aho_corasick/packed/teddy/compile.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
// See the README in this directory for an explanation of the Teddy algorithm.
use std::cmp;
use std::collections::BTreeMap;
use std::fmt;
use crate::packed::pattern::{PatternID, Patterns};
use crate::packed::teddy::Teddy;
/// A builder for constructing a Teddy matcher.
///
/// The builder primarily permits fine grained configuration of the Teddy
/// matcher. Most options are made only available for testing/benchmarking
/// purposes. In reality, options are automatically determined by the nature
/// and number of patterns given to the builder.
#[derive(Clone, Debug)]
pub struct Builder {
/// When none, this is automatically determined. Otherwise, `false` means
/// slim Teddy is used (8 buckets) and `true` means fat Teddy is used
/// (16 buckets). Fat Teddy requires AVX2, so if that CPU feature isn't
/// available and Fat Teddy was requested, no matcher will be built.
fat: Option<bool>,
/// When none, this is automatically determined. Otherwise, `false` means
/// that 128-bit vectors will be used (up to SSSE3 instructions) where as
/// `true` means that 256-bit vectors will be used. As with `fat`, if
/// 256-bit vectors are requested and they aren't available, then a
/// searcher will not be built.
avx: Option<bool>,
}
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}
impl Builder {
/// Create a new builder for configuring a Teddy matcher.
pub fn new() -> Builder {
Builder { fat: None, avx: None }
}
/// Build a matcher for the set of patterns given. If a matcher could not
/// be built, then `None` is returned.
///
/// Generally, a matcher isn't built if the necessary CPU features aren't
/// available, an unsupported target or if the searcher is believed to be
/// slower than standard techniques (i.e., if there are too many literals).
pub fn build(&self, patterns: &Patterns) -> Option<Teddy> {
self.build_imp(patterns)
}
/// Require the use of Fat (true) or Slim (false) Teddy. Fat Teddy uses
/// 16 buckets where as Slim Teddy uses 8 buckets. More buckets are useful
/// for a larger set of literals.
///
/// `None` is the default, which results in an automatic selection based
/// on the number of literals and available CPU features.
pub fn fat(&mut self, yes: Option<bool>) -> &mut Builder {
self.fat = yes;
self
}
/// Request the use of 256-bit vectors (true) or 128-bit vectors (false).
/// Generally, a larger vector size is better since it either permits
/// matching more patterns or matching more bytes in the haystack at once.
///
/// `None` is the default, which results in an automatic selection based on
/// the number of literals and available CPU features.
pub fn avx(&mut self, yes: Option<bool>) -> &mut Builder {
self.avx = yes;
self
}
fn build_imp(&self, patterns: &Patterns) -> Option<Teddy> {
use crate::packed::teddy::runtime;
// Most of the logic here is just about selecting the optimal settings,
// or perhaps even rejecting construction altogether. The choices
// we have are: fat (avx only) or not, ssse3 or avx2, and how many
// patterns we allow ourselves to search. Additionally, for testing
// and benchmarking, we permit callers to try to "force" a setting,
// and if the setting isn't allowed (e.g., forcing AVX when AVX isn't
// available), then we bail and return nothing.
if patterns.len() > 64 {
return None;
}
let has_ssse3 = is_x86_feature_detected!("ssse3");
let has_avx = is_x86_feature_detected!("avx2");
let avx = if self.avx == Some(true) {
if !has_avx {
return None;
}
true
} else if self.avx == Some(false) {
if !has_ssse3 {
return None;
}
false
} else if !has_ssse3 && !has_avx {
return None;
} else {
has_avx
};
let fat = match self.fat {
None => avx && patterns.len() > 32,
Some(false) => false,
Some(true) if !avx => return None,
Some(true) => true,
};
let mut compiler = Compiler::new(patterns, fat);
compiler.compile();
let Compiler { buckets, masks, .. } = compiler;
// SAFETY: It is required that the builder only produce Teddy matchers
// that are allowed to run on the current CPU, since we later assume
// that the presence of (for example) TeddySlim1Mask256 means it is
// safe to call functions marked with the `avx2` target feature.
match (masks.len(), avx, fat) {
(1, false, _) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddySlim1Mask128(
runtime::TeddySlim1Mask128 {
mask1: runtime::Mask128::new(masks[0]),
},
),
}),
(1, true, false) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddySlim1Mask256(
runtime::TeddySlim1Mask256 {
mask1: runtime::Mask256::new(masks[0]),
},
),
}),
(1, true, true) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddyFat1Mask256(
runtime::TeddyFat1Mask256 {
mask1: runtime::Mask256::new(masks[0]),
},
),
}),
(2, false, _) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddySlim2Mask128(
runtime::TeddySlim2Mask128 {
mask1: runtime::Mask128::new(masks[0]),
mask2: runtime::Mask128::new(masks[1]),
},
),
}),
(2, true, false) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddySlim2Mask256(
runtime::TeddySlim2Mask256 {
mask1: runtime::Mask256::new(masks[0]),
mask2: runtime::Mask256::new(masks[1]),
},
),
}),
(2, true, true) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddyFat2Mask256(
runtime::TeddyFat2Mask256 {
mask1: runtime::Mask256::new(masks[0]),
mask2: runtime::Mask256::new(masks[1]),
},
),
}),
(3, false, _) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddySlim3Mask128(
runtime::TeddySlim3Mask128 {
mask1: runtime::Mask128::new(masks[0]),
mask2: runtime::Mask128::new(masks[1]),
mask3: runtime::Mask128::new(masks[2]),
},
),
}),
(3, true, false) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddySlim3Mask256(
runtime::TeddySlim3Mask256 {
mask1: runtime::Mask256::new(masks[0]),
mask2: runtime::Mask256::new(masks[1]),
mask3: runtime::Mask256::new(masks[2]),
},
),
}),
(3, true, true) => Some(Teddy {
buckets,
max_pattern_id: patterns.max_pattern_id(),
exec: runtime::Exec::TeddyFat3Mask256(
runtime::TeddyFat3Mask256 {
mask1: runtime::Mask256::new(masks[0]),
mask2: runtime::Mask256::new(masks[1]),
mask3: runtime::Mask256::new(masks[2]),
},
),
}),
_ => unreachable!(),
}
}
}
/// A compiler is in charge of allocating patterns into buckets and generating
/// the masks necessary for searching.
#[derive(Clone)]
struct Compiler<'p> {
patterns: &'p Patterns,
buckets: Vec<Vec<PatternID>>,
masks: Vec<Mask>,
}
impl<'p> Compiler<'p> {
/// Create a new Teddy compiler for the given patterns. If `fat` is true,
/// then 16 buckets will be used instead of 8.
///
/// This panics if any of the patterns given are empty.
fn new(patterns: &'p Patterns, fat: bool) -> Compiler<'p> {
let mask_len = cmp::min(3, patterns.minimum_len());
assert!(1 <= mask_len && mask_len <= 3);
Compiler {
patterns,
buckets: vec![vec![]; if fat { 16 } else { 8 }],
masks: vec![Mask::default(); mask_len],
}
}
/// Compile the patterns in this compiler into buckets and masks.
fn compile(&mut self) {
let mut lonibble_to_bucket: BTreeMap<Vec<u8>, usize> = BTreeMap::new();
for (id, pattern) in self.patterns.iter() {
// We try to be slightly clever in how we assign patterns into
// buckets. Generally speaking, we want patterns with the same
// prefix to be in the same bucket, since it minimizes the amount
// of time we spend churning through buckets in the verification
// step.
//
// So we could assign patterns with the same N-prefix (where N
// is the size of the mask, which is one of {1, 2, 3}) to the
// same bucket. However, case insensitive searches are fairly
// common, so we'd for example, ideally want to treat `abc` and
// `ABC` as if they shared the same prefix. ASCII has the nice
// property that the lower 4 bits of A and a are the same, so we
// therefore group patterns with the same low-nybbe-N-prefix into
// the same bucket.
//
// MOREOVER, this is actually necessary for correctness! In
// particular, by grouping patterns with the same prefix into the
// same bucket, we ensure that we preserve correct leftmost-first
// and leftmost-longest match semantics. In addition to the fact
// that `patterns.iter()` iterates in the correct order, this
// guarantees that all possible ambiguous matches will occur in
// the same bucket. The verification routine could be adjusted to
// support correct leftmost match semantics regardless of bucket
// allocation, but that results in a performance hit. It's much
// nicer to be able to just stop as soon as a match is found.
let lonybs = pattern.low_nybbles(self.masks.len());
if let Some(&bucket) = lonibble_to_bucket.get(&lonybs) {
self.buckets[bucket].push(id);
} else {
// N.B. We assign buckets in reverse because it shouldn't have
// any influence on performance, but it does make it harder to
// get leftmost match semantics accidentally correct.
let bucket = (self.buckets.len() - 1)
- (id as usize % self.buckets.len());
self.buckets[bucket].push(id);
lonibble_to_bucket.insert(lonybs, bucket);
}
}
for (bucket_index, bucket) in self.buckets.iter().enumerate() {
for &pat_id in bucket {
let pat = self.patterns.get(pat_id);
for (i, mask) in self.masks.iter_mut().enumerate() {
if self.buckets.len() == 8 {
mask.add_slim(bucket_index as u8, pat.bytes()[i]);
} else {
mask.add_fat(bucket_index as u8, pat.bytes()[i]);
}
}
}
}
}
}
impl<'p> fmt::Debug for Compiler<'p> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut buckets = vec![vec![]; self.buckets.len()];
for (i, bucket) in self.buckets.iter().enumerate() {
for &patid in bucket {
buckets[i].push(self.patterns.get(patid));
}
}
f.debug_struct("Compiler")
.field("buckets", &buckets)
.field("masks", &self.masks)
.finish()
}
}
/// Mask represents the low and high nybble masks that will be used during
/// search. Each mask is 32 bytes wide, although only the first 16 bytes are
/// used for the SSSE3 runtime.
///
/// Each byte in the mask corresponds to a 8-bit bitset, where bit `i` is set
/// if and only if the corresponding nybble is in the ith bucket. The index of
/// the byte (0-15, inclusive) corresponds to the nybble.
///
/// Each mask is used as the target of a shuffle, where the indices for the
/// shuffle are taken from the haystack. AND'ing the shuffles for both the
/// low and high masks together also results in 8-bit bitsets, but where bit
/// `i` is set if and only if the correspond *byte* is in the ith bucket.
///
/// During compilation, masks are just arrays. But during search, these masks
/// are represented as 128-bit or 256-bit vectors.
///
/// (See the README is this directory for more details.)
#[derive(Clone, Copy, Default)]
pub struct Mask {
lo: [u8; 32],
hi: [u8; 32],
}
impl Mask {
/// Update this mask by adding the given byte to the given bucket. The
/// given bucket must be in the range 0-7.
///
/// This is for "slim" Teddy, where there are only 8 buckets.
fn add_slim(&mut self, bucket: u8, byte: u8) {
assert!(bucket < 8);
let byte_lo = (byte & 0xF) as usize;
let byte_hi = ((byte >> 4) & 0xF) as usize;
// When using 256-bit vectors, we need to set this bucket assignment in
// the low and high 128-bit portions of the mask. This allows us to
// process 32 bytes at a time. Namely, AVX2 shuffles operate on each
// of the 128-bit lanes, rather than the full 256-bit vector at once.
self.lo[byte_lo] |= 1 << bucket;
self.lo[byte_lo + 16] |= 1 << bucket;
self.hi[byte_hi] |= 1 << bucket;
self.hi[byte_hi + 16] |= 1 << bucket;
}
/// Update this mask by adding the given byte to the given bucket. The
/// given bucket must be in the range 0-15.
///
/// This is for "fat" Teddy, where there are 16 buckets.
fn add_fat(&mut self, bucket: u8, byte: u8) {
assert!(bucket < 16);
let byte_lo = (byte & 0xF) as usize;
let byte_hi = ((byte >> 4) & 0xF) as usize;
// Unlike slim teddy, fat teddy only works with AVX2. For fat teddy,
// the high 128 bits of our mask correspond to buckets 8-15, while the
// low 128 bits correspond to buckets 0-7.
if bucket < 8 {
self.lo[byte_lo] |= 1 << bucket;
self.hi[byte_hi] |= 1 << bucket;
} else {
self.lo[byte_lo + 16] |= 1 << (bucket % 8);
self.hi[byte_hi + 16] |= 1 << (bucket % 8);
}
}
/// Return the low 128 bits of the low-nybble mask.
pub fn lo128(&self) -> [u8; 16] {
let mut tmp = [0; 16];
tmp.copy_from_slice(&self.lo[..16]);
tmp
}
/// Return the full low-nybble mask.
pub fn lo256(&self) -> [u8; 32] {
self.lo
}
/// Return the low 128 bits of the high-nybble mask.
pub fn hi128(&self) -> [u8; 16] {
let mut tmp = [0; 16];
tmp.copy_from_slice(&self.hi[..16]);
tmp
}
/// Return the full high-nybble mask.
pub fn hi256(&self) -> [u8; 32] {
self.hi
}
}
impl fmt::Debug for Mask {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let (mut parts_lo, mut parts_hi) = (vec![], vec![]);
for i in 0..32 {
parts_lo.push(format!("{:02}: {:08b}", i, self.lo[i]));
parts_hi.push(format!("{:02}: {:08b}", i, self.hi[i]));
}
f.debug_struct("Mask")
.field("lo", &parts_lo)
.field("hi", &parts_hi)
.finish()
}
}