1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

use alloc::vec;
use alloc::vec::Vec;
use core::ops::{Index, Range};

/// Implementation of a `Stack` which maintains popped elements and length of previous states
/// in order to rewind the stack to a previous state.
#[derive(Debug)]
pub struct Stack<T: Clone> {
    /// All elements in the stack.
    cache: Vec<T>,
    /// All elements that are in previous snapshots but may not be in the next state.
    /// They will be pushed back to `cache` if the snapshot is restored,
    /// otherwise be dropped if the snapshot is cleared.
    ///
    /// Those elements from a sequence of snapshots are stacked in one [`Vec`], and
    /// `popped.len() == lengths.iter().map(|(len, remained)| len - remained).sum()`
    popped: Vec<T>,
    /// Every element corresponds to a snapshot, and each element has two fields:
    /// - Length of `cache` when corresponding snapshot is taken (AKA `len`).
    /// - Count of elements that come from corresponding snapshot
    ///   and are still in next snapshot or current state (AKA `remained`).
    ///
    /// And `len` is never less than `remained`.
    ///
    /// On restoring, the `cache` can be divided into two parts:
    /// - `0..remained` are untouched since the snapshot is taken.
    ///
    ///   There's nothing to do with those elements. Just let them stay where they are.
    ///
    /// - `remained..cache.len()` are pushed after the snapshot is taken.
    lengths: Vec<(usize, usize)>,
}

impl<T: Clone> Default for Stack<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: Clone> Stack<T> {
    /// Creates a new `Stack`.
    pub fn new() -> Self {
        Stack {
            cache: vec![],
            popped: vec![],
            lengths: vec![],
        }
    }

    /// Returns `true` if the stack is currently empty.
    #[allow(dead_code)]
    pub fn is_empty(&self) -> bool {
        self.cache.is_empty()
    }

    /// Returns the top-most `&T` in the `Stack`.
    pub fn peek(&self) -> Option<&T> {
        self.cache.last()
    }

    /// Pushes a `T` onto the `Stack`.
    pub fn push(&mut self, elem: T) {
        self.cache.push(elem);
    }

    /// Pops the top-most `T` from the `Stack`.
    pub fn pop(&mut self) -> Option<T> {
        let len = self.cache.len();
        let popped = self.cache.pop();
        if let Some(popped) = &popped {
            if let Some((_, remained_count)) = self.lengths.last_mut() {
                // `len >= *unpopped_count`
                if len == *remained_count {
                    *remained_count -= 1;
                    self.popped.push(popped.clone());
                }
            }
        }
        popped
    }

    /// Returns the size of the stack
    pub fn len(&self) -> usize {
        self.cache.len()
    }

    /// Takes a snapshot of the current `Stack`.
    pub fn snapshot(&mut self) {
        self.lengths.push((self.cache.len(), self.cache.len()))
    }

    /// The parsing after the last snapshot was successful so clearing it.
    pub fn clear_snapshot(&mut self) {
        if let Some((len, unpopped)) = self.lengths.pop() {
            // Popped elements from previous state are no longer needed.
            self.popped.truncate(self.popped.len() - (len - unpopped));
        }
    }

    /// Rewinds the `Stack` to the most recent `snapshot()`. If no `snapshot()` has been taken, this
    /// function return the stack to its initial state.
    pub fn restore(&mut self) {
        match self.lengths.pop() {
            Some((len_stack, remained)) => {
                if remained < self.cache.len() {
                    // Remove those elements that are pushed after the snapshot.
                    self.cache.truncate(remained);
                }
                if len_stack > remained {
                    let rewind_count = len_stack - remained;
                    let new_len = self.popped.len() - rewind_count;
                    let recovered_elements = self.popped.drain(new_len..);
                    self.cache.extend(recovered_elements.rev());
                    debug_assert_eq!(self.popped.len(), new_len);
                }
            }
            None => {
                self.cache.clear();
                // As `self.popped` and `self.lengths` should already be empty,
                // there is no need to clear it.
                debug_assert!(self.popped.is_empty());
                debug_assert!(self.lengths.is_empty());
            }
        }
    }
}

impl<T: Clone> Index<Range<usize>> for Stack<T> {
    type Output = [T];

    fn index(&self, range: Range<usize>) -> &[T] {
        self.cache.index(range)
    }
}

#[cfg(test)]
mod test {
    use super::Stack;

    #[test]
    fn snapshot_with_empty() {
        let mut stack = Stack::new();

        stack.snapshot();
        // []
        assert!(stack.is_empty());
        // [0]
        stack.push(0);
        stack.restore();
        assert!(stack.is_empty());
    }

    #[test]
    fn snapshot_twice() {
        let mut stack = Stack::new();

        stack.push(0);

        stack.snapshot();
        stack.snapshot();
        stack.restore();
        stack.restore();

        assert_eq!(stack[0..stack.len()], [0]);
    }
    #[test]
    fn restore_without_snapshot() {
        let mut stack = Stack::new();

        stack.push(0);
        stack.restore();

        assert_eq!(stack[0..stack.len()], [0; 0]);
    }

    #[test]
    fn snapshot_pop_restore() {
        let mut stack = Stack::new();

        stack.push(0);
        stack.snapshot();
        stack.pop();
        stack.restore();

        assert_eq!(stack[0..stack.len()], [0]);
    }

    #[test]
    fn snapshot_pop_push_restore() {
        let mut stack = Stack::new();

        stack.push(0);
        stack.snapshot();
        stack.pop();
        stack.push(1);
        stack.restore();

        assert_eq!(stack[0..stack.len()], [0]);
    }

    #[test]
    fn snapshot_push_pop_restore() {
        let mut stack = Stack::new();

        stack.push(0);
        stack.snapshot();
        stack.push(1);
        stack.push(2);
        stack.pop();
        stack.restore();

        assert_eq!(stack[0..stack.len()], [0]);
    }

    #[test]
    fn snapshot_push_clear() {
        let mut stack = Stack::new();

        stack.push(0);
        stack.snapshot();
        stack.push(1);
        stack.clear_snapshot();

        assert_eq!(stack[0..stack.len()], [0, 1]);
    }

    #[test]
    fn snapshot_pop_clear() {
        let mut stack = Stack::new();

        stack.push(0);
        stack.push(1);
        stack.snapshot();
        stack.pop();
        stack.clear_snapshot();

        assert_eq!(stack[0..stack.len()], [0]);
    }

    #[test]
    fn stack_ops() {
        let mut stack = Stack::new();

        // []
        assert!(stack.is_empty());
        assert_eq!(stack.peek(), None);
        assert_eq!(stack.pop(), None);

        // [0]
        stack.push(0);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&0));

        // [0, 1]
        stack.push(1);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&1));

        // [0]
        assert_eq!(stack.pop(), Some(1));
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&0));

        // [0, 2]
        stack.push(2);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&2));

        // [0, 2, 3]
        stack.push(3);
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&3));

        // Take a snapshot of the current stack
        // [0, 2, 3]
        stack.snapshot();

        // [0, 2]
        assert_eq!(stack.pop(), Some(3));
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&2));

        // Take a snapshot of the current stack
        // [0, 2]
        stack.snapshot();

        // [0]
        assert_eq!(stack.pop(), Some(2));
        assert!(!stack.is_empty());
        assert_eq!(stack.peek(), Some(&0));

        // []
        assert_eq!(stack.pop(), Some(0));
        assert!(stack.is_empty());

        // Test backtracking
        // [0, 2]
        stack.restore();
        assert_eq!(stack.pop(), Some(2));
        assert_eq!(stack.pop(), Some(0));
        assert_eq!(stack.pop(), None);

        // Test backtracking
        // [0, 2, 3]
        stack.restore();
        assert_eq!(stack.pop(), Some(3));
        assert_eq!(stack.pop(), Some(2));
        assert_eq!(stack.pop(), Some(0));
        assert_eq!(stack.pop(), None);
    }
}