gpt/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
//! A pure-Rust library to work with GPT partition tables.
//!
//! It provides support for manipulating (R/W) GPT headers and partition
//! tables. Raw disk devices as well as disk images are supported.
//!
//! ```
//! extern crate gpt;
//! use std::convert::TryFrom;
//!
//! fn inspect_disk() {
//!     let diskpath = std::path::Path::new("/dev/sdz");
//!     let cfg = gpt::GptConfig::new().writable(false);
//!
//!     let disk = cfg.open(diskpath).expect("failed to open disk");
//!
//!     println!("Disk header: {:#?}", disk.primary_header());
//!     println!("Partition layout: {:#?}", disk.partitions());
//! }
//!
//! fn create_partition() {
//!     let diskpath = std::path::Path::new("/tmp/chris.img");
//!     let cfg = gpt::GptConfig::new().writable(true).initialized(true);
//!     let mut disk = cfg.open(diskpath).expect("failed to open disk");
//!     let result = disk.add_partition(
//!         "rust_partition",
//!         100,
//!         gpt::partition_types::LINUX_FS,
//!         0,
//!         None
//!     );
//!     disk.write().unwrap();
//! }
//!
//! /// Demonstrates how to create a new partition table without anything pre-existing
//! fn create_partition_in_ram() {
//!     const TOTAL_BYTES: usize = 1024 * 64;
//!     let mut mem_device = Box::new(std::io::Cursor::new(vec![0u8; TOTAL_BYTES]));
//!
//!     // Create a protective MBR at LBA0
//!     let mbr = gpt::mbr::ProtectiveMBR::with_lb_size(
//!         u32::try_from((TOTAL_BYTES / 512) - 1).unwrap_or(0xFF_FF_FF_FF));
//!     mbr.overwrite_lba0(&mut mem_device).expect("failed to write MBR");
//!
//!     let mut gdisk = gpt::GptConfig::default()
//!         .initialized(false)
//!         .writable(true)
//!         .logical_block_size(gpt::disk::LogicalBlockSize::Lb512)
//!         .create_from_device(mem_device, None)
//!         .expect("failed to crate GptDisk");
//!
//!     // Initialize the headers using a blank partition table
//!     gdisk.update_partitions(
//!         std::collections::BTreeMap::<u32, gpt::partition::Partition>::new()
//!     ).expect("failed to initialize blank partition table");
//!
//!     // At this point, gdisk.primary_header() and gdisk.backup_header() are populated...
//!     // Add a few partitions to demonstrate how...
//!     gdisk.add_partition("test1", 1024 * 12, gpt::partition_types::BASIC, 0, None)
//!         .expect("failed to add test1 partition");
//!     gdisk.add_partition("test2", 1024 * 18, gpt::partition_types::LINUX_FS, 0, None)
//!         .expect("failed to add test2 partition");
//!     // Write the partition table and take ownership of
//!     // the underlying memory buffer-backed block device
//!     let mut mem_device = gdisk.write().expect("failed to write partition table");
//!     // Read the written bytes out of the memory buffer device
//!     mem_device.seek(std::io::SeekFrom::Start(0)).expect("failed to seek");
//!     let mut final_bytes = vec![0u8; TOTAL_BYTES];
//!     mem_device.read_exact(&mut final_bytes)
//!         .expect("failed to read contents of memory device");
//! }
//!
//! // only manipulates memory buffers, so this can run on any system...
//! create_partition_in_ram();
//! ```

#![deny(missing_docs)]

use log::*;
use std::collections::BTreeMap;
use std::io::{Read, Seek, Write};
use std::{fs, io, path};

#[macro_use]
mod macros;
pub mod disk;
pub mod header;
pub mod mbr;
pub mod partition;
pub mod partition_types;

/// A generic device that we can read/write partitions from/to.
pub trait DiskDevice: Read + Write + Seek + std::fmt::Debug {}
/// Implement the DiskDevice trait for anything that meets the
/// requirements, e.g., `std::fs::File`
impl<T> DiskDevice for T where T: Read + Write + Seek + std::fmt::Debug {}
/// A dynamic trait object that is used by GptDisk for reading/writing/seeking.
pub type DiskDeviceObject<'a> = Box<dyn DiskDevice + 'a>;

/// Configuration options to open a GPT disk.
#[derive(Debug, Eq, PartialEq)]
pub struct GptConfig {
    /// Logical block size.
    lb_size: disk::LogicalBlockSize,
    /// Whether to open a GPT partition table in writable mode.
    writable: bool,
    /// Whether to expect and parse an initialized disk image.
    initialized: bool,
}

impl GptConfig {
    // TODO(lucab): complete support for skipping backup
    // header, etc, then expose all config knobs here.

    /// Create a new default configuration.
    pub fn new() -> Self {
        GptConfig::default()
    }

    /// Whether to open a GPT partition table in writable mode.
    pub fn writable(mut self, writable: bool) -> Self {
        self.writable = writable;
        self
    }

    /// Whether to assume an initialized GPT disk and read its
    /// partition table on open.
    pub fn initialized(mut self, initialized: bool) -> Self {
        self.initialized = initialized;
        self
    }

    /// Size of logical blocks (sectors) for this disk.
    pub fn logical_block_size(mut self, lb_size: disk::LogicalBlockSize) -> Self {
        self.lb_size = lb_size;
        self
    }

    /// Open the GPT disk at the given path and inspect it according
    /// to configuration options.
    pub fn open(self, diskpath: impl AsRef<path::Path>) -> io::Result<GptDisk<'static>> {
        let file = Box::new(fs::OpenOptions::new()
            .write(self.writable)
            .read(true)
            .open(diskpath)?);
        self.open_from_device(file as DiskDeviceObject)
    }

    /// Open the GPT disk from the given DiskDeviceObject and
    /// inspect it according to configuration options.
    pub fn open_from_device(self, mut device: DiskDeviceObject) -> io::Result<GptDisk> {
        // Uninitialized disk, no headers/table to parse.
        if !self.initialized {
            return self.create_from_device(device, Some(uuid::Uuid::new_v4()));
        }

        // Proper GPT disk, fully inspect its layout.
        let h1 = header::read_primary_header(&mut device, self.lb_size)?;
        let h2 = header::read_backup_header(&mut device, self.lb_size)?;
        let table = partition::file_read_partitions(&mut device, &h1, self.lb_size)?;
        let disk = GptDisk {
            config: self,
            device,
            guid: h1.disk_guid,
            primary_header: Some(h1),
            backup_header: Some(h2),
            partitions: table,
        };
        debug!("disk: {:?}", disk);
        Ok(disk)
    }

    /// Create a GPTDisk with default headers and an empty partition table.
    /// If guid is None then it will generate a new random guid.
    pub fn create_from_device(
        self,
        device: DiskDeviceObject,
        guid: Option<uuid::Uuid>
    ) -> io::Result<GptDisk> {
        if self.initialized {
            Err(io::Error::new(
                io::ErrorKind::Other,
                "we were expecting to read an existing partition table, but \
                    instead we're attempting to create a new blank table",
           ))
        } else {
            let empty = GptDisk {
                config: self,
                device,
                guid: guid.unwrap_or_else(uuid::Uuid::new_v4),
                primary_header: None,
                backup_header: None,
                partitions: BTreeMap::new(),
            };
            Ok(empty)
        }
    }
}

impl Default for GptConfig {
    fn default() -> Self {
        Self {
            lb_size: disk::DEFAULT_SECTOR_SIZE,
            initialized: true,
            writable: false,
        }
    }
}

/// A GPT disk backed by an arbitrary device.
#[derive(Debug)]
pub struct GptDisk<'a> {
    config: GptConfig,
    device: DiskDeviceObject<'a>,
    guid: uuid::Uuid,
    primary_header: Option<header::Header>,
    backup_header: Option<header::Header>,
    partitions: BTreeMap<u32, partition::Partition>,
}

impl<'a> GptDisk<'a> {
    /// Add another partition to this disk.  This tries to find
    /// the optimum partition location with the lowest block device.
    /// Returns the new partition id if there was sufficient room
    /// to add the partition. Size is specified in bytes.
    pub fn add_partition(
        &mut self,
        name: &str,
        size: u64,
        part_type: partition_types::Type,
        flags: u64,
        part_alignment: Option<u64>,
    ) -> io::Result<u32> {
        // Ceiling division which avoids overflow
        let size_lba = size.checked_sub(1)
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "size must be greater than zero bytes"))?
            .checked_div(self.config.lb_size.into())
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid logical block size caused bad division when calculating size in blocks"))?
            .checked_add(1)
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "size too large. must be within u64::MAX - 1 bounds"))?;

        // Find the lowest lba that is larger than size.
        let free_sections = self.find_free_sectors();
        for (starting_lba, length) in free_sections {
            // Get the distance between the starting LBA of this section and the next aligned LBA
            // We don't need to do any checked math here because we guarantee that with `(A % B)`,
            // `A` will always be between 0 and `B-1`.
            let alignment_offset_lba = match part_alignment {
                Some(alignment) => (alignment - (starting_lba % alignment)) % alignment,
                None => 0_u64,
            };

            debug!("starting_lba {}, length {}, alignment_offset_lba {}", starting_lba, length, alignment_offset_lba);

            if length >= (alignment_offset_lba + size_lba - 1) {
                let starting_lba= starting_lba + alignment_offset_lba;
                // Found our free slice.
                let partition_id = self.find_next_partition_id();
                debug!(
                    "Adding partition id: {} {:?}.  first_lba: {} last_lba: {}",
                    partition_id,
                    part_type,
                    starting_lba,
                    starting_lba + size_lba - 1_u64
                );
                let part = partition::Partition {
                    part_type_guid: part_type,
                    part_guid: uuid::Uuid::new_v4(),
                    first_lba: starting_lba,
                    last_lba: starting_lba + size_lba - 1_u64,
                    flags,
                    name: name.to_string(),
                };
                if let Some(p) = self.partitions.insert(partition_id, part.clone()) {
                    debug!("Replacing\n{}\nwith\n{}", p, part);
                }
                return Ok(partition_id);
            }
        }

        Err(io::Error::new(
            io::ErrorKind::Other,
            "Unable to find enough space on drive",
        ))
    }
    /// remove partition from this disk. This tries to find the partition based on either a
    /// given partition number (id) or a partition guid.  Returns the partition id if the
    /// partition is removed
    pub fn remove_partition(
        &mut self,
        id: Option<u32>,
        partguid: Option<uuid::Uuid>,
    ) -> io::Result<u32> {
        if let Some(part_id) = id {
            if let Some(partition_id) = self.partitions.remove(&part_id) {
                debug!("Removing partition number {}", partition_id);
            }
            return Ok(part_id);
        }
        if let Some(part_guid) = partguid {
            for (key, partition) in &self.partitions.clone() {
                if partition.part_guid == part_guid {
                    if let Some(partition_id) = self.partitions.remove(key) {
                        debug!("Removing partition number {}", partition_id);
                    }
                    return Ok(*key);
                }
            }
        }
        Err(io::Error::new(
            io::ErrorKind::Other,
            "Unable to find partition to remove",
        ))
    }

    /// Find free space on the disk.
    /// Returns a tuple of (starting_lba, length in lba's).
    pub fn find_free_sectors(&self) -> Vec<(u64, u64)> {
        if let Some(header) = self.primary_header().or_else(|| self.backup_header()) {
            trace!("first_usable: {}", header.first_usable);
            let mut disk_positions = vec![header.first_usable];
            for part in self.partitions().iter().filter(|p| p.1.is_used()) {
                trace!("partition: ({}, {})", part.1.first_lba, part.1.last_lba);
                disk_positions.push(part.1.first_lba);
                disk_positions.push(part.1.last_lba);
            }
            disk_positions.push(header.last_usable);
            trace!("last_usable: {}", header.last_usable);
            disk_positions.sort_unstable();

            return disk_positions
                // Walk through the LBA's in chunks of 2 (ending, starting).
                .chunks(2)
                // Add 1 to the ending and then subtract the starting if NOT the first usable sector
                .map(|p| {
                    if p[0] == header.first_usable {
                        (p[0], p[1].saturating_sub(p[0]))
                    } else {
                        (p[0] + 1, p[1].saturating_sub(p[0] + 1))
                    }
                })
                .collect();
        }
        // No primary header. Return nothing.
        vec![]
    }

    /// Find next highest partition id.
    pub fn find_next_partition_id(&self) -> u32 {
        let max = match self
            .partitions()
            .iter()
            // Skip unused partitions.
            .filter(|p| p.1.is_used())
            // Find the maximum id.
            .max_by_key(|x| x.0)
        {
            Some(i) => *i.0,
            // Partitions start at 1.
            None => return 1,
        };
        for i in 1..max {
            if self.partitions().get(&i).is_none() {
                return i;
            }
        }
        max + 1
    }

    /// Retrieve primary header, if any.
    pub fn primary_header(&self) -> Option<&header::Header> {
        self.primary_header.as_ref()
    }

    /// Retrieve backup header, if any.
    pub fn backup_header(&self) -> Option<&header::Header> {
        self.backup_header.as_ref()
    }

    /// Retrieve partition entries.
    pub fn partitions(&self) -> &BTreeMap<u32, partition::Partition> {
        &self.partitions
    }

    /// Retrieve disk UUID.
    pub fn guid(&self) -> &uuid::Uuid {
        &self.guid
    }

    /// Retrieve disk logical block size.
    pub fn logical_block_size(&self) -> &disk::LogicalBlockSize {
        &self.config.lb_size
    }

    /// Change the disk device that we are reading/writing from/to.
    /// Returns the previous disk device.
    pub fn update_disk_device(
        &mut self,
        device: DiskDeviceObject<'a>,
        writable: bool
    ) -> DiskDeviceObject {
        self.config.writable = writable;
        std::mem::replace(&mut self.device, device)
    }

    /// Update disk UUID.
    ///
    /// If no UUID is specified, a new random one is generated.
    /// No changes are recorded to disk until `write()` is called.
    pub fn update_guid(&mut self, uuid: Option<uuid::Uuid>) -> io::Result<&Self> {
        let guid = match uuid {
            Some(u) => u,
            None => {
                let u = uuid::Uuid::new_v4();
                debug!("Generated random uuid: {}", u);
                u
            }
        };
        self.guid = guid;
        Ok(self)
    }

    /// Update current partition table.
    ///
    /// No changes are recorded to disk until `write()` is called.
    pub fn update_partitions(
        &mut self,
        pp: BTreeMap<u32, partition::Partition>,
    ) -> io::Result<&Self> {
        // TODO(lucab): validate partitions.
        let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
        let h1 = header::Header::compute_new(
            true, &pp, self.guid, bak, &self.primary_header, self.config.lb_size, None)?;
        let h2 = header::Header::compute_new(
            false, &pp, self.guid, bak, &self.backup_header, self.config.lb_size, None)?;
        self.primary_header = Some(h1);
        self.backup_header = Some(h2);
        self.partitions = pp;
        self.config.initialized = true;
        Ok(self)
    }

    /// Update current partition table without touching backups
    ///
    /// No changes are recorded to disk until `write()` is called.
    pub fn update_partitions_safe(
        &mut self,
        pp: BTreeMap<u32, partition::Partition>,
    ) -> io::Result<&Self> {
        // TODO(lucab): validate partitions.
        let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
        let h1 = header::Header::compute_new(
            true, &pp, self.guid, bak, &self.primary_header, self.config.lb_size, None)?;
        self.primary_header = Some(h1);
        self.partitions = pp;
        self.config.initialized = true;
        Ok(self)
    }

    /// Update current partition table.
    /// Allows for changing the partition count, use with caution. 
    /// No changes are recorded to disk until `write()` is called.
    pub fn update_partitions_embedded(
        &mut self,
        pp: BTreeMap<u32, partition::Partition>,
        num_parts: u32,
    ) -> io::Result<&Self> {
        // TODO(lucab): validate partitions.
        let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
        let h1 = header::Header::compute_new(
            true, &pp, self.guid, bak, &self.primary_header, self.config.lb_size, Some(num_parts))?;
        let h2 = header::Header::compute_new(
            false, &pp, self.guid, bak, &self.backup_header, self.config.lb_size, Some(num_parts))?;
        self.primary_header = Some(h1);
        self.backup_header = Some(h2);
        self.partitions = pp;
        self.config.initialized = true;
        Ok(self)
    }

    /// Persist state to disk, consuming this disk object.
    ///
    /// This is a destructive action, as it overwrite headers and
    /// partitions entries on disk. All writes are flushed to disk
    /// before returning the underlying DiskDeviceObject.
    pub fn write(mut self) -> io::Result<DiskDeviceObject<'a>> {
        self.write_inplace()?;
        Ok(self.device)
    }

    /// Persist state to disk, leaving this disk object intact.
    ///
    /// This is a destructive action, as it overwrites headers
    /// and partitions entries on disk. All writes are flushed
    /// to disk before returning.
    pub fn write_inplace(&mut self) -> io::Result<()> {
        if !self.config.writable {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                "disk not opened in writable mode",
            ));
        }
        if !self.config.initialized {
            return Err(io::Error::new(io::ErrorKind::Other, "disk not initialized"));
        }
        debug!("Computing new headers");
        trace!("old primary header: {:?}", self.primary_header);
        trace!("old backup header: {:?}", self.backup_header);
        let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
        trace!("old backup lba: {}", bak);
        let primary_header = self.primary_header.clone().unwrap();
        let backup_header = self.backup_header.clone();

        // Write all of the used partitions at the start of the partition array.
        let mut next_partition_index = 0_u64;
        for partition in self.partitions().clone().iter().filter(|p| p.1.is_used()) {
            // don't allow us to overflow partition array...
            if next_partition_index >= u64::from(primary_header.num_parts) {
                return Err(io::Error::new(
                    io::ErrorKind::Other,
                    format!("attempting to write more than max of {} partitions in primary array",
                        primary_header.num_parts),
                ));
            }

            // Write to primary partition array
            partition.1.write_to_device(
                &mut self.device,
                next_partition_index,
                primary_header.part_start,
                self.config.lb_size,
                primary_header.part_size,
            )?;
            // IMPORTANT: must also write it to the backup header if it uses a different
            // area to store the partition array; otherwise backup header will not point
            // to an up to date partition array on disk.
            if let Some(backup_header) = backup_header.as_ref() {
                if next_partition_index >= u64::from(backup_header.num_parts) {
                    return Err(io::Error::new(
                        io::ErrorKind::Other,
                        format!("attempting to write more than max of {} partitions in backup array",
                            backup_header.num_parts),
                    ));
                }
                if primary_header.part_start != backup_header.part_start {
                    partition.1.write_to_device(
                        &mut self.device,
                        next_partition_index,
                        backup_header.part_start,
                        self.config.lb_size,
                        backup_header.part_size,
                    )?;
                }
            }
            next_partition_index += 1;
        }

        // Next, write zeros to the rest of the primary/backup partition array
        // (ensures any newly deleted partitions are truly removed from disk, etc.)
        // NOTE: we should never underflow here because of boundary checking in loop above.
        partition::Partition::write_zero_entries_to_device(
            &mut self.device,
            next_partition_index,
            u64::from(primary_header.num_parts).checked_sub(next_partition_index).unwrap(),
            primary_header.part_start,
            self.config.lb_size,
            primary_header.part_size,
        )?;
        if let Some(backup_header) = backup_header.as_ref() {
            partition::Partition::write_zero_entries_to_device(
                &mut self.device,
                next_partition_index,
                u64::from(backup_header.num_parts).checked_sub(next_partition_index).unwrap(),
                backup_header.part_start,
                self.config.lb_size,
                backup_header.part_size,
            )?;
        }

        let new_backup_header = header::Header::compute_new(
            false,
            &self.partitions,
            self.guid,
            bak,
            &self.primary_header,
            self.config.lb_size,
            None,
        )?;
        let new_primary_header = header::Header::compute_new(
            true,
            &self.partitions,
            self.guid,
            bak,
            &self.backup_header,
            self.config.lb_size,
            None,
        )?;
        debug!("Writing backup header");
        new_backup_header.write_backup(&mut self.device, self.config.lb_size)?;
        debug!("Writing primary header");
        new_primary_header.write_primary(&mut self.device, self.config.lb_size)?;
        trace!("new primary header: {:?}", new_primary_header);
        trace!("new backup header: {:?}", new_backup_header);

        self.device.flush()?;
        self.primary_header = Some(new_primary_header);
        self.backup_header = Some(new_backup_header);

        Ok(())
    }
}