packet_formats/udp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Parsing and serialization of UDP packets.
//!
//! The UDP packet format is defined in [RFC 768].
//!
//! [RFC 768]: https://datatracker.ietf.org/doc/html/rfc768
use core::fmt::Debug;
#[cfg(test)]
use core::fmt::{self, Formatter};
use core::num::NonZeroU16;
use core::ops::Range;
use net_types::ip::{Ip, IpAddress, IpVersionMarker};
use packet::{
BufferView, BufferViewMut, ByteSliceInnerPacketBuilder, EmptyBuf, FragmentedBytesMut, FromRaw,
InnerPacketBuilder, MaybeParsed, PacketBuilder, PacketConstraints, ParsablePacket,
ParseMetadata, SerializeTarget, Serializer,
};
use zerocopy::byteorder::network_endian::U16;
use zerocopy::{
FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, SplitByteSliceMut, Unaligned,
};
use crate::error::{ParseError, ParseResult};
use crate::ip::IpProto;
use crate::{compute_transport_checksum_parts, compute_transport_checksum_serialize};
pub(crate) const HEADER_BYTES: usize = 8;
const CHECKSUM_OFFSET: usize = 6;
const CHECKSUM_RANGE: Range<usize> = CHECKSUM_OFFSET..CHECKSUM_OFFSET + 2;
#[derive(Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct Header {
src_port: U16,
dst_port: U16,
length: U16,
checksum: [u8; 2],
}
/// A UDP packet.
///
/// A `UdpPacket` shares its underlying memory with the byte slice it was parsed
/// from or serialized to, meaning that no copying or extra allocation is
/// necessary.
///
/// A `UdpPacket` - whether parsed using `parse` or created using `serialize` -
/// maintains the invariant that the checksum is always valid.
pub struct UdpPacket<B> {
header: Ref<B, Header>,
body: B,
}
/// Arguments required to parse a UDP packet.
pub struct UdpParseArgs<A: IpAddress> {
src_ip: A,
dst_ip: A,
}
impl<A: IpAddress> UdpParseArgs<A> {
/// Construct a new `UdpParseArgs`.
pub fn new(src_ip: A, dst_ip: A) -> UdpParseArgs<A> {
UdpParseArgs { src_ip, dst_ip }
}
}
impl<B: SplitByteSlice, A: IpAddress> FromRaw<UdpPacketRaw<B>, UdpParseArgs<A>> for UdpPacket<B> {
type Error = ParseError;
fn try_from_raw_with(raw: UdpPacketRaw<B>, args: UdpParseArgs<A>) -> Result<Self, Self::Error> {
// See for details: https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure
let header = raw
.header
.ok_or_else(|_| debug_err!(ParseError::Format, "too few bytes for header"))?;
let body = raw.body.ok_or_else(|_| debug_err!(ParseError::Format, "incomplete body"))?;
let checksum = header.checksum;
// A 0 checksum indicates that the checksum wasn't computed. In IPv4,
// this means that it shouldn't be validated. In IPv6, the checksum is
// mandatory, so this is an error.
if checksum != [0, 0] {
let parts = [Ref::bytes(&header), body.deref().as_ref()];
let checksum = compute_transport_checksum_parts(
args.src_ip,
args.dst_ip,
IpProto::Udp.into(),
parts.iter(),
)
.ok_or_else(debug_err_fn!(ParseError::Format, "packet too large"))?;
// Even the checksum is transmitted as 0xFFFF, the checksum of the whole
// UDP packet should still be 0. This is because in 1's complement, it is
// not possible to produce +0(0) from adding non-zero 16-bit words.
// Since our 0xFFFF ensures there is at least one non-zero 16-bit word,
// the addition can only produce -0(0xFFFF) and after negation, it is
// still 0. A test `test_udp_checksum_0xffff` is included to make sure
// this is true.
if checksum != [0, 0] {
return debug_err!(
Err(ParseError::Checksum),
"invalid checksum {:X?}",
header.checksum,
);
}
} else if A::Version::VERSION.is_v6() {
return debug_err!(Err(ParseError::Format), "missing checksum");
}
if header.dst_port.get() == 0 {
return debug_err!(Err(ParseError::Format), "zero destination port");
}
Ok(UdpPacket { header, body })
}
}
impl<B: SplitByteSlice, A: IpAddress> ParsablePacket<B, UdpParseArgs<A>> for UdpPacket<B> {
type Error = ParseError;
fn parse_metadata(&self) -> ParseMetadata {
ParseMetadata::from_packet(Ref::bytes(&self.header).len(), self.body.len(), 0)
}
fn parse<BV: BufferView<B>>(buffer: BV, args: UdpParseArgs<A>) -> ParseResult<Self> {
UdpPacketRaw::<B>::parse(buffer, IpVersionMarker::<A::Version>::default())
.and_then(|u| UdpPacket::try_from_raw_with(u, args))
}
}
impl<B: SplitByteSlice> UdpPacket<B> {
/// The packet body.
pub fn body(&self) -> &[u8] {
self.body.deref()
}
/// Consumes this packet and returns the body.
///
/// Note that the returned `B` has the same lifetime as the buffer from
/// which this packet was parsed. By contrast, the [`body`] method returns a
/// slice with the same lifetime as the receiver.
///
/// [`body`]: UdpPacket::body
pub fn into_body(self) -> B {
self.body
}
/// The source UDP port, if any.
///
/// The source port is optional, and may have been omitted by the sender.
pub fn src_port(&self) -> Option<NonZeroU16> {
NonZeroU16::new(self.header.src_port.get())
}
/// The destination UDP port.
pub fn dst_port(&self) -> NonZeroU16 {
// Infallible because it was validated in parse.
NonZeroU16::new(self.header.dst_port.get()).unwrap()
}
/// Did this packet have a checksum?
///
/// On IPv4, the sender may optionally omit the checksum. If this function
/// returns false, the sender omitted the checksum, and `parse` will not
/// have validated it.
///
/// On IPv6, it is guaranteed that `checksummed` will return true because
/// IPv6 requires a checksum, and so any UDP packet missing one will fail
/// validation in `parse`.
pub fn checksummed(&self) -> bool {
self.header.checksum != U16::ZERO
}
/// Constructs a builder with the same contents as this packet.
pub fn builder<A: IpAddress>(&self, src_ip: A, dst_ip: A) -> UdpPacketBuilder<A> {
UdpPacketBuilder {
src_ip,
dst_ip,
src_port: self.src_port(),
dst_port: Some(self.dst_port()),
}
}
/// Consumes this packet and constructs a [`Serializer`] with the same
/// contents.
///
/// The returned `Serializer` has the [`Buffer`] type [`EmptyBuf`], which
/// means it is not able to reuse the buffer backing this `UdpPacket` when
/// serializing, and will always need to allocate a new buffer.
///
/// By consuming `self` instead of taking it by-reference, `into_serializer`
/// is able to return a `Serializer` whose lifetime is restricted by the
/// lifetime of the buffer from which this `UdpPacket` was parsed rather
/// than by the lifetime on `&self`, which may be more restricted.
///
/// [`Buffer`]: packet::Serializer::Buffer
pub fn into_serializer<'a, A: IpAddress>(
self,
src_ip: A,
dst_ip: A,
) -> impl Serializer<Buffer = EmptyBuf> + Debug + 'a
where
B: 'a,
{
let builder = self.builder(src_ip, dst_ip);
ByteSliceInnerPacketBuilder(self.body).into_serializer().encapsulate(builder)
}
}
impl<B: SplitByteSliceMut> UdpPacket<B> {
/// Set the source port of the UDP packet.
pub fn set_src_port(&mut self, new: u16) {
let old = self.header.src_port;
let new = U16::from(new);
self.header.src_port = new;
if self.checksummed() {
self.header.checksum =
internet_checksum::update(self.header.checksum, old.as_bytes(), new.as_bytes());
}
}
/// Set the destination port of the UDP packet.
pub fn set_dst_port(&mut self, new: NonZeroU16) {
let old = self.header.dst_port;
let new = U16::from(new.get());
self.header.dst_port = new;
if self.checksummed() {
self.header.checksum =
internet_checksum::update(self.header.checksum, old.as_bytes(), new.as_bytes());
}
}
/// Update the checksum to reflect an updated address in the pseudo header.
pub fn update_checksum_pseudo_header_address<A: IpAddress>(&mut self, old: A, new: A) {
if self.checksummed() {
self.header.checksum =
internet_checksum::update(self.header.checksum, old.bytes(), new.bytes());
}
}
}
/// The minimal information required from a UDP packet header.
///
/// A `UdpPacketHeader` may be the result of a partially parsed UDP packet in
/// [`UdpPacketRaw`].
#[derive(Debug, Default, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned, PartialEq)]
#[repr(C)]
struct UdpFlowHeader {
src_port: U16,
dst_port: U16,
}
/// A partially parsed UDP packet header.
#[derive(Debug)]
struct PartialHeader<B: SplitByteSlice> {
flow: Ref<B, UdpFlowHeader>,
rest: B,
}
/// A partially-parsed and not yet validated UDP packet.
///
/// A `UdpPacketRaw` shares its underlying memory with the byte slice it was
/// parsed from or serialized to, meaning that no copying or extra allocation is
/// necessary.
///
/// Parsing a `UdpPacketRaw` from raw data will succeed as long as at least 4
/// bytes are available, which will be extracted as a [`UdpFlowHeader`] that
/// contains the UDP source and destination ports. A `UdpPacketRaw` is, then,
/// guaranteed to always have at least that minimal information available.
///
/// [`UdpPacket`] provides a [`FromRaw`] implementation that can be used to
/// validate a `UdpPacketRaw`.
pub struct UdpPacketRaw<B: SplitByteSlice> {
header: MaybeParsed<Ref<B, Header>, PartialHeader<B>>,
body: MaybeParsed<B, B>,
}
impl<B, I> ParsablePacket<B, IpVersionMarker<I>> for UdpPacketRaw<B>
where
B: SplitByteSlice,
I: Ip,
{
type Error = ParseError;
fn parse_metadata(&self) -> ParseMetadata {
let header_len = match &self.header {
MaybeParsed::Complete(h) => Ref::bytes(&h).len(),
MaybeParsed::Incomplete(h) => Ref::bytes(&h.flow).len() + h.rest.len(),
};
ParseMetadata::from_packet(header_len, self.body.len(), 0)
}
fn parse<BV: BufferView<B>>(mut buffer: BV, _args: IpVersionMarker<I>) -> ParseResult<Self> {
// See for details: https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure
let header = if let Some(header) = buffer.take_obj_front::<Header>() {
header
} else {
let flow = buffer
.take_obj_front::<UdpFlowHeader>()
.ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for flow header"))?;
// if we can't parse an entire header, just return early since
// there's no way to look into how many body bytes to consume:
return Ok(UdpPacketRaw {
header: MaybeParsed::Incomplete(PartialHeader {
flow,
rest: buffer.take_rest_front(),
}),
body: MaybeParsed::Incomplete(buffer.into_rest()),
});
};
let buffer_len = buffer.len();
fn get_udp_body_length<I: Ip>(header: &Header, remaining_buff_len: usize) -> Option<usize> {
// IPv6 supports jumbograms, so a UDP packet may be greater than
// 2^16 bytes in size. In this case, the size doesn't fit in the
// 16-bit length field in the header, and so the length field is set
// to zero to indicate this.
//
// Per RFC 2675 Section 4, we only do that if the UDP header plus
// data is actually more than 65535.
if I::VERSION.is_v6()
&& header.length.get() == 0
&& remaining_buff_len.saturating_add(HEADER_BYTES) >= (core::u16::MAX as usize)
{
return Some(remaining_buff_len);
}
usize::from(header.length.get()).checked_sub(HEADER_BYTES)
}
let body = if let Some(body_len) = get_udp_body_length::<I>(&header, buffer_len) {
if body_len <= buffer_len {
// Discard any padding left by the previous layer. The unwrap is safe
// and the subtraction is always valid because body_len is guaranteed
// to not exceed buffer.len()
let _: B = buffer.take_back(buffer_len - body_len).unwrap();
MaybeParsed::Complete(buffer.into_rest())
} else {
// buffer does not contain all the body bytes
MaybeParsed::Incomplete(buffer.into_rest())
}
} else {
// body_len can't be calculated because it's less than the header
// length, consider all the rest of the buffer padding and return
// an incomplete empty body.
let _: B = buffer.take_rest_back();
MaybeParsed::Incomplete(buffer.into_rest())
};
Ok(UdpPacketRaw { header: MaybeParsed::Complete(header), body })
}
}
impl<B: SplitByteSlice> UdpPacketRaw<B> {
/// The source UDP port, if any.
///
/// The source port is optional, and may have been omitted by the sender.
pub fn src_port(&self) -> Option<NonZeroU16> {
NonZeroU16::new(
self.header
.as_ref()
.map(|header| header.src_port)
.map_incomplete(|partial_header| partial_header.flow.src_port)
.into_inner()
.get(),
)
}
/// The destination UDP port.
///
/// UDP packets must not have a destination port of 0; thus, if this
/// function returns `None`, then the packet is malformed.
pub fn dst_port(&self) -> Option<NonZeroU16> {
NonZeroU16::new(
self.header
.as_ref()
.map(|header| header.dst_port)
.map_incomplete(|partial_header| partial_header.flow.dst_port)
.into_inner()
.get(),
)
}
/// Constructs a builder with the same contents as this packet.
///
/// Note that, since `UdpPacketRaw` does not validate its header fields,
/// it's possible for `builder` to produce a `UdpPacketBuilder` which
/// describes an invalid UDP packet. In particular, it's possible that its
/// destination port will be zero, which is illegal.
pub fn builder<A: IpAddress>(&self, src_ip: A, dst_ip: A) -> UdpPacketBuilder<A> {
UdpPacketBuilder { src_ip, dst_ip, src_port: self.src_port(), dst_port: self.dst_port() }
}
/// Consumes this packet and constructs a [`Serializer`] with the same
/// contents.
///
/// Returns `None` if the body was not fully parsed.
///
/// This method has the same validity caveats as [`builder`].
///
/// The returned `Serializer` has the [`Buffer`] type [`EmptyBuf`], which
/// means it is not able to reuse the buffer backing this `UdpPacket` when
/// serializing, and will always need to allocate a new buffer.
///
/// By consuming `self` instead of taking it by-reference, `into_serializer`
/// is able to return a `Serializer` whose lifetime is restricted by the
/// lifetime of the buffer from which this `UdpPacket` was parsed rather
/// than by the lifetime on `&self`, which may be more restricted.
///
/// [`builder`]: UdpPacketRaw::builder
/// [`Buffer`]: packet::Serializer::Buffer
pub fn into_serializer<'a, A: IpAddress>(
self,
src_ip: A,
dst_ip: A,
) -> Option<impl Serializer<Buffer = EmptyBuf> + 'a>
where
B: 'a,
{
let builder = self.builder(src_ip, dst_ip);
self.body
.complete()
.ok()
.map(|body| ByteSliceInnerPacketBuilder(body).into_serializer().encapsulate(builder))
}
}
// NOTE(joshlf): In order to ensure that the checksum is always valid, we don't
// expose any setters for the fields of the UDP packet; the only way to set them
// is via UdpPacketBuilder::serialize. This, combined with checksum validation
// performed in UdpPacket::parse, provides the invariant that a UdpPacket always
// has a valid checksum.
/// A builder for UDP packets.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct UdpPacketBuilder<A: IpAddress> {
src_ip: A,
dst_ip: A,
src_port: Option<NonZeroU16>,
dst_port: Option<NonZeroU16>,
}
impl<A: IpAddress> UdpPacketBuilder<A> {
/// Constructs a new `UdpPacketBuilder`.
pub fn new(
src_ip: A,
dst_ip: A,
src_port: Option<NonZeroU16>,
dst_port: NonZeroU16,
) -> UdpPacketBuilder<A> {
UdpPacketBuilder { src_ip, dst_ip, src_port, dst_port: Some(dst_port) }
}
/// Returns the source port for the builder.
pub fn src_port(&self) -> Option<NonZeroU16> {
self.src_port
}
/// Returns the destination port for the builder.
pub fn dst_port(&self) -> Option<NonZeroU16> {
self.dst_port
}
/// Sets the source IP address for the builder.
pub fn set_src_ip(&mut self, addr: A) {
self.src_ip = addr;
}
/// Sets the destination IP address for the builder.
pub fn set_dst_ip(&mut self, addr: A) {
self.dst_ip = addr;
}
/// Sets the source port for the builder.
pub fn set_src_port(&mut self, port: u16) {
self.src_port = NonZeroU16::new(port);
}
/// Sets the destination port for the builder.
pub fn set_dst_port(&mut self, port: NonZeroU16) {
self.dst_port = Some(port);
}
}
impl<A: IpAddress> PacketBuilder for UdpPacketBuilder<A> {
fn constraints(&self) -> PacketConstraints {
PacketConstraints::new(
HEADER_BYTES,
0,
0,
if A::Version::VERSION.is_v4() {
(1 << 16) - 1
} else {
// IPv6 supports jumbograms, so a UDP packet may be greater than
// 2^16 bytes. In this case, the size doesn't fit in the 16-bit
// length field in the header, and so the length field is set to
// zero. That means that, from this packet's perspective,
// there's no effective limit on the body size.
core::usize::MAX
},
)
}
fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
// See for details: https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure
let total_len = target.header.len() + body.len() + target.footer.len();
// `write_obj_front` consumes the extent of the receiving slice, but
// that behavior is undesirable here: at the end of this method, we
// write the checksum back into the header. To avoid this, we re-slice
// header before calling `write_obj_front`; the re-slice will be
// consumed, but `target.header` is unaffected.
(&mut &mut target.header[..]).write_obj_front(&Header {
src_port: U16::new(self.src_port.map_or(0, NonZeroU16::get)),
dst_port: U16::new(self.dst_port.map_or(0, NonZeroU16::get)),
length: U16::new(total_len.try_into().unwrap_or_else(|_| {
if A::Version::VERSION.is_v6() {
// See comment in max_body_len
0u16
} else {
panic!(
"total UDP packet length of {} bytes overflows 16-bit length field of UDP header",
total_len)
}
})),
// Initialize the checksum to 0 so that we will get the correct
// value when we compute it below.
checksum: [0, 0],
}).expect("too few bytes for UDP header");
let mut checksum = compute_transport_checksum_serialize(
self.src_ip,
self.dst_ip,
IpProto::Udp.into(),
target,
body,
)
.unwrap_or_else(|| {
panic!(
"total UDP packet length of {} bytes overflows length field of pseudo-header",
total_len
)
});
if checksum == [0, 0] {
checksum = [0xFF, 0xFF];
}
target.header[CHECKSUM_RANGE].copy_from_slice(&checksum[..]);
}
}
// needed by Result::unwrap_err in the tests below
#[cfg(test)]
impl<B> Debug for UdpPacket<B> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
write!(fmt, "UdpPacket")
}
}
#[cfg(test)]
mod tests {
use byteorder::{ByteOrder, NetworkEndian};
use net_types::ip::{Ipv4, Ipv4Addr, Ipv6, Ipv6Addr};
use packet::{Buf, ParseBuffer};
use super::*;
use crate::ethernet::{EthernetFrame, EthernetFrameLengthCheck};
use crate::ipv4::{Ipv4Header, Ipv4Packet};
use crate::ipv6::{Ipv6Header, Ipv6Packet};
use crate::testutil::benchmarks::{black_box, Bencher};
use crate::testutil::*;
const TEST_SRC_IPV4: Ipv4Addr = Ipv4Addr::new([1, 2, 3, 4]);
const TEST_DST_IPV4: Ipv4Addr = Ipv4Addr::new([5, 6, 7, 8]);
const TEST_SRC_IPV6: Ipv6Addr =
Ipv6Addr::from_bytes([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
const TEST_DST_IPV6: Ipv6Addr =
Ipv6Addr::from_bytes([17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]);
#[test]
fn test_parse_serialize_full_ipv4() {
use crate::testdata::dns_request_v4::*;
let mut buf = ETHERNET_FRAME.bytes;
let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
verify_ethernet_frame(&frame, ETHERNET_FRAME);
let mut body = frame.body();
let ip_packet = body.parse::<Ipv4Packet<_>>().unwrap();
verify_ipv4_packet(&ip_packet, IPV4_PACKET);
let mut body = ip_packet.body();
let udp_packet = body
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(
ip_packet.src_ip(),
ip_packet.dst_ip(),
))
.unwrap();
verify_udp_packet(&udp_packet, UDP_PACKET);
let buffer = udp_packet
.body()
.into_serializer()
.encapsulate(udp_packet.builder(ip_packet.src_ip(), ip_packet.dst_ip()))
.encapsulate(ip_packet.builder())
.encapsulate(frame.builder())
.serialize_vec_outer()
.unwrap();
assert_eq!(buffer.as_ref(), ETHERNET_FRAME.bytes);
}
#[test]
fn test_parse_serialize_full_ipv6() {
use crate::testdata::dns_request_v6::*;
let mut buf = ETHERNET_FRAME.bytes;
let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
verify_ethernet_frame(&frame, ETHERNET_FRAME);
let mut body = frame.body();
let ip_packet = body.parse::<Ipv6Packet<_>>().unwrap();
verify_ipv6_packet(&ip_packet, IPV6_PACKET);
let mut body = ip_packet.body();
let udp_packet = body
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(
ip_packet.src_ip(),
ip_packet.dst_ip(),
))
.unwrap();
verify_udp_packet(&udp_packet, UDP_PACKET);
let buffer = udp_packet
.body()
.into_serializer()
.encapsulate(udp_packet.builder(ip_packet.src_ip(), ip_packet.dst_ip()))
.encapsulate(ip_packet.builder())
.encapsulate(frame.builder())
.serialize_vec_outer()
.unwrap();
assert_eq!(buffer.as_ref(), ETHERNET_FRAME.bytes);
}
#[test]
fn test_parse() {
// source port of 0 (meaning none) is allowed, as is a missing checksum
let mut buf = &[0, 0, 1, 2, 0, 8, 0, 0][..];
let packet = buf
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
.unwrap();
assert!(packet.src_port().is_none());
assert_eq!(packet.dst_port().get(), NetworkEndian::read_u16(&[1, 2]));
assert!(!packet.checksummed());
assert!(packet.body().is_empty());
// length of 0 is allowed in IPv6 if the body is long enough
let mut buf = vec![0_u8, 0, 1, 2, 0, 0, 0xBF, 0x12];
buf.extend((0..core::u16::MAX).into_iter().map(|p| p as u8));
let bv = &mut &buf[..];
let packet = bv
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV6, TEST_DST_IPV6))
.unwrap();
assert!(packet.src_port().is_none());
assert_eq!(packet.dst_port().get(), NetworkEndian::read_u16(&[1, 2]));
assert!(packet.checksummed());
assert_eq!(packet.body().len(), core::u16::MAX as usize);
}
#[test]
fn test_serialize() {
let mut buf = (&[])
.into_serializer()
.encapsulate(UdpPacketBuilder::new(
TEST_SRC_IPV4,
TEST_DST_IPV4,
NonZeroU16::new(1),
NonZeroU16::new(2).unwrap(),
))
.serialize_vec_outer()
.unwrap();
assert_eq!(buf.as_ref(), [0, 1, 0, 2, 0, 8, 239, 199]);
let packet = buf
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
.unwrap();
// assert that when we parse those bytes, we get the values we set in
// the builder
assert_eq!(packet.src_port().unwrap().get(), 1);
assert_eq!(packet.dst_port().get(), 2);
assert!(packet.checksummed());
}
#[test]
fn test_serialize_zeroes() {
// Test that UdpPacket::serialize properly zeroes memory before serializing
// the header.
let mut buf_0 = [0; HEADER_BYTES];
let _: Buf<&mut [u8]> = Buf::new(&mut buf_0[..], HEADER_BYTES..)
.encapsulate(UdpPacketBuilder::new(
TEST_SRC_IPV4,
TEST_DST_IPV4,
NonZeroU16::new(1),
NonZeroU16::new(2).unwrap(),
))
.serialize_vec_outer()
.unwrap()
.unwrap_a();
let mut buf_1 = [0xFF; HEADER_BYTES];
let _: Buf<&mut [u8]> = Buf::new(&mut buf_1[..], HEADER_BYTES..)
.encapsulate(UdpPacketBuilder::new(
TEST_SRC_IPV4,
TEST_DST_IPV4,
NonZeroU16::new(1),
NonZeroU16::new(2).unwrap(),
))
.serialize_vec_outer()
.unwrap()
.unwrap_a();
assert_eq!(buf_0, buf_1);
}
#[test]
fn test_parse_error() {
// Test that while a given byte pattern optionally succeeds, zeroing out
// certain bytes causes failure. `zero` is a list of byte indices to
// zero out that should cause failure.
fn test_zero<I: IpAddress>(
src: I,
dst: I,
succeeds: bool,
zero: &[usize],
err: ParseError,
) {
// Set checksum to zero so that, in IPV4, it will be ignored. In
// IPv6, this /is/ the test.
let mut buf = [1, 2, 3, 4, 0, 8, 0, 0];
if succeeds {
let mut buf = &buf[..];
assert!(buf.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(src, dst)).is_ok());
}
for idx in zero {
buf[*idx] = 0;
}
let mut buf = &buf[..];
assert_eq!(
buf.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(src, dst)).unwrap_err(),
err
);
}
// destination port of 0 is disallowed
test_zero(TEST_SRC_IPV4, TEST_DST_IPV4, true, &[2, 3], ParseError::Format);
// length of 0 is disallowed in IPv4
test_zero(TEST_SRC_IPV4, TEST_DST_IPV4, true, &[4, 5], ParseError::Format);
// missing checksum is disallowed in IPv6; this won't succeed ahead of
// time because the checksum bytes are already zero
test_zero(TEST_SRC_IPV6, TEST_DST_IPV6, false, &[], ParseError::Format);
// 2^32 overflows on 32-bit platforms
#[cfg(target_pointer_width = "64")]
{
// total length of 2^32 or greater is disallowed in IPv6
let mut buf = vec![0u8; 1 << 32];
(&mut buf[..HEADER_BYTES]).copy_from_slice(&[0, 0, 1, 2, 0, 0, 0xFF, 0xE4]);
assert_eq!(
(&buf[..])
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV6, TEST_DST_IPV6))
.unwrap_err(),
ParseError::Format
);
}
}
#[test]
#[should_panic(expected = "too few bytes for UDP header")]
fn test_serialize_fail_header_too_short() {
let mut buf = [0u8; 7];
let mut buf = [&mut buf[..]];
let buf = FragmentedBytesMut::new(&mut buf[..]);
let (header, body, footer) = buf.try_split_contiguous(..).unwrap();
let builder =
UdpPacketBuilder::new(TEST_SRC_IPV4, TEST_DST_IPV4, None, NonZeroU16::new(1).unwrap());
builder.serialize(&mut SerializeTarget { header, footer }, body);
}
#[test]
#[should_panic(expected = "total UDP packet length of 65536 bytes overflows 16-bit length \
field of UDP header")]
fn test_serialize_fail_packet_too_long_ipv4() {
let ser = (&[0; (1 << 16) - HEADER_BYTES][..]).into_serializer().encapsulate(
UdpPacketBuilder::new(TEST_SRC_IPV4, TEST_DST_IPV4, None, NonZeroU16::new(1).unwrap()),
);
let _ = ser.serialize_vec_outer();
}
#[test]
fn test_partial_parse() {
use core::ops::Deref as _;
// Try to get something with only the flow header:
let buf = [0, 0, 1, 2, 10, 20];
let mut bv = &buf[..];
let packet =
bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).unwrap();
let UdpPacketRaw { header, body } = &packet;
let PartialHeader { flow, rest } = header.as_ref().incomplete().unwrap();
assert_eq!(
flow.deref(),
&UdpFlowHeader { src_port: U16::new(0), dst_port: U16::new(0x0102) }
);
assert_eq!(*rest, &buf[4..]);
assert_eq!(body.incomplete().unwrap(), []);
assert!(UdpPacket::try_from_raw_with(
packet,
UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4)
)
.is_err());
// check that we fail if flow header is not retrievable:
let mut buf = &[0, 0, 1][..];
assert!(buf.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).is_err());
// Get an incomplete body:
let buf = [0, 0, 1, 2, 0, 30, 0, 0, 10, 20];
let mut bv = &buf[..];
let packet =
bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).unwrap();
let UdpPacketRaw { header, body } = &packet;
assert_eq!(Ref::bytes(&header.as_ref().complete().unwrap()), &buf[..8]);
assert_eq!(body.incomplete().unwrap(), &buf[8..]);
assert!(UdpPacket::try_from_raw_with(
packet,
UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4)
)
.is_err());
// Incomplete empty body if total length in header is less than 8:
let buf = [0, 0, 1, 2, 0, 6, 0, 0, 10, 20];
let mut bv = &buf[..];
let packet =
bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).unwrap();
let UdpPacketRaw { header, body } = &packet;
assert_eq!(Ref::bytes(&header.as_ref().complete().unwrap()), &buf[..8]);
assert_eq!(body.incomplete().unwrap(), []);
assert!(UdpPacket::try_from_raw_with(
packet,
UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4)
)
.is_err());
// IPv6 allows zero-length body, which will just be the rest of the
// buffer, but only as long as it has more than 65535 bytes, otherwise
// it'll just be interpreted as an invalid length:
let buf = [0, 0, 1, 2, 0, 0, 0, 0, 10, 20];
let mut bv = &buf[..];
let packet =
bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv6>::default()).unwrap();
let UdpPacketRaw { header, body } = &packet;
assert_eq!(Ref::bytes(&header.as_ref().complete().unwrap()), &buf[..8]);
assert_eq!(body.incomplete().unwrap(), []);
// Now try same thing but with a body that's actually big enough to
// justify len being 0.
let mut buf = vec![0, 0, 1, 2, 0, 0, 0, 0, 10, 20];
buf.extend((0..core::u16::MAX).into_iter().map(|x| x as u8));
let bv = &mut &buf[..];
let packet =
bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv6>::default()).unwrap();
let UdpPacketRaw { header, body } = &packet;
assert_eq!(Ref::bytes(header.as_ref().complete().unwrap()), &buf[..8]);
assert_eq!(body.complete().unwrap(), &buf[8..]);
}
#[test]
fn test_udp_checksum_0xffff() {
// Test the behavior when a UDP packet has to
// flip its checksum field.
let builder = (&[0xff, 0xd9]).into_serializer().encapsulate(UdpPacketBuilder::new(
Ipv4Addr::new([0, 0, 0, 0]),
Ipv4Addr::new([0, 0, 0, 0]),
None,
NonZeroU16::new(1).unwrap(),
));
let buf = builder.serialize_vec_outer().unwrap();
// The serializer has flipped the bits for us.
// Normally, 0xFFFF can't be checksum because -0
// can not be produced by adding non-negtive 16-bit
// words
assert_eq!(buf.as_ref()[7], 0xFF);
assert_eq!(buf.as_ref()[8], 0xFF);
// When validating the checksum, just add'em up.
let mut c = internet_checksum::Checksum::new();
c.add_bytes(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 10]);
c.add_bytes(buf.as_ref());
assert!(c.checksum() == [0, 0]);
}
//
// Benchmarks
//
fn bench_parse_inner<B: Bencher>(b: &mut B) {
use crate::testdata::dns_request_v4::*;
let bytes = parse_ip_packet_in_ethernet_frame::<Ipv4>(
ETHERNET_FRAME.bytes,
EthernetFrameLengthCheck::Check,
)
.unwrap()
.0;
b.iter(|| {
let buf = bytes;
let _: UdpPacket<_> = black_box(
black_box(buf)
.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(
IPV4_PACKET.metadata.src_ip,
IPV4_PACKET.metadata.dst_ip,
))
.unwrap(),
);
})
}
bench!(bench_parse, bench_parse_inner);
fn bench_serialize_inner<B: Bencher>(b: &mut B) {
use crate::testdata::dns_request_v4::*;
let builder = UdpPacketBuilder::new(
IPV4_PACKET.metadata.src_ip,
IPV4_PACKET.metadata.dst_ip,
None,
NonZeroU16::new(UDP_PACKET.metadata.dst_port).unwrap(),
);
let header_len = builder.constraints().header_len();
let total_len = header_len + UDP_PACKET.bytes[UDP_PACKET.body_range].len();
let mut buf = vec![0; total_len];
buf[header_len..].copy_from_slice(&UDP_PACKET.bytes[UDP_PACKET.body_range]);
b.iter(|| {
let _: Buf<_> = black_box(
black_box(Buf::new(&mut buf[..], header_len..total_len).encapsulate(builder))
.serialize_no_alloc_outer(),
)
.unwrap();
})
}
bench!(bench_serialize, bench_serialize_inner);
}