!("hrtimer_task: waiting for hrtimer driver response");
trace::instant!(c"alarms", c"hrtimer:started", trace::Scope::Process);
let response = start_and_wait_fut.await;
trace::instant!(c"alarms", c"hrtimer:response", trace::Scope::Process);
match response {
Err(e) => {
trace::instant!(c"alarms", c"hrtimer:response:fidl_error", trace::Scope::Process);
debug!("hrtimer_task: hrtimer FIDL error: {:?}", e);
command_send
.start_send(Cmd::AlarmFidlError { expired_deadline: now, error: e })
.unwrap();
// BAD: no way to keep alive.
}
Ok(Err(e)) => {
let driver_error_str = format!("{:?}", e);
trace::instant!(c"alarms", c"hrtimer:response:driver_error", trace::Scope::Process, "error" => &driver_error_str[..]);
debug!("schedule_hrtimer: hrtimer driver error: {:?}", e);
command_send
.start_send(Cmd::AlarmDriverError { expired_deadline: now, error: e })
.unwrap();
// BAD: no way to keep alive.
}
Ok(Ok(keep_alive)) => {
trace::instant!(c"alarms", c"hrtimer:response:alarm", trace::Scope::Process);
debug!("hrtimer: got alarm response: {:?}", keep_alive);
// May trigger sooner than the deadline.
command_send
.start_send(Cmd::Alarm { expired_deadline: deadline, keep_alive })
.unwrap();
}
}
debug!("hrtimer_task: exiting task.");
trace::instant!(c"alarms", c"hrtimer:task_exit", trace::Scope::Process);
});
debug!("schedule_hrtimer: waiting for event to be signaled");
// We must wait here to ensure that the wake alarm has been scheduled.
wait_signaled(&hrtimer_scheduled).await;
debug!("schedule_hrtimer: hrtimer wake alarm has been scheduled.");
TimerState { task: hrtimer_task, deadline }
}
/// Notify all `timers` that `reference_instant` has been reached.
///
/// The notified `timers` are removed from the list of timers to notify.
///
/// Args:
/// - `timers`: the collection of currently available timers.
/// - `lease_prototype`: an EventPair used as a wake lease.
/// - `reference_instant`: the time instant used as a reference for alarm notification.
/// All timers
fn notify_all(
timers: &mut Timers,
lease_prototype: &zx::EventPair,
reference_instant: fasync::BootInstant,
) -> Result<usize> {
trace::duration!(c"alarms", c"notify_all");
let now = fasync::BootInstant::now();
let mut expired = 0;
while let Some(mut timer_node) = timers.maybe_expire_earliest(reference_instant) {
expired += 1;
// How much later than requested did the notification happen.
let deadline = *timer_node.get_deadline();
let alarm_id = timer_node.get_alarm_id().to_string();
let cid = timer_node.get_cid().clone();
let slack: zx::BootDuration = deadline - now;
debug!(
concat!(
"wake_alarm_loop: ALARM alarm_id: \"{}\"\n\tdeadline: {},\n\tcid: {:?},\n\t",
"reference_instant: {},\n\tnow: {},\n\tslack: {}",
),
alarm_id,
format_timer(deadline.into()),
cid,
format_timer(reference_instant.into()),
format_timer(now.into()),
format_duration(slack),
);
let lease = clone_handle(lease_prototype);
trace::instant!(c"alarms", c"notify", trace::Scope::Process, "alarm_id" => &alarm_id[..], "cid" => cid);
let _ = timer_node
.take_responder()
.map(|r| r.send(Ok(lease)))
.map_or_else(|| Ok(()), |res| res)
.map_err(|e| error!("could not signal responder: {:?}", e));
trace::instant!(c"alarms", c"notified", trace::Scope::Process);
}
trace::instant!(c"alarms", c"notify", trace::Scope::Process, "expired_count" => expired);
debug!("notify_all: expired count: {}", expired);
Ok(expired)
// A new timer is not scheduled yet here.
}
/// The hrtimer driver service directory. hrtimer driver APIs appear as randomly
/// named files in this directory. They are expected to come and go.
const HRTIMER_DIRECTORY: &str = "/dev/class/hrtimer";
/// Connects to the high resolution timer device driver.
pub fn connect_to_hrtimer_async() -> Result<ffhh::DeviceProxy> {
debug!("connect_to_hrtimer: trying directory: {}", HRTIMER_DIRECTORY);
let mut dir = std::fs::read_dir(HRTIMER_DIRECTORY)
.map_err(|e| anyhow!("Failed to open hrtimer directory: {e}"))?;
let entry = dir
.next()
.ok_or_else(|| anyhow!("No entry in the hrtimer directory"))?
.map_err(|e| anyhow!("Failed to find hrtimer device: {e}"))?;
let path = entry
.path()
.into_os_string()
.into_string()
.map_err(|e| anyhow!("Failed to parse the device entry path: {e:?}"))?;
let (hrtimer, server_end) = fidl::endpoints::create_proxy::<ffhh::DeviceMarker>();
fdio::service_connect(&path, server_end.into_channel())
.map_err(|e| anyhow!("Failed to open hrtimer device: {e}"))?;
Ok(hrtimer)
}
#[cfg(test)]
mod tests {
use super::*;
use futures::{select, Future};
use std::task::Poll;
use test_case::test_case;
use test_util::{assert_gt, assert_lt};
// A test fixture function that sets up the fake wake alarms machinery.
//
// The user supplies a factory function with the async code to run.
//
// Args:
// - `run_for_duration`: the amount of fake time that the test should run for.
// - `test_fn_factory`: a normal function, which takes a WakeProxy, and returns
// an async closure that the test should run.
fn run_in_fake_time_and_test_context<F, U, T>(
run_for_duration: zx::MonotonicDuration,
test_fn_factory: F,
) where
F: FnOnce(fta::WakeProxy) -> U, // F returns an async closure.
U: Future<Output = T> + 'static, // the async closure may return an arbitrary type T.
T: 'static,
{
let mut exec = fasync::TestExecutor::new_with_fake_time(); // We will be running this test case in fake time.
exec.set_fake_time(fasync::MonotonicInstant::from_nanos(0));
let (mut fake_commands_in, fake_commands_out) = mpsc::channel::<FakeCmd>(0);
let (hrtimer_proxy, hrtimer_task) = fake_hrtimer_connection(fake_commands_out);
let alarms = Rc::new(Loop::new(hrtimer_proxy));
let (_handle, peer) = zx::EventPair::create();
let done_set_properties = zx::Event::create();
let begin_test = clone_handle(&done_set_properties);
let begin_serve = clone_handle(&done_set_properties);
let mut fake_commands_in_clone = fake_commands_in.clone();
let config_task = async move {
fake_commands_in
.start_send(FakeCmd::SetProperties {
resolutions: vec![zx::Duration::from_nanos(43)],
max_ticks: 100,
keep_alive: peer,
done: clone_handle(&done_set_properties),
})
.unwrap();
};
let (wake_proxy, wake_stream) =
fidl::endpoints::create_proxy_and_stream::<fta::WakeMarker>();
let serving_task = async move {
fasync::OnSignals::new(begin_serve, zx::Signals::EVENT_SIGNALED).await.unwrap();
serve(alarms, wake_stream).await;
};
let seq_fn_fut = test_fn_factory(wake_proxy);
let test_task = async move {
// Wait until configuration has completed.
fasync::OnSignals::new(begin_test, zx::Signals::EVENT_SIGNALED).await.unwrap();
let result = seq_fn_fut.await;
// Request orderly shutdown.
fake_commands_in_clone.start_send(FakeCmd::Exit).unwrap();
result
};
let mut main_fut = fasync::Task::local(async {
let _r = futures::join!(hrtimer_task, config_task, serving_task, test_task);
});
run_in_fake_time(&mut exec, &mut main_fut, run_for_duration);
}
// A loop that moves fake time forward in small increments, waking timers along the way.
//
// In almost all tests, we set up the environment for the test to run in, under a
// test executor running in fake time. We then submit the resulting future
// to this function for execution.
//
// This has been taken from //src/ui/lib/input_pipeline/src/autorepeater.rs
// with some adaptation.
fn run_in_fake_time<F>(
executor: &mut fasync::TestExecutor,
main_fut: &mut F,
total_duration: zx::MonotonicDuration,
) where
F: Future<Output = ()> + Unpin,
{
const INCREMENT: zx::MonotonicDuration = zx::MonotonicDuration::from_nanos(13);
let mut current = zx::MonotonicDuration::ZERO;
let mut poll_status = Poll::Pending;
// We run until either the future completes or the timeout is reached,
// whichever comes first.
// Running the future after it returns Poll::Ready is not allowed, so
// we must exit the loop then.
while current < (total_duration + INCREMENT) && poll_status == Poll::Pending {
let next = executor.now() + INCREMENT;
executor.set_fake_time(next);
executor.wake_expired_timers();
poll_status = executor.run_until_stalled(main_fut);
current = current + INCREMENT;
}
let now = executor.now();
assert_eq!(
poll_status,
Poll::Ready(()),
"the main future did not complete at {}, perhaps increase total_duration?",
format_timer(now.into())
);
}
// Human readable duration formatting is useful.
#[test_case(0, "0ns" ; "zero")]
#[test_case(1000, "1μs" ; "1us positive")]
#[test_case(-1000, "-1μs"; "1us negative")]
#[test_case(YEAR_IN_NANOS, "1year(s)"; "A year")]
#[test_case(YEAR_IN_NANOS + 8 * DAY_IN_NANOS + 1,
"1year(s)_1week(s)_1day(s)_1ns" ; "A weird duration")]
#[test_case(2 * HOUR_IN_NANOS + 8 * MIN_IN_NANOS + 32 * SEC_IN_NANOS + 1,
"2h_8min_32s_1ns" ; "A reasonable long duration")]
fn test_format_common(value: i64, repr: &str) {
assert_eq!(format_common(value), repr.to_string());
}
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(1), 1),
TimerDuration::new(zx::BootDuration::from_nanos(1), 1)
)]
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(1), 10),
TimerDuration::new(zx::BootDuration::from_nanos(10), 1)
)]
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(10), 1),
TimerDuration::new(zx::BootDuration::from_nanos(1), 10)
)]
#[test_case(
TimerDuration::new(zx::BootDuration::from_micros(1), 1),
TimerDuration::new(zx::BootDuration::from_nanos(1), 1000)
)]
fn test_slack_eq(one: TimerDuration, other: TimerDuration) {
assert_eq!(one, other);
}
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(1), 1),
TimerDuration::new(zx::BootDuration::from_nanos(1), 2)
)]
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(1), 1),
TimerDuration::new(zx::BootDuration::from_nanos(10), 1)
)]
fn test_slack_lt(one: TimerDuration, other: TimerDuration) {
assert_lt!(one, other);
}
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(1), 2),
TimerDuration::new(zx::BootDuration::from_nanos(1), 1)
)]
#[test_case(
TimerDuration::new(zx::BootDuration::from_nanos(10), 1),
TimerDuration::new(zx::BootDuration::from_nanos(1), 1)
)]
fn test_slack_gt(one: TimerDuration, other: TimerDuration) {
assert_gt!(one, other);
}
#[test_case(
vec![zx::BootDuration::from_nanos(1)],
100,
zx::BootDuration::from_nanos(50),
TimerDuration::new(zx::BootDuration::from_nanos(1), 50) ; "Exact at 50x1ns"
)]
#[test_case(
vec![zx::BootDuration::from_nanos(2)],
100,
zx::BootDuration::from_nanos(50),
TimerDuration::new(zx::BootDuration::from_nanos(2), 25) ; "Exact at 25x2ns"
)]
#[test_case(
vec![zx::BootDuration::from_nanos(3)],
100,
zx::BootDuration::from_nanos(50),
// The closest duration is 51ns.
TimerDuration::new(zx::BootDuration::from_nanos(3), 17) ; "Inexact at 51ns"
)]
#[test_case(
vec![
zx::BootDuration::from_nanos(3),
zx::BootDuration::from_nanos(4)
],
100,
zx::BootDuration::from_nanos(50),
TimerDuration::new(zx::BootDuration::from_nanos(3), 17) ; "3ns is a better resolution"
)]
#[test_case(
vec![
zx::BootDuration::from_nanos(1000),
],
100,
zx::BootDuration::from_nanos(50),
TimerDuration::new(zx::BootDuration::from_nanos(1000), 1) ;
"950ns negative slack is the best we can do"
)]
#[test_case(
vec![
zx::BootDuration::from_nanos(1),
],
10,
zx::BootDuration::from_nanos(50),
TimerDuration::new(zx::BootDuration::from_nanos(1), 10) ;
"10ns positive slack is the best we can do"
)]
#[test_case(
vec![
zx::BootDuration::from_millis(1),
zx::BootDuration::from_micros(100),
zx::BootDuration::from_micros(10),
zx::BootDuration::from_micros(1),
],
20, // Make only one of the resolutions above match.
zx::BootDuration::from_micros(150),
TimerDuration::new(zx::BootDuration::from_micros(10), 15) ;
"Realistic case with resolutions from driver, should be 15us"
)]
#[test_case(
vec![
zx::BootDuration::from_millis(1),
zx::BootDuration::from_micros(100),
zx::BootDuration::from_micros(10),
zx::BootDuration::from_micros(1),
],
2000, // Make only one of the resolutions above match.
zx::BootDuration::from_micros(6000),
TimerDuration::new(zx::BootDuration::from_millis(1), 6) ;
"Coarser exact unit wins"
)]
fn test_pick_setting(
resolutions: Vec<zx::BootDuration>,
max_ticks: u64,
duration: zx::BootDuration,
expected: TimerDuration,
) {
let config = TimerConfig::new_from_data(&resolutions[..], max_ticks);
let actual = config.pick_setting(duration);
// .eq() does not work here, since we do not just require that the values
// be equal, but also that the same resolution is used in both.
assert_slack_eq(expected, actual);
}
// TimerDuration assertion with human-friendly output in case of an error.
fn assert_slack_eq(expected: TimerDuration, actual: TimerDuration) {
let slack = expected.duration() - actual.duration();
assert_eq!(
actual.resolution(),
expected.resolution(),
"\n\texpected: {} ({})\n\tactual : {} ({})\n\tslack: expected-actual={}",
expected,
format_duration(expected.duration()),
actual,
format_duration(actual.duration()),
format_duration(slack)
);
assert_eq!(
actual.ticks(),
expected.ticks(),
"\n\texpected: {} ({})\n\tactual : {} ({})\n\tslack: expected-actual={}",
expected,
format_duration(expected.duration()),
actual,
format_duration(actual.duration()),
format_duration(slack)
);
}
#[derive(Debug)]
enum FakeCmd {
SetProperties {
resolutions: Vec<zx::BootDuration>,
max_ticks: i64,
keep_alive: zx::EventPair,
done: zx::Event,
},
Exit,
}
use std::cell::RefCell;
use std::rc::Rc;
// A fake that emulates some aspects of the hrtimer driver.
//
// Specifically it can be configured with different resolutions, and will
// bomb out if any waiting methods are called twice in a succession, without
// canceling the timer in between.
fn fake_hrtimer_connection(
rcv: mpsc::Receiver<FakeCmd>,
) -> (ffhh::DeviceProxy, fasync::Task<()>) {
debug!("fake_hrtimer_connection: entry.");
let (hrtimer, mut stream) =
fidl::endpoints::create_proxy_and_stream::<ffhh::DeviceMarker>();
let task = fasync::Task::local(async move {
let mut rcv = rcv.fuse();
let timer_properties = Rc::new(RefCell::new(None));
let wake_lease = Rc::new(RefCell::new(None));
// Set to true when the hardware timer is supposed to be running.
// Hardware timer may not be reprogrammed without canceling it first,
// make sure the tests fail the same way as production would.
let timer_running = Rc::new(RefCell::new(false));
loop {
let timer_properties = timer_properties.clone();
let wake_lease = wake_lease.clone();
select! {
cmd = rcv.next() => {
debug!("fake_hrtimer_connection: cmd: {:?}", cmd);
match cmd {
Some(FakeCmd::Exit) => { break; }
Some(FakeCmd::SetProperties{ resolutions, max_ticks, keep_alive, done}) => {
let mut timer_props = vec![];
for _ in 0..10 {
timer_props.push(ffhh::TimerProperties {
supported_resolutions: Some(
resolutions.iter()
.map(|d| ffhh::Resolution::Duration(d.into_nanos())).collect()),
max_ticks: Some(max_ticks.try_into().unwrap()),
// start_and_wait method works.
supports_wait: Some(true),
..Default::default()
},
);
}
*timer_properties.borrow_mut() = Some(timer_props);
*wake_lease.borrow_mut() = Some(keep_alive);
debug!("set timer properties to: {:?}", timer_properties);
signal(&done);
}
e => {
panic!("unrecognized command: {:?}", e);
}
}
// Set some responses if we have them.
},
event = stream.next() => {
debug!("fake_hrtimer_connection: event: {:?}", event);
if let Some(Ok(event)) = event {
match event {
ffhh::DeviceRequest::Start { responder, .. } => {
assert!(!*timer_running.borrow(), "invariant broken: timer may not be running here");
*timer_running.borrow_mut() = true;
responder.send(Ok(())).expect("");
}
ffhh::DeviceRequest::Stop { responder, .. } => {
*timer_running.borrow_mut() = false;
responder.send(Ok(())).expect("");
}
ffhh::DeviceRequest::GetTicksLeft { responder, .. } => {
responder.send(Ok(1)).expect("");
}
ffhh::DeviceRequest::SetEvent { responder, .. } => {
responder.send(Ok(())).expect("");
}
ffhh::DeviceRequest::StartAndWait { id, resolution, ticks, setup_event, responder, .. } => {
assert!(!*timer_running.borrow(), "invariant broken: timer may not be running here");
*timer_running.borrow_mut() = true;
debug!("fake_hrtimer_connection: starting timer: \"{}\", resolution: {:?}, ticks: {}", id, resolution, ticks);
let ticks: i64 = ticks.try_into().unwrap();
let sleep_duration = zx::BootDuration::from_nanos(ticks * match resolution {
ffhh::Resolution::Duration(e) => e,
_ => {
error!("resolution has an unexpected value");
1
}
});
let timer_running_clone = timer_running.clone();
fasync::Task::local(async move {
// Respond after the requested sleep time. In tests this will
// be sleeping in fake time.
fasync::Timer::new(sleep_duration).await;
*timer_running_clone.borrow_mut() = false;
responder.send(Ok(clone_handle(wake_lease.borrow().as_ref().unwrap()))).unwrap();
// Signaling the setup event allows the client to proceed
// with post-scheduling work.
signal(&setup_event);
}).detach();
}
ffhh::DeviceRequest::StartAndWait2 { responder, .. } => {
assert!(!*timer_running.borrow(), "invariant broken: timer may not be running here");
*timer_running.borrow_mut() = true;
responder.send(Err(ffhh::DriverError::InternalError)).expect("");
}
ffhh::DeviceRequest::GetProperties { responder, .. } => {
if (*timer_properties).borrow().is_none() {
error!("timer_properties is empty, this is not what you want!");
}
responder
.send(ffhh::Properties {
timers_properties: (*timer_properties).borrow().clone(),
..Default::default()
})
.expect("");
}
ffhh::DeviceRequest::_UnknownMethod { .. } => todo!(),
}
}
},
}
}
debug!("fake_hrtimer_connection: exiting");
});
(hrtimer, task)
}
#[fuchsia::test]
fn test_basic_timed_wait() {
let deadline = zx::BootInstant::from_nanos(100);
let test_duration = zx::MonotonicDuration::from_nanos(110);
run_in_fake_time_and_test_context(test_duration, |wake_proxy| async move {
let keep_alive = zx::Event::create();
wake_proxy
.set_and_wait(deadline.into(), keep_alive, "Hello".into())
.await
.unwrap()
.unwrap();
assert_gt!(fasync::BootInstant::now().into_nanos(), deadline.into_nanos());
});
}
#[test_case(
zx::BootInstant::from_nanos(100),
zx::BootInstant::from_nanos(200),
zx::MonotonicDuration::from_nanos(250) ;
"Two timers: one at 100 and another at 200 ns"
)]
#[test_case(
zx::BootInstant::from_nanos(100),
zx::BootInstant::from_nanos(100),
// A tight end-of-test will detect a stuck timer.
zx::MonotonicDuration::from_nanos(104) ;
"Two timers at the same deadline."
)]
#[test_case(
zx::BootInstant::from_nanos(-1),
zx::BootInstant::from_nanos(-1),
zx::MonotonicDuration::from_nanos(30) ;
"Two timers expire immediately."
)]
#[fuchsia::test]
fn test_timed_wait_two_timers_params(
// One timer scheduled at this instant (fake time starts from zero).
first_deadline: zx::BootInstant,
// Another timer scheduled at this instant.
second_deadline: zx::BootInstant,
// Run the fake time for this long.
duration: zx::MonotonicDuration,
) {
run_in_fake_time_and_test_context(duration, |wake_proxy| async move {
let lease1 = zx::Event::create();
let fut1 = wake_proxy.set_and_wait(first_deadline.into(), lease1, "Hello1".into());
let lease2 = zx::Event::create();
let fut2 = wake_proxy.set_and_wait(second_deadline.into(), lease2, "Hello2".into());
let (result1, result2) = futures::join!(fut1, fut2);
result1.unwrap().unwrap();
result2.unwrap().unwrap();
assert_gt!(fasync::BootInstant::now().into_nanos(), first_deadline.into_nanos());
assert_gt!(fasync::BootInstant::now().into_nanos(), second_deadline.into_nanos());
});
}
#[test_case(
zx::BootInstant::from_nanos(100),
zx::BootInstant::from_nanos(200),
zx::MonotonicDuration::from_nanos(250) ;
"Reschedule with push-out"
)]
#[test_case(
zx::BootInstant::from_nanos(100),
zx::BootInstant::from_nanos(100),
// A tight end-of-test will detect a stuck timer.
zx::MonotonicDuration::from_nanos(104) ;
"Reschedule with same deadline"
)]
#[test_case(
zx::BootInstant::from_nanos(200),
zx::BootInstant::from_nanos(100),
// A tight end-of-test will detect a stuck timer.
zx::MonotonicDuration::from_nanos(240) ;
"Pull in"
)]
#[fuchsia::test]
fn test_timed_wait_same_timer(
// One timer scheduled at this instant (fake time starts from zero).
first_deadline: zx::BootInstant,
// Another timer scheduled at this instant.
second_deadline: zx::BootInstant,
// Run the fake time for this long.
duration: zx::MonotonicDuration,
) {
run_in_fake_time_and_test_context(duration, |wake_proxy| async move {
let lease1 = zx::Event::create();
wake_proxy
.set_and_wait(first_deadline.into(), lease1, "Hello".into())
.await
.unwrap()
.unwrap();
let lease2 = zx::Event::create();
wake_proxy
.set_and_wait(second_deadline.into(), lease2, "Hello2".into())
.await
.unwrap()
.unwrap();
});
}
// Test what happens when we schedule a timer, then change our mind and
// reschedule the same timer, but with a sooner deadline.
#[fuchsia::test]
fn test_reschedule_pull_in() {
const LONG_DEADLINE_NANOS: i64 = 200;
const SHORT_DEADLINE_NANOS: i64 = 100;
const ALARM_ID: &str = "Hello";
run_in_fake_time_and_test_context(
zx::MonotonicDuration::from_nanos(LONG_DEADLINE_NANOS + 50),
|wake_proxy| async move {
let wake_proxy = Rc::new(RefCell::new(wake_proxy));
let keep_alive = zx::Event::create();
let (mut sync_send, mut sync_recv) = mpsc::channel(1);
// Schedule timer with a long timeout first. Let it wait, then
// try to reschedule the same timer
let wake_proxy_clone = wake_proxy.clone();
let long_deadline_fut = async move {
let wake_fut = wake_proxy_clone.borrow().set_and_wait(
zx::BootInstant::from_nanos(LONG_DEADLINE_NANOS).into(),
keep_alive,
ALARM_ID.into(),
);
// Allow the rest of the test to proceed from here.
sync_send.send(()).await.unwrap();
// Yield-wait for the first scheduled timer.
wake_fut.await.unwrap().unwrap();
};
// Schedule the same timer as above, but with a shorter deadline.
// The result should be that when the short deadline expires, it's
// sooner than the long deadline.
let short_deadline_fut = async move {
// Wait until we know that the long deadline timer has been scheduled.
let _ = sync_recv.next().await;
let keep_alive2 = zx::Event::create();
let _ = wake_proxy
.borrow()
.set_and_wait(
zx::BootInstant::from_nanos(SHORT_DEADLINE_NANOS).into(),
keep_alive2,
ALARM_ID.into(),
)
.await
.unwrap()
.unwrap();
// We get here presumably after the "short" deadline expires, verify that:
assert_gt!(fasync::BootInstant::now().into_nanos(), SHORT_DEADLINE_NANOS);
assert_lt!(fasync::BootInstant::now().into_nanos(), LONG_DEADLINE_NANOS);
};
futures::join!(short_deadline_fut, long_deadline_fut);
},
);
}
// Test what happens when we schedule a timer, then change our mind and
// reschedule the same timer, but with a sooner deadline.
#[fuchsia::test]
fn test_reschedule_push_out() {
const LONG_DEADLINE_NANOS: i64 = 200;
const SHORT_DEADLINE_NANOS: i64 = 100;
const ALARM_ID: &str = "Hello";
run_in_fake_time_and_test_context(
zx::MonotonicDuration::from_nanos(LONG_DEADLINE_NANOS + 50),
|wake_proxy| async move {
let wake_proxy = Rc::new(RefCell::new(wake_proxy));
let keep_alive = zx::Event::create();
let (mut sync_send, mut sync_recv) = mpsc::channel(1);
// Schedule timer with a long timeout first. Let it wait, then
// try to reschedule the same timer
let wake_proxy_clone = wake_proxy.clone();
let short_deadline_fut = async move {
let wake_fut = wake_proxy_clone.borrow().set_and_wait(
zx::BootInstant::from_nanos(SHORT_DEADLINE_NANOS).into(),
keep_alive,
ALARM_ID.into(),
);
// Allow the rest of the test to proceed from here.
sync_send.send(()).await.unwrap();
// Yield-wait for the first scheduled timer.
let result = wake_fut.await.unwrap();
assert_eq!(
result,
Err(fta::WakeError::Dropped),
"expected wake alarm to be dropped"
);
assert_gt!(fasync::BootInstant::now().into_nanos(), SHORT_DEADLINE_NANOS);
};
// Schedule the same timer as above, but with a shorter deadline.
// The result should be that when the short deadline expires, it's
// sooner than the long deadline.
let long_deadline_fut = async move {
// Wait until we know that the other deadline timer has been scheduled.
let _ = sync_recv.next().await;
let keep_alive2 = zx::Event::create();
let _ = wake_proxy
.borrow()
.set_and_wait(
zx::BootInstant::from_nanos(LONG_DEADLINE_NANOS).into(),
keep_alive2,
ALARM_ID.into(),
)
.await
.unwrap()
.unwrap();
// Both the short and the long deadline expire.
assert_gt!(fasync::BootInstant::now().into_nanos(), LONG_DEADLINE_NANOS);
};
futures::join!(long_deadline_fut, short_deadline_fut);
},
);
}
}