ttf_parser/tables/
glyf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
// https://docs.microsoft.com/en-us/typography/opentype/spec/glyf

use core::num::NonZeroU16;

use crate::parser::{Stream, F2DOT14, LazyArray16, NumFrom};
use crate::{loca, GlyphId, OutlineBuilder, Rect, BBox};

pub(crate) struct Builder<'a> {
    pub builder: &'a mut dyn OutlineBuilder,
    pub transform: Transform,
    is_default_ts: bool, // `bool` is faster than `Option` or `is_default`.
    pub bbox: Option<BBox>, // Used only by `gvar`.
    first_on_curve: Option<Point>,
    first_off_curve: Option<Point>,
    last_off_curve: Option<Point>,
}

impl<'a> Builder<'a> {
    #[inline]
    pub fn new(
        transform: Transform,
        bbox: Option<BBox>,
        builder: &'a mut dyn OutlineBuilder,
    ) -> Self {
        Builder {
            builder,
            transform,
            is_default_ts: transform.is_default(),
            bbox,
            first_on_curve: None,
            first_off_curve: None,
            last_off_curve: None,
        }
    }

    #[inline]
    fn move_to(&mut self, mut x: f32, mut y: f32) {
        if !self.is_default_ts {
            self.transform.apply_to(&mut x, &mut y);
        }

        if let Some(ref mut bbox) = self.bbox {
            bbox.extend_by(x, y);
        }

        self.builder.move_to(x, y);
    }

    #[inline]
    fn line_to(&mut self, mut x: f32, mut y: f32) {
        if !self.is_default_ts {
            self.transform.apply_to(&mut x, &mut y);
        }

        if let Some(ref mut bbox) = self.bbox {
            bbox.extend_by(x, y);
        }

        self.builder.line_to(x, y);
    }

    #[inline]
    fn quad_to(&mut self, mut x1: f32, mut y1: f32, mut x: f32, mut y: f32) {
        if !self.is_default_ts {
            self.transform.apply_to(&mut x1, &mut y1);
            self.transform.apply_to(&mut x, &mut y);
        }

        if let Some(ref mut bbox) = self.bbox {
            bbox.extend_by(x1, y1);
            bbox.extend_by(x, y);
        }

        self.builder.quad_to(x1, y1, x, y);
    }

    // Useful links:
    //
    // - https://developer.apple.com/fonts/TrueType-Reference-Manual/RM01/Chap1.html
    // - https://stackoverflow.com/a/20772557
    #[inline]
    pub fn push_point(&mut self, x: f32, y: f32, on_curve_point: bool, last_point: bool) {
        let p = Point { x, y };
        if self.first_on_curve.is_none() {
            if on_curve_point {
                self.first_on_curve = Some(p);
                self.move_to(p.x, p.y);
            } else {
                if let Some(offcurve) = self.first_off_curve {
                    let mid = offcurve.lerp(p, 0.5);
                    self.first_on_curve = Some(mid);
                    self.last_off_curve = Some(p);
                    self.move_to(mid.x, mid.y);
                } else {
                    self.first_off_curve = Some(p);
                }
            }
        } else {
            match (self.last_off_curve, on_curve_point) {
                (Some(offcurve), true) => {
                    self.last_off_curve = None;
                    self.quad_to(offcurve.x, offcurve.y, p.x, p.y);
                }
                (Some(offcurve), false) => {
                    self.last_off_curve = Some(p);
                    let mid = offcurve.lerp(p, 0.5);
                    self.quad_to(offcurve.x, offcurve.y, mid.x, mid.y);
                }
                (None, true) => {
                    self.line_to(p.x, p.y);
                }
                (None, false) => {
                    self.last_off_curve = Some(p);
                }
            }
        }

        if last_point {
            self.finish_contour();
        }
    }

    #[inline]
    fn finish_contour(&mut self) {
        if let (Some(offcurve1), Some(offcurve2)) = (self.first_off_curve, self.last_off_curve) {
            self.last_off_curve = None;
            let mid = offcurve2.lerp(offcurve1, 0.5);
            self.quad_to(offcurve2.x, offcurve2.y, mid.x, mid.y);
        }

        if let (Some(p), Some(offcurve1)) = (self.first_on_curve, self.first_off_curve) {
            self.quad_to(offcurve1.x, offcurve1.y, p.x, p.y);
        } else if let (Some(p), Some(offcurve2)) = (self.first_on_curve, self.last_off_curve) {
            self.quad_to(offcurve2.x, offcurve2.y, p.x, p.y);
        } else if let Some(p) = self.first_on_curve {
            self.line_to(p.x, p.y);
        }

        self.first_on_curve = None;
        self.first_off_curve = None;
        self.last_off_curve = None;

        self.builder.close();
    }
}


#[derive(Clone, Copy)]
pub struct Transform {
    pub a: f32, pub b: f32, pub c: f32,
    pub d: f32, pub e: f32, pub f: f32,
}

impl Transform {
    #[cfg(feature = "variable-fonts")]
    #[inline]
    pub fn new_translate(tx: f32, ty: f32) -> Self {
        Transform { a: 1.0, b: 0.0, c: 0.0, d: 1.0, e: tx, f: ty }
    }

    #[inline]
    pub fn combine(ts1: Self, ts2: Self) -> Self {
        Transform {
            a: ts1.a * ts2.a + ts1.c * ts2.b,
            b: ts1.b * ts2.a + ts1.d * ts2.b,
            c: ts1.a * ts2.c + ts1.c * ts2.d,
            d: ts1.b * ts2.c + ts1.d * ts2.d,
            e: ts1.a * ts2.e + ts1.c * ts2.f + ts1.e,
            f: ts1.b * ts2.e + ts1.d * ts2.f + ts1.f,
        }
    }

    #[inline]
    fn apply_to(&self, x: &mut f32, y: &mut f32) {
        let tx = *x;
        let ty = *y;
        *x = self.a * tx + self.c * ty + self.e;
        *y = self.b * tx + self.d * ty + self.f;
    }

    #[inline]
    fn is_default(&self) -> bool {
        // A direct float comparison is fine in our case.
           self.a == 1.0
        && self.b == 0.0
        && self.c == 0.0
        && self.d == 1.0
        && self.e == 0.0
        && self.f == 0.0
    }
}

impl Default for Transform {
    #[inline]
    fn default() -> Self {
        Transform { a: 1.0, b: 0.0, c: 0.0, d: 1.0, e: 0.0, f: 0.0 }
    }
}

impl core::fmt::Debug for Transform {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "Transform({} {} {} {} {} {})", self.a, self.b, self.c, self.d, self.e, self.f)
    }
}


#[derive(Clone, Copy, Debug)]
pub(crate) struct CompositeGlyphInfo {
    pub glyph_id: GlyphId,
    pub transform: Transform,
    pub flags: CompositeGlyphFlags,
}


#[derive(Clone)]
pub(crate) struct CompositeGlyphIter<'a> {
    stream: Stream<'a>,
}

impl<'a> CompositeGlyphIter<'a> {
    #[inline]
    pub fn new(data: &'a [u8]) -> Self {
        CompositeGlyphIter { stream: Stream::new(data) }
    }
}

impl<'a> Iterator for CompositeGlyphIter<'a> {
    type Item = CompositeGlyphInfo;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let flags = CompositeGlyphFlags(self.stream.read::<u16>()?);
        let glyph_id: GlyphId = self.stream.read()?;

        let mut ts = Transform::default();

        if flags.args_are_xy_values() {
            if flags.arg_1_and_2_are_words() {
                ts.e = f32::from(self.stream.read::<i16>()?);
                ts.f = f32::from(self.stream.read::<i16>()?);
            } else {
                ts.e = f32::from(self.stream.read::<i8>()?);
                ts.f = f32::from(self.stream.read::<i8>()?);
            }
        }

        if flags.we_have_a_two_by_two() {
            ts.a = self.stream.read::<F2DOT14>()?.to_f32();
            ts.b = self.stream.read::<F2DOT14>()?.to_f32();
            ts.c = self.stream.read::<F2DOT14>()?.to_f32();
            ts.d = self.stream.read::<F2DOT14>()?.to_f32();
        } else if flags.we_have_an_x_and_y_scale() {
            ts.a = self.stream.read::<F2DOT14>()?.to_f32();
            ts.d = self.stream.read::<F2DOT14>()?.to_f32();
        } else if flags.we_have_a_scale() {
            ts.a = self.stream.read::<F2DOT14>()?.to_f32();
            ts.d = ts.a;
        }

        if !flags.more_components() {
            // Finish the iterator even if stream still has some data.
            self.stream.jump_to_end();
        }

        Some(CompositeGlyphInfo {
            glyph_id,
            transform: ts,
            flags,
        })
    }
}


// Due to some optimization magic, using f32 instead of i16
// makes the code ~10% slower. At least on my machine.
// I guess it's due to the fact that with i16 the struct
// fits into the machine word.
#[derive(Clone, Copy, Debug)]
pub struct GlyphPoint {
    pub x: i16,
    pub y: i16,
    /// Indicates that a point is a point on curve
    /// and not a control point.
    pub on_curve_point: bool,
    pub last_point: bool,
}


#[derive(Clone, Default)]
pub struct GlyphPointsIter<'a> {
    endpoints: EndpointsIter<'a>,
    flags: FlagsIter<'a>,
    x_coords: CoordsIter<'a>,
    y_coords: CoordsIter<'a>,
    pub points_left: u16, // Number of points left in the glyph.
}

#[cfg(feature = "variable-fonts")]
impl GlyphPointsIter<'_> {
    #[inline]
    pub fn current_contour(&self) -> u16 {
        self.endpoints.index - 1
    }
}

impl<'a> Iterator for GlyphPointsIter<'a> {
    type Item = GlyphPoint;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.points_left = self.points_left.checked_sub(1)?;

        // TODO: skip empty contours

        let last_point = self.endpoints.next();
        let flags = self.flags.next()?;
        Some(GlyphPoint {
            x: self.x_coords.next(flags.x_short(), flags.x_is_same_or_positive_short()),
            y: self.y_coords.next(flags.y_short(), flags.y_is_same_or_positive_short()),
            on_curve_point: flags.on_curve_point(),
            last_point,
        })
    }
}


/// A simple flattening iterator for glyph's endpoints.
///
/// Translates endpoints like: 2 4 7
/// into flags: 0 0 1 0 1 0 0 1
#[derive(Clone, Copy, Default)]
struct EndpointsIter<'a> {
    endpoints: LazyArray16<'a, u16>, // Each endpoint indicates a contour end.
    index: u16,
    left: u16,
}

impl<'a> EndpointsIter<'a> {
    #[inline]
    fn new(endpoints: LazyArray16<'a, u16>) -> Option<Self> {
        Some(EndpointsIter {
            endpoints,
            index: 1,
            left: endpoints.get(0)?,
        })
    }

    #[inline]
    fn next(&mut self) -> bool {
        if self.left == 0 {
            if let Some(end) = self.endpoints.get(self.index) {
                let prev = self.endpoints.get(self.index - 1).unwrap_or(0);
                // Malformed font can have endpoints not in increasing order,
                // so we have to use checked_sub.
                self.left = end.checked_sub(prev).unwrap_or(0);
                self.left = self.left.checked_sub(1).unwrap_or(0);
            }

            // Always advance the index, so we can check the current contour number.
            if let Some(n) = self.index.checked_add(1) {
                self.index = n;
            }

            true
        } else {
            self.left -= 1;
            false
        }
    }
}


#[derive(Clone, Default)]
struct FlagsIter<'a> {
    stream: Stream<'a>,
    // Number of times the `flags` should be used
    // before reading the next one from `stream`.
    repeats: u8,
    flags: SimpleGlyphFlags,
}

impl<'a> FlagsIter<'a> {
    #[inline]
    fn new(data: &'a [u8]) -> Self {
        FlagsIter {
            stream: Stream::new(data),
            repeats: 0,
            flags: SimpleGlyphFlags(0),
        }
    }
}

impl<'a> Iterator for FlagsIter<'a> {
    type Item = SimpleGlyphFlags;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        if self.repeats == 0 {
            self.flags = SimpleGlyphFlags(self.stream.read::<u8>().unwrap_or_default());
            if self.flags.repeat_flag() {
                self.repeats = self.stream.read::<u8>().unwrap_or(0);
            }
        } else {
            self.repeats -= 1;
        }

        Some(self.flags)
    }
}


#[derive(Clone, Default)]
struct CoordsIter<'a> {
    stream: Stream<'a>,
    prev: i16, // Points are stored as deltas, so we have to keep the previous one.
}

impl<'a> CoordsIter<'a> {
    #[inline]
    fn new(data: &'a [u8]) -> Self {
        CoordsIter {
            stream: Stream::new(data),
            prev: 0,
        }
    }

    #[inline]
    fn next(&mut self, is_short: bool, is_same_or_short: bool) -> i16 {
        // See https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#simple-glyph-description
        // for details about Simple Glyph Flags processing.

        // We've already checked the coords data, so it's safe to fallback to 0.

        let mut n = 0;
        if is_short {
            n = i16::from(self.stream.read::<u8>().unwrap_or(0));
            if !is_same_or_short {
                n = -n;
            }
        } else if !is_same_or_short {
            n = self.stream.read::<i16>().unwrap_or(0);
        }

        self.prev = self.prev.wrapping_add(n);
        self.prev
    }
}


#[derive(Clone, Copy, Debug)]
struct Point {
    x: f32,
    y: f32,
}

impl Point {
    #[inline]
    fn lerp(self, other: Point, t: f32) -> Point {
        Point {
            x: self.x + t * (other.x - self.x),
            y: self.y + t * (other.y - self.y),
        }
    }
}


// https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#simple-glyph-description
#[derive(Clone, Copy, Default)]
struct SimpleGlyphFlags(u8);

impl SimpleGlyphFlags {
    #[inline] fn on_curve_point(self) -> bool { self.0 & 0x01 != 0 }
    #[inline] fn x_short(self) -> bool { self.0 & 0x02 != 0 }
    #[inline] fn y_short(self) -> bool { self.0 & 0x04 != 0 }
    #[inline] fn repeat_flag(self) -> bool { self.0 & 0x08 != 0 }
    #[inline] fn x_is_same_or_positive_short(self) -> bool { self.0 & 0x10 != 0 }
    #[inline] fn y_is_same_or_positive_short(self) -> bool { self.0 & 0x20 != 0 }
}


// https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#composite-glyph-description
#[derive(Clone, Copy, Debug)]
pub(crate) struct CompositeGlyphFlags(u16);

impl CompositeGlyphFlags {
    #[inline] pub fn arg_1_and_2_are_words(self) -> bool { self.0 & 0x0001 != 0 }
    #[inline] pub fn args_are_xy_values(self) -> bool { self.0 & 0x0002 != 0 }
    #[inline] pub fn we_have_a_scale(self) -> bool { self.0 & 0x0008 != 0 }
    #[inline] pub fn more_components(self) -> bool { self.0 & 0x0020 != 0 }
    #[inline] pub fn we_have_an_x_and_y_scale(self) -> bool { self.0 & 0x0040 != 0 }
    #[inline] pub fn we_have_a_two_by_two(self) -> bool { self.0 & 0x0080 != 0 }
}


// It's not defined in the spec, so we are using our own value.
pub const MAX_COMPONENTS: u8 = 32;

#[inline]
pub(crate) fn outline(
    loca_table: loca::Table,
    glyf_table: &[u8],
    glyph_id: GlyphId,
    builder: &mut dyn OutlineBuilder,
) -> Option<Rect> {
    let mut b = Builder::new(Transform::default(), None, builder);
    let range = loca_table.glyph_range(glyph_id)?;
    let glyph_data = glyf_table.get(range)?;
    outline_impl(loca_table, glyf_table, glyph_data, 0, &mut b)
}

#[inline]
pub(crate) fn glyph_bbox(
    loca_table: loca::Table,
    glyf_table: &[u8],
    glyph_id: GlyphId,
) -> Option<Rect> {
    let range = loca_table.glyph_range(glyph_id)?;
    let glyph_data = glyf_table.get(range)?;
    let mut s = Stream::new(glyph_data);
    s.skip::<i16>(); // number_of_contours
    // It's faster to parse the rect directly, instead of using `FromData`.
    Some(Rect {
        x_min: s.read::<i16>()?,
        y_min: s.read::<i16>()?,
        x_max: s.read::<i16>()?,
        y_max: s.read::<i16>()?,
    })
}

#[inline]
fn outline_impl(
    loca_table: loca::Table,
    glyf_table: &[u8],
    data: &[u8],
    depth: u8,
    builder: &mut Builder,
) -> Option<Rect> {
    if depth >= MAX_COMPONENTS {
        return None;
    }

    let mut s = Stream::new(data);
    let number_of_contours: i16 = s.read()?;
    // It's faster to parse the rect directly, instead of using `FromData`.
    let rect = Rect {
        x_min: s.read::<i16>()?,
        y_min: s.read::<i16>()?,
        x_max: s.read::<i16>()?,
        y_max: s.read::<i16>()?,
    };

    if number_of_contours > 0 {
        // Simple glyph.

        // u16 casting is safe, since we already checked that the value is positive.
        let number_of_contours = NonZeroU16::new(number_of_contours as u16)?;
        for point in parse_simple_outline(s.tail()?, number_of_contours)? {
            builder.push_point(f32::from(point.x), f32::from(point.y),
                               point.on_curve_point, point.last_point);
        }
    } else if number_of_contours < 0 {
        // Composite glyph.
        for comp in CompositeGlyphIter::new(s.tail()?) {
            if let Some(range) = loca_table.glyph_range(comp.glyph_id) {
                if let Some(glyph_data) = glyf_table.get(range) {
                    let transform = Transform::combine(builder.transform, comp.transform);
                    let mut b = Builder::new(transform, None, builder.builder);
                    outline_impl(loca_table, glyf_table, glyph_data, depth + 1, &mut b)?;
                }
            }
        }
    } else {
        // An empty glyph.
        return None;
    }

    Some(rect)
}

#[inline]
pub fn parse_simple_outline(
    glyph_data: &[u8],
    number_of_contours: NonZeroU16,
) -> Option<GlyphPointsIter> {
    let mut s = Stream::new(glyph_data);
    let endpoints = s.read_array16::<u16>(number_of_contours.get())?;

    let points_total = endpoints.last()?.checked_add(1)?;

    // Contours with a single point should be ignored.
    // But this is not an error, so we should return an "empty" iterator.
    if points_total == 1 {
        return Some(GlyphPointsIter::default());
    }

    // Skip instructions byte code.
    let instructions_len: u16 = s.read()?;
    s.advance(usize::from(instructions_len));

    let flags_offset = s.offset();
    let (x_coords_len, y_coords_len) = resolve_coords_len(&mut s, points_total)?;
    let x_coords_offset = s.offset();
    let y_coords_offset = x_coords_offset + usize::num_from(x_coords_len);
    let y_coords_end = y_coords_offset + usize::num_from(y_coords_len);

    Some(GlyphPointsIter {
        endpoints: EndpointsIter::new(endpoints)?,
        flags: FlagsIter::new(glyph_data.get(flags_offset..x_coords_offset)?),
        x_coords: CoordsIter::new(glyph_data.get(x_coords_offset..y_coords_offset)?),
        y_coords: CoordsIter::new(glyph_data.get(y_coords_offset..y_coords_end)?),
        points_left: points_total,
    })
}

/// Resolves coordinate arrays length.
///
/// The length depends on *Simple Glyph Flags*, so we have to process them all to find it.
fn resolve_coords_len(
    s: &mut Stream,
    points_total: u16,
) -> Option<(u32, u32)> {
    let mut flags_left = u32::from(points_total);
    let mut repeats;
    let mut x_coords_len = 0;
    let mut y_coords_len = 0;
    while flags_left > 0 {
        let flags = SimpleGlyphFlags(s.read::<u8>()?);

        // The number of times a glyph point repeats.
        repeats = if flags.repeat_flag() {
            let repeats: u8 = s.read()?;
            u32::from(repeats) + 1
        } else {
            1
        };

        if repeats > flags_left {
            return None;
        }

        // No need to check for `*_coords_len` overflow since u32 is more than enough.

        if flags.x_short() {
            // Coordinate is 1 byte long.
            x_coords_len += repeats;
        } else if !flags.x_is_same_or_positive_short() {
            // Coordinate is 2 bytes long.
            x_coords_len += repeats * 2;
        }

        if flags.y_short() {
            // Coordinate is 1 byte long.
            y_coords_len += repeats;
        } else if !flags.y_is_same_or_positive_short() {
            // Coordinate is 2 bytes long.
            y_coords_len += repeats * 2;
        }

        flags_left -= repeats;
    }

    Some((x_coords_len, y_coords_len))
}