packet_formats/
udp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Parsing and serialization of UDP packets.
//!
//! The UDP packet format is defined in [RFC 768].
//!
//! [RFC 768]: https://datatracker.ietf.org/doc/html/rfc768

use core::fmt::Debug;
#[cfg(test)]
use core::fmt::{self, Formatter};
use core::num::NonZeroU16;
use core::ops::Range;

use net_types::ip::{Ip, IpAddress, IpVersionMarker};
use packet::{
    BufferView, BufferViewMut, ByteSliceInnerPacketBuilder, EmptyBuf, FragmentedBytesMut, FromRaw,
    InnerPacketBuilder, MaybeParsed, PacketBuilder, PacketConstraints, ParsablePacket,
    ParseMetadata, SerializeTarget, Serializer,
};
use zerocopy::byteorder::network_endian::U16;
use zerocopy::{
    FromBytes, Immutable, IntoBytes, KnownLayout, Ref, SplitByteSlice, SplitByteSliceMut, Unaligned,
};

use crate::error::{ParseError, ParseResult};
use crate::ip::IpProto;
use crate::{compute_transport_checksum_parts, compute_transport_checksum_serialize};

pub(crate) const HEADER_BYTES: usize = 8;
const CHECKSUM_OFFSET: usize = 6;
const CHECKSUM_RANGE: Range<usize> = CHECKSUM_OFFSET..CHECKSUM_OFFSET + 2;

#[derive(Debug, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned)]
#[repr(C)]
struct Header {
    src_port: U16,
    dst_port: U16,
    length: U16,
    checksum: [u8; 2],
}

/// A UDP packet.
///
/// A `UdpPacket` shares its underlying memory with the byte slice it was parsed
/// from or serialized to, meaning that no copying or extra allocation is
/// necessary.
///
/// A `UdpPacket` - whether parsed using `parse` or created using `serialize` -
/// maintains the invariant that the checksum is always valid.
pub struct UdpPacket<B> {
    header: Ref<B, Header>,
    body: B,
}

/// Arguments required to parse a UDP packet.
pub struct UdpParseArgs<A: IpAddress> {
    src_ip: A,
    dst_ip: A,
}

impl<A: IpAddress> UdpParseArgs<A> {
    /// Construct a new `UdpParseArgs`.
    pub fn new(src_ip: A, dst_ip: A) -> UdpParseArgs<A> {
        UdpParseArgs { src_ip, dst_ip }
    }
}

impl<B: SplitByteSlice, A: IpAddress> FromRaw<UdpPacketRaw<B>, UdpParseArgs<A>> for UdpPacket<B> {
    type Error = ParseError;

    fn try_from_raw_with(raw: UdpPacketRaw<B>, args: UdpParseArgs<A>) -> Result<Self, Self::Error> {
        // See for details: https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure
        let header = raw
            .header
            .ok_or_else(|_| debug_err!(ParseError::Format, "too few bytes for header"))?;
        let body = raw.body.ok_or_else(|_| debug_err!(ParseError::Format, "incomplete body"))?;

        let checksum = header.checksum;
        // A 0 checksum indicates that the checksum wasn't computed. In IPv4,
        // this means that it shouldn't be validated. In IPv6, the checksum is
        // mandatory, so this is an error.
        if checksum != [0, 0] {
            let parts = [Ref::bytes(&header), body.deref().as_ref()];
            let checksum = compute_transport_checksum_parts(
                args.src_ip,
                args.dst_ip,
                IpProto::Udp.into(),
                parts.iter(),
            )
            .ok_or_else(debug_err_fn!(ParseError::Format, "packet too large"))?;

            // Even the checksum is transmitted as 0xFFFF, the checksum of the whole
            // UDP packet should still be 0. This is because in 1's complement, it is
            // not possible to produce +0(0) from adding non-zero 16-bit words.
            // Since our 0xFFFF ensures there is at least one non-zero 16-bit word,
            // the addition can only produce -0(0xFFFF) and after negation, it is
            // still 0. A test `test_udp_checksum_0xffff` is included to make sure
            // this is true.
            if checksum != [0, 0] {
                return debug_err!(
                    Err(ParseError::Checksum),
                    "invalid checksum {:X?}",
                    header.checksum,
                );
            }
        } else if A::Version::VERSION.is_v6() {
            return debug_err!(Err(ParseError::Format), "missing checksum");
        }

        if header.dst_port.get() == 0 {
            return debug_err!(Err(ParseError::Format), "zero destination port");
        }

        Ok(UdpPacket { header, body })
    }
}

impl<B: SplitByteSlice, A: IpAddress> ParsablePacket<B, UdpParseArgs<A>> for UdpPacket<B> {
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        ParseMetadata::from_packet(Ref::bytes(&self.header).len(), self.body.len(), 0)
    }

    fn parse<BV: BufferView<B>>(buffer: BV, args: UdpParseArgs<A>) -> ParseResult<Self> {
        UdpPacketRaw::<B>::parse(buffer, IpVersionMarker::<A::Version>::default())
            .and_then(|u| UdpPacket::try_from_raw_with(u, args))
    }
}

impl<B: SplitByteSlice> UdpPacket<B> {
    /// The packet body.
    pub fn body(&self) -> &[u8] {
        self.body.deref()
    }

    /// Consumes this packet and returns the body.
    ///
    /// Note that the returned `B` has the same lifetime as the buffer from
    /// which this packet was parsed. By contrast, the [`body`] method returns a
    /// slice with the same lifetime as the receiver.
    ///
    /// [`body`]: UdpPacket::body
    pub fn into_body(self) -> B {
        self.body
    }

    /// The source UDP port, if any.
    ///
    /// The source port is optional, and may have been omitted by the sender.
    pub fn src_port(&self) -> Option<NonZeroU16> {
        NonZeroU16::new(self.header.src_port.get())
    }

    /// The destination UDP port.
    pub fn dst_port(&self) -> NonZeroU16 {
        // Infallible because it was validated in parse.
        NonZeroU16::new(self.header.dst_port.get()).unwrap()
    }

    /// Did this packet have a checksum?
    ///
    /// On IPv4, the sender may optionally omit the checksum. If this function
    /// returns false, the sender omitted the checksum, and `parse` will not
    /// have validated it.
    ///
    /// On IPv6, it is guaranteed that `checksummed` will return true because
    /// IPv6 requires a checksum, and so any UDP packet missing one will fail
    /// validation in `parse`.
    pub fn checksummed(&self) -> bool {
        self.header.checksum != U16::ZERO
    }

    /// Constructs a builder with the same contents as this packet.
    pub fn builder<A: IpAddress>(&self, src_ip: A, dst_ip: A) -> UdpPacketBuilder<A> {
        UdpPacketBuilder {
            src_ip,
            dst_ip,
            src_port: self.src_port(),
            dst_port: Some(self.dst_port()),
        }
    }

    /// Consumes this packet and constructs a [`Serializer`] with the same
    /// contents.
    ///
    /// The returned `Serializer` has the [`Buffer`] type [`EmptyBuf`], which
    /// means it is not able to reuse the buffer backing this `UdpPacket` when
    /// serializing, and will always need to allocate a new buffer.
    ///
    /// By consuming `self` instead of taking it by-reference, `into_serializer`
    /// is able to return a `Serializer` whose lifetime is restricted by the
    /// lifetime of the buffer from which this `UdpPacket` was parsed rather
    /// than by the lifetime on `&self`, which may be more restricted.
    ///
    /// [`Buffer`]: packet::Serializer::Buffer
    pub fn into_serializer<'a, A: IpAddress>(
        self,
        src_ip: A,
        dst_ip: A,
    ) -> impl Serializer<Buffer = EmptyBuf> + Debug + 'a
    where
        B: 'a,
    {
        let builder = self.builder(src_ip, dst_ip);
        ByteSliceInnerPacketBuilder(self.body).into_serializer().encapsulate(builder)
    }
}

impl<B: SplitByteSliceMut> UdpPacket<B> {
    /// Set the source port of the UDP packet.
    pub fn set_src_port(&mut self, new: u16) {
        let old = self.header.src_port;
        let new = U16::from(new);
        self.header.src_port = new;
        if self.checksummed() {
            self.header.checksum =
                internet_checksum::update(self.header.checksum, old.as_bytes(), new.as_bytes());
        }
    }

    /// Set the destination port of the UDP packet.
    pub fn set_dst_port(&mut self, new: NonZeroU16) {
        let old = self.header.dst_port;
        let new = U16::from(new.get());
        self.header.dst_port = new;
        if self.checksummed() {
            self.header.checksum =
                internet_checksum::update(self.header.checksum, old.as_bytes(), new.as_bytes());
        }
    }

    /// Update the checksum to reflect an updated address in the pseudo header.
    pub fn update_checksum_pseudo_header_address<A: IpAddress>(&mut self, old: A, new: A) {
        if self.checksummed() {
            self.header.checksum =
                internet_checksum::update(self.header.checksum, old.bytes(), new.bytes());
        }
    }
}

/// The minimal information required from a UDP packet header.
///
/// A `UdpPacketHeader` may be the result of a partially parsed UDP packet in
/// [`UdpPacketRaw`].
#[derive(Debug, Default, KnownLayout, FromBytes, IntoBytes, Immutable, Unaligned, PartialEq)]
#[repr(C)]
struct UdpFlowHeader {
    src_port: U16,
    dst_port: U16,
}

/// A partially parsed UDP packet header.
#[derive(Debug)]
struct PartialHeader<B: SplitByteSlice> {
    flow: Ref<B, UdpFlowHeader>,
    rest: B,
}

/// A partially-parsed and not yet validated UDP packet.
///
/// A `UdpPacketRaw` shares its underlying memory with the byte slice it was
/// parsed from or serialized to, meaning that no copying or extra allocation is
/// necessary.
///
/// Parsing a `UdpPacketRaw` from raw data will succeed as long as at least 4
/// bytes are available, which will be extracted as a [`UdpFlowHeader`] that
/// contains the UDP source and destination ports. A `UdpPacketRaw` is, then,
/// guaranteed to always have at least that minimal information available.
///
/// [`UdpPacket`] provides a [`FromRaw`] implementation that can be used to
/// validate a `UdpPacketRaw`.
pub struct UdpPacketRaw<B: SplitByteSlice> {
    header: MaybeParsed<Ref<B, Header>, PartialHeader<B>>,
    body: MaybeParsed<B, B>,
}

impl<B, I> ParsablePacket<B, IpVersionMarker<I>> for UdpPacketRaw<B>
where
    B: SplitByteSlice,
    I: Ip,
{
    type Error = ParseError;

    fn parse_metadata(&self) -> ParseMetadata {
        let header_len = match &self.header {
            MaybeParsed::Complete(h) => Ref::bytes(&h).len(),
            MaybeParsed::Incomplete(h) => Ref::bytes(&h.flow).len() + h.rest.len(),
        };
        ParseMetadata::from_packet(header_len, self.body.len(), 0)
    }

    fn parse<BV: BufferView<B>>(mut buffer: BV, _args: IpVersionMarker<I>) -> ParseResult<Self> {
        // See for details: https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure

        let header = if let Some(header) = buffer.take_obj_front::<Header>() {
            header
        } else {
            let flow = buffer
                .take_obj_front::<UdpFlowHeader>()
                .ok_or_else(debug_err_fn!(ParseError::Format, "too few bytes for flow header"))?;
            // if we can't parse an entire header, just return early since
            // there's no way to look into how many body bytes to consume:
            return Ok(UdpPacketRaw {
                header: MaybeParsed::Incomplete(PartialHeader {
                    flow,
                    rest: buffer.take_rest_front(),
                }),
                body: MaybeParsed::Incomplete(buffer.into_rest()),
            });
        };
        let buffer_len = buffer.len();

        fn get_udp_body_length<I: Ip>(header: &Header, remaining_buff_len: usize) -> Option<usize> {
            // IPv6 supports jumbograms, so a UDP packet may be greater than
            // 2^16 bytes in size. In this case, the size doesn't fit in the
            // 16-bit length field in the header, and so the length field is set
            // to zero to indicate this.
            //
            // Per RFC 2675 Section 4, we only do that if the UDP header plus
            // data is actually more than 65535.
            if I::VERSION.is_v6()
                && header.length.get() == 0
                && remaining_buff_len.saturating_add(HEADER_BYTES) >= (core::u16::MAX as usize)
            {
                return Some(remaining_buff_len);
            }

            usize::from(header.length.get()).checked_sub(HEADER_BYTES)
        }

        let body = if let Some(body_len) = get_udp_body_length::<I>(&header, buffer_len) {
            if body_len <= buffer_len {
                // Discard any padding left by the previous layer. The unwrap is safe
                // and the subtraction is always valid because body_len is guaranteed
                // to not exceed buffer.len()
                let _: B = buffer.take_back(buffer_len - body_len).unwrap();
                MaybeParsed::Complete(buffer.into_rest())
            } else {
                // buffer does not contain all the body bytes
                MaybeParsed::Incomplete(buffer.into_rest())
            }
        } else {
            // body_len can't be calculated because it's less than the header
            // length, consider all the rest of the buffer padding and return
            // an incomplete empty body.
            let _: B = buffer.take_rest_back();
            MaybeParsed::Incomplete(buffer.into_rest())
        };

        Ok(UdpPacketRaw { header: MaybeParsed::Complete(header), body })
    }
}

impl<B: SplitByteSlice> UdpPacketRaw<B> {
    /// The source UDP port, if any.
    ///
    /// The source port is optional, and may have been omitted by the sender.
    pub fn src_port(&self) -> Option<NonZeroU16> {
        NonZeroU16::new(
            self.header
                .as_ref()
                .map(|header| header.src_port)
                .map_incomplete(|partial_header| partial_header.flow.src_port)
                .into_inner()
                .get(),
        )
    }

    /// The destination UDP port.
    ///
    /// UDP packets must not have a destination port of 0; thus, if this
    /// function returns `None`, then the packet is malformed.
    pub fn dst_port(&self) -> Option<NonZeroU16> {
        NonZeroU16::new(
            self.header
                .as_ref()
                .map(|header| header.dst_port)
                .map_incomplete(|partial_header| partial_header.flow.dst_port)
                .into_inner()
                .get(),
        )
    }

    /// Constructs a builder with the same contents as this packet.
    ///
    /// Note that, since `UdpPacketRaw` does not validate its header fields,
    /// it's possible for `builder` to produce a `UdpPacketBuilder` which
    /// describes an invalid UDP packet. In particular, it's possible that its
    /// destination port will be zero, which is illegal.
    pub fn builder<A: IpAddress>(&self, src_ip: A, dst_ip: A) -> UdpPacketBuilder<A> {
        UdpPacketBuilder { src_ip, dst_ip, src_port: self.src_port(), dst_port: self.dst_port() }
    }

    /// Consumes this packet and constructs a [`Serializer`] with the same
    /// contents.
    ///
    /// Returns `None` if the body was not fully parsed.
    ///
    /// This method has the same validity caveats as [`builder`].
    ///
    /// The returned `Serializer` has the [`Buffer`] type [`EmptyBuf`], which
    /// means it is not able to reuse the buffer backing this `UdpPacket` when
    /// serializing, and will always need to allocate a new buffer.
    ///
    /// By consuming `self` instead of taking it by-reference, `into_serializer`
    /// is able to return a `Serializer` whose lifetime is restricted by the
    /// lifetime of the buffer from which this `UdpPacket` was parsed rather
    /// than by the lifetime on `&self`, which may be more restricted.
    ///
    /// [`builder`]: UdpPacketRaw::builder
    /// [`Buffer`]: packet::Serializer::Buffer
    pub fn into_serializer<'a, A: IpAddress>(
        self,
        src_ip: A,
        dst_ip: A,
    ) -> Option<impl Serializer<Buffer = EmptyBuf> + 'a>
    where
        B: 'a,
    {
        let builder = self.builder(src_ip, dst_ip);
        self.body
            .complete()
            .ok()
            .map(|body| ByteSliceInnerPacketBuilder(body).into_serializer().encapsulate(builder))
    }
}

// NOTE(joshlf): In order to ensure that the checksum is always valid, we don't
// expose any setters for the fields of the UDP packet; the only way to set them
// is via UdpPacketBuilder::serialize. This, combined with checksum validation
// performed in UdpPacket::parse, provides the invariant that a UdpPacket always
// has a valid checksum.

/// A builder for UDP packets.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct UdpPacketBuilder<A: IpAddress> {
    src_ip: A,
    dst_ip: A,
    src_port: Option<NonZeroU16>,
    dst_port: Option<NonZeroU16>,
}

impl<A: IpAddress> UdpPacketBuilder<A> {
    /// Constructs a new `UdpPacketBuilder`.
    pub fn new(
        src_ip: A,
        dst_ip: A,
        src_port: Option<NonZeroU16>,
        dst_port: NonZeroU16,
    ) -> UdpPacketBuilder<A> {
        UdpPacketBuilder { src_ip, dst_ip, src_port, dst_port: Some(dst_port) }
    }

    /// Returns the source port for the builder.
    pub fn src_port(&self) -> Option<NonZeroU16> {
        self.src_port
    }

    /// Returns the destination port for the builder.
    pub fn dst_port(&self) -> Option<NonZeroU16> {
        self.dst_port
    }

    /// Sets the source IP address for the builder.
    pub fn set_src_ip(&mut self, addr: A) {
        self.src_ip = addr;
    }

    /// Sets the destination IP address for the builder.
    pub fn set_dst_ip(&mut self, addr: A) {
        self.dst_ip = addr;
    }

    /// Sets the source port for the builder.
    pub fn set_src_port(&mut self, port: u16) {
        self.src_port = NonZeroU16::new(port);
    }

    /// Sets the destination port for the builder.
    pub fn set_dst_port(&mut self, port: NonZeroU16) {
        self.dst_port = Some(port);
    }
}

impl<A: IpAddress> PacketBuilder for UdpPacketBuilder<A> {
    fn constraints(&self) -> PacketConstraints {
        PacketConstraints::new(
            HEADER_BYTES,
            0,
            0,
            if A::Version::VERSION.is_v4() {
                (1 << 16) - 1
            } else {
                // IPv6 supports jumbograms, so a UDP packet may be greater than
                // 2^16 bytes. In this case, the size doesn't fit in the 16-bit
                // length field in the header, and so the length field is set to
                // zero. That means that, from this packet's perspective,
                // there's no effective limit on the body size.
                core::usize::MAX
            },
        )
    }

    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
        // See for details: https://en.wikipedia.org/wiki/User_Datagram_Protocol#Packet_structure

        let total_len = target.header.len() + body.len() + target.footer.len();

        // `write_obj_front` consumes the extent of the receiving slice, but
        // that behavior is undesirable here: at the end of this method, we
        // write the checksum back into the header. To avoid this, we re-slice
        // header before calling `write_obj_front`; the re-slice will be
        // consumed, but `target.header` is unaffected.
        (&mut &mut target.header[..]).write_obj_front(&Header {
            src_port: U16::new(self.src_port.map_or(0, NonZeroU16::get)),
            dst_port: U16::new(self.dst_port.map_or(0, NonZeroU16::get)),
            length: U16::new(total_len.try_into().unwrap_or_else(|_| {
                if A::Version::VERSION.is_v6() {
                    // See comment in max_body_len
                    0u16
                } else {
                    panic!(
                    "total UDP packet length of {} bytes overflows 16-bit length field of UDP header",
                    total_len)
                }
            })),
            // Initialize the checksum to 0 so that we will get the correct
            // value when we compute it below.
            checksum: [0, 0],
        }).expect("too few bytes for UDP header");

        let mut checksum = compute_transport_checksum_serialize(
            self.src_ip,
            self.dst_ip,
            IpProto::Udp.into(),
            target,
            body,
        )
        .unwrap_or_else(|| {
            panic!(
                "total UDP packet length of {} bytes overflows length field of pseudo-header",
                total_len
            )
        });
        if checksum == [0, 0] {
            checksum = [0xFF, 0xFF];
        }
        target.header[CHECKSUM_RANGE].copy_from_slice(&checksum[..]);
    }
}

// needed by Result::unwrap_err in the tests below
#[cfg(test)]
impl<B> Debug for UdpPacket<B> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        write!(fmt, "UdpPacket")
    }
}

#[cfg(test)]
mod tests {
    use byteorder::{ByteOrder, NetworkEndian};
    use net_types::ip::{Ipv4, Ipv4Addr, Ipv6, Ipv6Addr};
    use packet::{Buf, ParseBuffer};

    use super::*;
    use crate::ethernet::{EthernetFrame, EthernetFrameLengthCheck};
    use crate::ipv4::{Ipv4Header, Ipv4Packet};
    use crate::ipv6::{Ipv6Header, Ipv6Packet};
    use crate::testutil::benchmarks::{black_box, Bencher};
    use crate::testutil::*;

    const TEST_SRC_IPV4: Ipv4Addr = Ipv4Addr::new([1, 2, 3, 4]);
    const TEST_DST_IPV4: Ipv4Addr = Ipv4Addr::new([5, 6, 7, 8]);
    const TEST_SRC_IPV6: Ipv6Addr =
        Ipv6Addr::from_bytes([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
    const TEST_DST_IPV6: Ipv6Addr =
        Ipv6Addr::from_bytes([17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]);

    #[test]
    fn test_parse_serialize_full_ipv4() {
        use crate::testdata::dns_request_v4::*;

        let mut buf = ETHERNET_FRAME.bytes;
        let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
        verify_ethernet_frame(&frame, ETHERNET_FRAME);

        let mut body = frame.body();
        let ip_packet = body.parse::<Ipv4Packet<_>>().unwrap();
        verify_ipv4_packet(&ip_packet, IPV4_PACKET);

        let mut body = ip_packet.body();
        let udp_packet = body
            .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(
                ip_packet.src_ip(),
                ip_packet.dst_ip(),
            ))
            .unwrap();
        verify_udp_packet(&udp_packet, UDP_PACKET);

        let buffer = udp_packet
            .body()
            .into_serializer()
            .encapsulate(udp_packet.builder(ip_packet.src_ip(), ip_packet.dst_ip()))
            .encapsulate(ip_packet.builder())
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buffer.as_ref(), ETHERNET_FRAME.bytes);
    }

    #[test]
    fn test_parse_serialize_full_ipv6() {
        use crate::testdata::dns_request_v6::*;

        let mut buf = ETHERNET_FRAME.bytes;
        let frame = buf.parse_with::<_, EthernetFrame<_>>(EthernetFrameLengthCheck::Check).unwrap();
        verify_ethernet_frame(&frame, ETHERNET_FRAME);

        let mut body = frame.body();
        let ip_packet = body.parse::<Ipv6Packet<_>>().unwrap();
        verify_ipv6_packet(&ip_packet, IPV6_PACKET);

        let mut body = ip_packet.body();
        let udp_packet = body
            .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(
                ip_packet.src_ip(),
                ip_packet.dst_ip(),
            ))
            .unwrap();
        verify_udp_packet(&udp_packet, UDP_PACKET);

        let buffer = udp_packet
            .body()
            .into_serializer()
            .encapsulate(udp_packet.builder(ip_packet.src_ip(), ip_packet.dst_ip()))
            .encapsulate(ip_packet.builder())
            .encapsulate(frame.builder())
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buffer.as_ref(), ETHERNET_FRAME.bytes);
    }

    #[test]
    fn test_parse() {
        // source port of 0 (meaning none) is allowed, as is a missing checksum
        let mut buf = &[0, 0, 1, 2, 0, 8, 0, 0][..];
        let packet = buf
            .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
            .unwrap();
        assert!(packet.src_port().is_none());
        assert_eq!(packet.dst_port().get(), NetworkEndian::read_u16(&[1, 2]));
        assert!(!packet.checksummed());
        assert!(packet.body().is_empty());

        // length of 0 is allowed in IPv6 if the body is long enough
        let mut buf = vec![0_u8, 0, 1, 2, 0, 0, 0xBF, 0x12];
        buf.extend((0..core::u16::MAX).into_iter().map(|p| p as u8));
        let bv = &mut &buf[..];
        let packet = bv
            .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV6, TEST_DST_IPV6))
            .unwrap();
        assert!(packet.src_port().is_none());
        assert_eq!(packet.dst_port().get(), NetworkEndian::read_u16(&[1, 2]));
        assert!(packet.checksummed());
        assert_eq!(packet.body().len(), core::u16::MAX as usize);
    }

    #[test]
    fn test_serialize() {
        let mut buf = (&[])
            .into_serializer()
            .encapsulate(UdpPacketBuilder::new(
                TEST_SRC_IPV4,
                TEST_DST_IPV4,
                NonZeroU16::new(1),
                NonZeroU16::new(2).unwrap(),
            ))
            .serialize_vec_outer()
            .unwrap();
        assert_eq!(buf.as_ref(), [0, 1, 0, 2, 0, 8, 239, 199]);
        let packet = buf
            .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4))
            .unwrap();
        // assert that when we parse those bytes, we get the values we set in
        // the builder
        assert_eq!(packet.src_port().unwrap().get(), 1);
        assert_eq!(packet.dst_port().get(), 2);
        assert!(packet.checksummed());
    }

    #[test]
    fn test_serialize_zeroes() {
        // Test that UdpPacket::serialize properly zeroes memory before serializing
        // the header.
        let mut buf_0 = [0; HEADER_BYTES];
        let _: Buf<&mut [u8]> = Buf::new(&mut buf_0[..], HEADER_BYTES..)
            .encapsulate(UdpPacketBuilder::new(
                TEST_SRC_IPV4,
                TEST_DST_IPV4,
                NonZeroU16::new(1),
                NonZeroU16::new(2).unwrap(),
            ))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_a();
        let mut buf_1 = [0xFF; HEADER_BYTES];
        let _: Buf<&mut [u8]> = Buf::new(&mut buf_1[..], HEADER_BYTES..)
            .encapsulate(UdpPacketBuilder::new(
                TEST_SRC_IPV4,
                TEST_DST_IPV4,
                NonZeroU16::new(1),
                NonZeroU16::new(2).unwrap(),
            ))
            .serialize_vec_outer()
            .unwrap()
            .unwrap_a();
        assert_eq!(buf_0, buf_1);
    }

    #[test]
    fn test_parse_error() {
        // Test that while a given byte pattern optionally succeeds, zeroing out
        // certain bytes causes failure. `zero` is a list of byte indices to
        // zero out that should cause failure.
        fn test_zero<I: IpAddress>(
            src: I,
            dst: I,
            succeeds: bool,
            zero: &[usize],
            err: ParseError,
        ) {
            // Set checksum to zero so that, in IPV4, it will be ignored. In
            // IPv6, this /is/ the test.
            let mut buf = [1, 2, 3, 4, 0, 8, 0, 0];
            if succeeds {
                let mut buf = &buf[..];
                assert!(buf.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(src, dst)).is_ok());
            }
            for idx in zero {
                buf[*idx] = 0;
            }
            let mut buf = &buf[..];
            assert_eq!(
                buf.parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(src, dst)).unwrap_err(),
                err
            );
        }

        // destination port of 0 is disallowed
        test_zero(TEST_SRC_IPV4, TEST_DST_IPV4, true, &[2, 3], ParseError::Format);
        // length of 0 is disallowed in IPv4
        test_zero(TEST_SRC_IPV4, TEST_DST_IPV4, true, &[4, 5], ParseError::Format);
        // missing checksum is disallowed in IPv6; this won't succeed ahead of
        // time because the checksum bytes are already zero
        test_zero(TEST_SRC_IPV6, TEST_DST_IPV6, false, &[], ParseError::Format);

        // 2^32 overflows on 32-bit platforms
        #[cfg(target_pointer_width = "64")]
        {
            // total length of 2^32 or greater is disallowed in IPv6
            let mut buf = vec![0u8; 1 << 32];
            (&mut buf[..HEADER_BYTES]).copy_from_slice(&[0, 0, 1, 2, 0, 0, 0xFF, 0xE4]);
            assert_eq!(
                (&buf[..])
                    .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(TEST_SRC_IPV6, TEST_DST_IPV6))
                    .unwrap_err(),
                ParseError::Format
            );
        }
    }

    #[test]
    #[should_panic(expected = "too few bytes for UDP header")]
    fn test_serialize_fail_header_too_short() {
        let mut buf = [0u8; 7];
        let mut buf = [&mut buf[..]];
        let buf = FragmentedBytesMut::new(&mut buf[..]);
        let (header, body, footer) = buf.try_split_contiguous(..).unwrap();
        let builder =
            UdpPacketBuilder::new(TEST_SRC_IPV4, TEST_DST_IPV4, None, NonZeroU16::new(1).unwrap());
        builder.serialize(&mut SerializeTarget { header, footer }, body);
    }

    #[test]
    #[should_panic(expected = "total UDP packet length of 65536 bytes overflows 16-bit length \
                               field of UDP header")]
    fn test_serialize_fail_packet_too_long_ipv4() {
        let ser = (&[0; (1 << 16) - HEADER_BYTES][..]).into_serializer().encapsulate(
            UdpPacketBuilder::new(TEST_SRC_IPV4, TEST_DST_IPV4, None, NonZeroU16::new(1).unwrap()),
        );
        let _ = ser.serialize_vec_outer();
    }

    #[test]
    fn test_partial_parse() {
        use core::ops::Deref as _;

        // Try to get something with only the flow header:
        let buf = [0, 0, 1, 2, 10, 20];
        let mut bv = &buf[..];
        let packet =
            bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).unwrap();
        let UdpPacketRaw { header, body } = &packet;
        let PartialHeader { flow, rest } = header.as_ref().incomplete().unwrap();
        assert_eq!(
            flow.deref(),
            &UdpFlowHeader { src_port: U16::new(0), dst_port: U16::new(0x0102) }
        );
        assert_eq!(*rest, &buf[4..]);
        assert_eq!(body.incomplete().unwrap(), []);
        assert!(UdpPacket::try_from_raw_with(
            packet,
            UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4)
        )
        .is_err());

        // check that we fail if flow header is not retrievable:
        let mut buf = &[0, 0, 1][..];
        assert!(buf.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).is_err());

        // Get an incomplete body:
        let buf = [0, 0, 1, 2, 0, 30, 0, 0, 10, 20];
        let mut bv = &buf[..];
        let packet =
            bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).unwrap();
        let UdpPacketRaw { header, body } = &packet;
        assert_eq!(Ref::bytes(&header.as_ref().complete().unwrap()), &buf[..8]);
        assert_eq!(body.incomplete().unwrap(), &buf[8..]);
        assert!(UdpPacket::try_from_raw_with(
            packet,
            UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4)
        )
        .is_err());

        // Incomplete empty body if total length in header is less than 8:
        let buf = [0, 0, 1, 2, 0, 6, 0, 0, 10, 20];
        let mut bv = &buf[..];
        let packet =
            bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv4>::default()).unwrap();
        let UdpPacketRaw { header, body } = &packet;
        assert_eq!(Ref::bytes(&header.as_ref().complete().unwrap()), &buf[..8]);
        assert_eq!(body.incomplete().unwrap(), []);
        assert!(UdpPacket::try_from_raw_with(
            packet,
            UdpParseArgs::new(TEST_SRC_IPV4, TEST_DST_IPV4)
        )
        .is_err());

        // IPv6 allows zero-length body, which will just be the rest of the
        // buffer, but only as long as it has more than 65535 bytes, otherwise
        // it'll just be interpreted as an invalid length:
        let buf = [0, 0, 1, 2, 0, 0, 0, 0, 10, 20];
        let mut bv = &buf[..];
        let packet =
            bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv6>::default()).unwrap();
        let UdpPacketRaw { header, body } = &packet;
        assert_eq!(Ref::bytes(&header.as_ref().complete().unwrap()), &buf[..8]);
        assert_eq!(body.incomplete().unwrap(), []);
        // Now try same thing but with a body that's actually big enough to
        // justify len being 0.
        let mut buf = vec![0, 0, 1, 2, 0, 0, 0, 0, 10, 20];
        buf.extend((0..core::u16::MAX).into_iter().map(|x| x as u8));
        let bv = &mut &buf[..];
        let packet =
            bv.parse_with::<_, UdpPacketRaw<_>>(IpVersionMarker::<Ipv6>::default()).unwrap();
        let UdpPacketRaw { header, body } = &packet;
        assert_eq!(Ref::bytes(header.as_ref().complete().unwrap()), &buf[..8]);
        assert_eq!(body.complete().unwrap(), &buf[8..]);
    }

    #[test]
    fn test_udp_checksum_0xffff() {
        // Test the behavior when a UDP packet has to
        // flip its checksum field.
        let builder = (&[0xff, 0xd9]).into_serializer().encapsulate(UdpPacketBuilder::new(
            Ipv4Addr::new([0, 0, 0, 0]),
            Ipv4Addr::new([0, 0, 0, 0]),
            None,
            NonZeroU16::new(1).unwrap(),
        ));
        let buf = builder.serialize_vec_outer().unwrap();
        // The serializer has flipped the bits for us.
        // Normally, 0xFFFF can't be checksum because -0
        // can not be produced by adding non-negtive 16-bit
        // words
        assert_eq!(buf.as_ref()[7], 0xFF);
        assert_eq!(buf.as_ref()[8], 0xFF);

        // When validating the checksum, just add'em up.
        let mut c = internet_checksum::Checksum::new();
        c.add_bytes(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 10]);
        c.add_bytes(buf.as_ref());
        assert!(c.checksum() == [0, 0]);
    }

    //
    // Benchmarks
    //

    fn bench_parse_inner<B: Bencher>(b: &mut B) {
        use crate::testdata::dns_request_v4::*;
        let bytes = parse_ip_packet_in_ethernet_frame::<Ipv4>(
            ETHERNET_FRAME.bytes,
            EthernetFrameLengthCheck::Check,
        )
        .unwrap()
        .0;

        b.iter(|| {
            let buf = bytes;
            let _: UdpPacket<_> = black_box(
                black_box(buf)
                    .parse_with::<_, UdpPacket<_>>(UdpParseArgs::new(
                        IPV4_PACKET.metadata.src_ip,
                        IPV4_PACKET.metadata.dst_ip,
                    ))
                    .unwrap(),
            );
        })
    }

    bench!(bench_parse, bench_parse_inner);

    fn bench_serialize_inner<B: Bencher>(b: &mut B) {
        use crate::testdata::dns_request_v4::*;
        let builder = UdpPacketBuilder::new(
            IPV4_PACKET.metadata.src_ip,
            IPV4_PACKET.metadata.dst_ip,
            None,
            NonZeroU16::new(UDP_PACKET.metadata.dst_port).unwrap(),
        );
        let header_len = builder.constraints().header_len();
        let total_len = header_len + UDP_PACKET.bytes[UDP_PACKET.body_range].len();
        let mut buf = vec![0; total_len];
        buf[header_len..].copy_from_slice(&UDP_PACKET.bytes[UDP_PACKET.body_range]);

        b.iter(|| {
            let _: Buf<_> = black_box(
                black_box(Buf::new(&mut buf[..], header_len..total_len).encapsulate(builder))
                    .serialize_no_alloc_outer(),
            )
            .unwrap();
        })
    }

    bench!(bench_serialize, bench_serialize_inner);
}