_fuchsia_async_staticlib_rustc_static/ffi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use fuchsia_sync::Mutex;
use futures::channel::oneshot;
use std::time::Duration;
use zx_types::{
zx_handle_t, zx_packet_signal_t, zx_signals_t, zx_status_t, zx_time_t, ZX_ERR_NOT_SUPPORTED,
ZX_OK,
};
use {fuchsia_async as fasync, zx_status};
struct EPtr(*mut Executor);
unsafe impl Send for EPtr {}
unsafe impl Sync for EPtr {}
impl EPtr {
unsafe fn as_ref(&self) -> &Executor {
self.0.as_ref().unwrap()
}
unsafe fn as_mut(&mut self) -> &mut Executor {
self.0.as_mut().unwrap()
}
}
#[cfg(target_os = "fuchsia")]
mod fuchsia_details {
use super::*;
// The callback holder... gets registered with the executor and receives a packet when
// trigger signals are observed. Needs to hold its own registration as dropping that would cause
// deregistration.
pub(crate) struct WaitEnder {
wait: *mut async_wait_t,
dispatcher: *mut std::ffi::c_void,
registration: Mutex<Registration>,
}
// Registration state machine:
// Unregistered -+-> Registered -+-> Finished
// | |
// +---------------+
// i.e. we start at Unregistered, move to Finished, and for a time we may be Registered, or not.
// The or not case happens when we get the receive_packet callback *before* we record the registration on
// the WaitEnder instance.
enum Registration {
// Wait registration not yet recorded.
Unregistered,
// Wait registered. We expect to receive_packet sometime in the future.
// Hold onto the [`ReceiverRegistration`], as dropping it would cause
// deregistration.
Registered { _receiver: fasync::ReceiverRegistration<WaitEnder> },
// We have gotten a receive_packet callback.
Finished,
}
unsafe impl Send for WaitEnder {}
unsafe impl Sync for WaitEnder {}
impl fasync::PacketReceiver for WaitEnder {
fn receive_packet(&self, packet: zx::Packet) {
// Record that the receive_packet call has been received... this finishes the
// registration state machine.
// Lock only needs to be held as long as it takes to note this fact.
*self.registration.lock() = Registration::Finished;
if let zx::PacketContents::SignalOne(sig) = packet.contents() {
unsafe {
((*self.wait).handler)(
self.dispatcher,
self.wait,
packet.status(),
sig.raw_packet(),
)
}
} else {
panic!("Expected a signal packet");
}
}
}
impl WaitEnder {
pub(crate) fn new(dispatcher: *mut std::ffi::c_void, wait: *mut async_wait_t) -> WaitEnder {
WaitEnder { wait, dispatcher, registration: Mutex::new(Registration::Unregistered) }
}
pub(crate) fn record_registration(
&self,
registration: fasync::ReceiverRegistration<WaitEnder>,
) {
let mut lock = self.registration.lock();
if let Registration::Finished =
std::mem::replace(&mut *lock, Registration::Registered { _receiver: registration })
{
// Need to be able to cope with the callback coming before we reach this code and finish
// the cycle holding our registration.
*lock = Registration::Finished;
}
}
}
}
pub struct Executor {
executor: Mutex<fasync::LocalExecutor>,
quit_tx: Mutex<Option<oneshot::Sender<()>>>,
start: fasync::MonotonicInstant,
cb_executor: *mut std::ffi::c_void,
}
impl Executor {
fn new(cb_executor: *mut std::ffi::c_void) -> Box<Executor> {
Box::new(Executor {
executor: Mutex::new(fasync::LocalExecutor::new()),
quit_tx: Mutex::new(None),
start: fasync::MonotonicInstant::now(),
cb_executor,
})
}
fn run_singlethreaded(&self) {
let (tx, rx) = oneshot::channel();
// We make sure the quit message channel is `None` before replacing with
// the new channel. This ensures that even if it panics, the executor
// can still be successfully quit afterwards.
let mut quit_tx = self.quit_tx.lock();
if quit_tx.is_none() {
*quit_tx = Some(tx);
drop(quit_tx);
} else {
// `fuchsia_sync::Mutex` doesn't poison on panic, but dropping the
// guard before panicking is good practice in case we migrate away
// from it in the future.
drop(quit_tx);
panic!("run_singlethreaded called but the executor is already running");
}
self.executor.lock().run_singlethreaded(async move { rx.await }).unwrap();
}
fn quit(&self) {
// These operations are separate to avoid poisoning the quit message
// channel if the executor is not running.
let quit_tx = self.quit_tx.lock().take();
quit_tx.unwrap().send(()).unwrap();
}
#[cfg(target_os = "fuchsia")]
unsafe fn begin_wait(&mut self, wait: *mut async_wait_t) -> Result<(), zx_status::Status> {
// TODO: figure out how to change fasync::Executor such that this can be done without allocation.
use fuchsia_details::*;
use std::sync::Arc;
use zx::AsHandleRef;
let handle = zx::HandleRef::from_raw_handle((*wait).object);
let dispatcher: *mut Executor = &mut *self;
let wait_ender = Arc::new(WaitEnder::new(dispatcher as *mut std::ffi::c_void, wait));
let registration = fasync::EHandle::local().register_receiver(wait_ender.clone());
let signals =
zx::Signals::from_bits((*wait).trigger).ok_or(zx_status::Status::INVALID_ARGS)?;
let options =
zx::WaitAsyncOpts::from_bits((*wait).options).ok_or(zx_status::Status::INVALID_ARGS)?;
let result =
handle.wait_async_handle(registration.port(), registration.key(), signals, options);
wait_ender.record_registration(registration);
result
}
#[cfg(not(target_os = "fuchsia"))]
unsafe fn begin_wait(&mut self, wait: *mut async_wait_t) -> Result<(), zx_status::Status> {
use fasync::emulated_handle::{Handle, Signals};
use fasync::OnSignalsRef;
let wait_ptr = wait;
let dispatcher: *mut Executor = &mut *self;
let wait = &mut *wait;
// TODO(sadmac): Make sure the handle is guaranteed to remain open for the duration of the
// wait, or document what effect that has on correctness.
let object = std::mem::ManuallyDrop::new(Handle::from_raw(wait.object));
let trigger = Signals::from_bits_retain(wait.trigger);
let handler = wait.handler;
fasync::Task::local(async move {
match OnSignalsRef::new(&*object, trigger).await {
Ok(sigs) => {
let packet = zx_packet_signal_t {
trigger: trigger.bits(),
observed: sigs.bits(),
count: 1,
timestamp: 1234,
};
handler(dispatcher as *mut std::ffi::c_void, wait_ptr, ZX_OK, &packet);
}
Err(x) => {
handler(
dispatcher as *mut std::ffi::c_void,
wait_ptr,
x.into_raw(),
std::ptr::null_mut(),
);
}
}
})
.detach();
Ok(())
}
fn now(&self) -> zx_time_t {
let dur = fasync::MonotonicInstant::now() - self.start;
#[cfg(target_os = "fuchsia")]
let r = dur.into_nanos();
#[cfg(not(target_os = "fuchsia"))]
let r = dur.as_nanos() as zx_time_t;
r
}
}
/// Duplicated from //sdk/lib/async/include/lib/async/dispatcher.h
#[repr(C)]
struct async_state_t {
_reserved: [usize; 2],
}
/// Duplicated from //sdk/lib/async/include/lib/async/wait.h
#[repr(C)]
pub(crate) struct async_wait_t {
_state: async_state_t,
handler: extern "C" fn(
*mut std::ffi::c_void,
*mut async_wait_t,
zx_status_t,
*const zx_packet_signal_t,
),
object: zx_handle_t,
trigger: zx_signals_t,
options: u32,
}
/// Duplicated from //sdk/lib/async/include/lib/async/task.h
#[repr(C)]
struct async_task_t {
_state: async_state_t,
handler: extern "C" fn(*mut std::ffi::c_void, *mut async_task_t, zx_status_t),
deadline: zx_time_t,
}
struct TaskPtr(*mut async_task_t);
unsafe impl Send for TaskPtr {}
unsafe impl Sync for TaskPtr {}
impl TaskPtr {
unsafe fn as_ref(&self) -> &async_task_t {
self.0.as_ref().unwrap()
}
}
#[no_mangle]
pub extern "C" fn fasync_executor_create(cb_executor: *mut std::ffi::c_void) -> *mut Executor {
Box::into_raw(Executor::new(cb_executor))
}
/// Runs the given executor in a single-threaded fashion.
///
/// This will block the calling thread until the executor is quit with
/// [`fasync_executor_quit`] or destroyed with [`fasync_executor_destroy`]. Note
/// that after calling this function, `executor` may be a dangling pointer.
///
/// # Panics
///
/// Panics if the given executor is already running, for example if another
/// thread is already calling this function.
///
/// # Safety
///
/// `executor` must be non-null, properly aligned, and point to an initialized
/// [`Executor`]. To guarantee these properties, `executor` should be a pointer
/// returned from [`fasync_executor_create`] that has not yet been passed to
/// [`fasync_executor_destroy`].
#[no_mangle]
pub unsafe extern "C" fn fasync_executor_run_singlethreaded(executor: *mut Executor) {
EPtr(executor).as_ref().run_singlethreaded()
}
/// Signals the given executor to shut down.
///
/// This function does not wait for the executor to finish shutting down. After
/// calling this function, running tasks may continue to be processed until the
/// executor processes the shutdown signal. Once the executor shuts down,
/// [`fasync_executor_run_singlethreaded`] will return.
///
/// # Panics
///
/// Panics if the given executor is not currently running.
///
/// # Safety
///
/// `executor` must be non-null, properly aligned, and point to an initialized
/// [`Executor`]. To guarantee these properties, `executor` should be a pointer
/// returned from [`fasync_executor_create`] that has not yet been passed to
/// [`fasync_executor_destroy`].
#[no_mangle]
pub unsafe extern "C" fn fasync_executor_quit(executor: *mut Executor) {
EPtr(executor).as_ref().quit()
}
/// Drops the given executor.
///
/// This will block the current thread until all tasks that are currently
/// spawned onto the executor have been dropped. After calling this function,
/// `executor` no longer points to an initialized [`Executor`].
///
/// # Safety
///
/// `executor` must be non-null, properly aligned, and point to an initialized
/// [`Executor`] that is not currently running. To guarantee these properties,
/// `executor` should be a pointer returned from [`fasync_executor_create`] that
/// has not yet been passed to [`fasync_executor_destroy`] and is not currently
/// running in a call to [`fasync_executor_run_singlethreaded`].
#[no_mangle]
pub unsafe extern "C" fn fasync_executor_destroy(executor: *mut Executor) {
drop(Box::from_raw(executor))
}
#[no_mangle]
unsafe extern "C" fn fasync_executor_now(executor: *mut Executor) -> zx_time_t {
EPtr(executor).as_ref().now()
}
#[no_mangle]
unsafe extern "C" fn fasync_executor_begin_wait(
executor: *mut Executor,
wait: *mut async_wait_t,
) -> zx_status_t {
zx_status::Status::from_result(EPtr(executor).as_mut().begin_wait(wait)).into_raw()
}
#[no_mangle]
unsafe extern "C" fn fasync_executor_cancel_wait(
_executor: *mut Executor,
_wait: *mut async_wait_t,
) -> zx_status_t {
ZX_ERR_NOT_SUPPORTED
}
#[no_mangle]
unsafe extern "C" fn fasync_executor_post_task(
executor: *mut Executor,
task: *mut async_task_t,
) -> zx_status_t {
let executor = EPtr(executor);
let task = TaskPtr(task);
fasync::Task::spawn(async move {
let deadline = Duration::from_nanos(task.as_ref().deadline as u64);
let start = executor.as_ref().start;
fasync::Timer::new(start + deadline.into()).await;
(task.as_ref().handler)(executor.as_ref().cb_executor, task.0, ZX_OK)
})
.detach();
ZX_OK
}
#[no_mangle]
unsafe extern "C" fn fasync_executor_cancel_task(
_executor: *mut Executor,
_task: *mut async_task_t,
) -> zx_status_t {
ZX_ERR_NOT_SUPPORTED
}