gpt/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
//! A pure-Rust library to work with GPT partition tables.
//!
//! It provides support for manipulating (R/W) GPT headers and partition
//! tables. Raw disk devices as well as disk images are supported.
//!
//! ```
//! extern crate gpt;
//! use std::convert::TryFrom;
//!
//! fn inspect_disk() {
//! let diskpath = std::path::Path::new("/dev/sdz");
//! let cfg = gpt::GptConfig::new().writable(false);
//!
//! let disk = cfg.open(diskpath).expect("failed to open disk");
//!
//! println!("Disk header: {:#?}", disk.primary_header());
//! println!("Partition layout: {:#?}", disk.partitions());
//! }
//!
//! fn create_partition() {
//! let diskpath = std::path::Path::new("/tmp/chris.img");
//! let cfg = gpt::GptConfig::new().writable(true).initialized(true);
//! let mut disk = cfg.open(diskpath).expect("failed to open disk");
//! let result = disk.add_partition(
//! "rust_partition",
//! 100,
//! gpt::partition_types::LINUX_FS,
//! 0,
//! None
//! );
//! disk.write().unwrap();
//! }
//!
//! /// Demonstrates how to create a new partition table without anything pre-existing
//! fn create_partition_in_ram() {
//! const TOTAL_BYTES: usize = 1024 * 64;
//! let mut mem_device = Box::new(std::io::Cursor::new(vec![0u8; TOTAL_BYTES]));
//!
//! // Create a protective MBR at LBA0
//! let mbr = gpt::mbr::ProtectiveMBR::with_lb_size(
//! u32::try_from((TOTAL_BYTES / 512) - 1).unwrap_or(0xFF_FF_FF_FF));
//! mbr.overwrite_lba0(&mut mem_device).expect("failed to write MBR");
//!
//! let mut gdisk = gpt::GptConfig::default()
//! .initialized(false)
//! .writable(true)
//! .logical_block_size(gpt::disk::LogicalBlockSize::Lb512)
//! .create_from_device(mem_device, None)
//! .expect("failed to crate GptDisk");
//!
//! // Initialize the headers using a blank partition table
//! gdisk.update_partitions(
//! std::collections::BTreeMap::<u32, gpt::partition::Partition>::new()
//! ).expect("failed to initialize blank partition table");
//!
//! // At this point, gdisk.primary_header() and gdisk.backup_header() are populated...
//! // Add a few partitions to demonstrate how...
//! gdisk.add_partition("test1", 1024 * 12, gpt::partition_types::BASIC, 0, None)
//! .expect("failed to add test1 partition");
//! gdisk.add_partition("test2", 1024 * 18, gpt::partition_types::LINUX_FS, 0, None)
//! .expect("failed to add test2 partition");
//! // Write the partition table and take ownership of
//! // the underlying memory buffer-backed block device
//! let mut mem_device = gdisk.write().expect("failed to write partition table");
//! // Read the written bytes out of the memory buffer device
//! mem_device.seek(std::io::SeekFrom::Start(0)).expect("failed to seek");
//! let mut final_bytes = vec![0u8; TOTAL_BYTES];
//! mem_device.read_exact(&mut final_bytes)
//! .expect("failed to read contents of memory device");
//! }
//!
//! // only manipulates memory buffers, so this can run on any system...
//! create_partition_in_ram();
//! ```
#![deny(missing_docs)]
use log::*;
use std::collections::BTreeMap;
use std::io::{Read, Seek, Write};
use std::{fs, io, path};
#[macro_use]
mod macros;
pub mod disk;
pub mod header;
pub mod mbr;
pub mod partition;
pub mod partition_types;
/// A generic device that we can read/write partitions from/to.
pub trait DiskDevice: Read + Write + Seek + std::fmt::Debug {}
/// Implement the DiskDevice trait for anything that meets the
/// requirements, e.g., `std::fs::File`
impl<T> DiskDevice for T where T: Read + Write + Seek + std::fmt::Debug {}
/// A dynamic trait object that is used by GptDisk for reading/writing/seeking.
pub type DiskDeviceObject<'a> = Box<dyn DiskDevice + 'a>;
/// Configuration options to open a GPT disk.
#[derive(Debug, Eq, PartialEq)]
pub struct GptConfig {
/// Logical block size.
lb_size: disk::LogicalBlockSize,
/// Whether to open a GPT partition table in writable mode.
writable: bool,
/// Whether to expect and parse an initialized disk image.
initialized: bool,
}
impl GptConfig {
// TODO(lucab): complete support for skipping backup
// header, etc, then expose all config knobs here.
/// Create a new default configuration.
pub fn new() -> Self {
GptConfig::default()
}
/// Whether to open a GPT partition table in writable mode.
pub fn writable(mut self, writable: bool) -> Self {
self.writable = writable;
self
}
/// Whether to assume an initialized GPT disk and read its
/// partition table on open.
pub fn initialized(mut self, initialized: bool) -> Self {
self.initialized = initialized;
self
}
/// Size of logical blocks (sectors) for this disk.
pub fn logical_block_size(mut self, lb_size: disk::LogicalBlockSize) -> Self {
self.lb_size = lb_size;
self
}
/// Open the GPT disk at the given path and inspect it according
/// to configuration options.
pub fn open(self, diskpath: impl AsRef<path::Path>) -> io::Result<GptDisk<'static>> {
let file = Box::new(fs::OpenOptions::new()
.write(self.writable)
.read(true)
.open(diskpath)?);
self.open_from_device(file as DiskDeviceObject)
}
/// Open the GPT disk from the given DiskDeviceObject and
/// inspect it according to configuration options.
pub fn open_from_device(self, mut device: DiskDeviceObject) -> io::Result<GptDisk> {
// Uninitialized disk, no headers/table to parse.
if !self.initialized {
return self.create_from_device(device, Some(uuid::Uuid::new_v4()));
}
// Proper GPT disk, fully inspect its layout.
let h1 = header::read_primary_header(&mut device, self.lb_size)?;
let h2 = header::read_backup_header(&mut device, self.lb_size)?;
let table = partition::file_read_partitions(&mut device, &h1, self.lb_size)?;
let disk = GptDisk {
config: self,
device,
guid: h1.disk_guid,
primary_header: Some(h1),
backup_header: Some(h2),
partitions: table,
};
debug!("disk: {:?}", disk);
Ok(disk)
}
/// Create a GPTDisk with default headers and an empty partition table.
/// If guid is None then it will generate a new random guid.
pub fn create_from_device(
self,
device: DiskDeviceObject,
guid: Option<uuid::Uuid>
) -> io::Result<GptDisk> {
if self.initialized {
Err(io::Error::new(
io::ErrorKind::Other,
"we were expecting to read an existing partition table, but \
instead we're attempting to create a new blank table",
))
} else {
let empty = GptDisk {
config: self,
device,
guid: guid.unwrap_or_else(uuid::Uuid::new_v4),
primary_header: None,
backup_header: None,
partitions: BTreeMap::new(),
};
Ok(empty)
}
}
}
impl Default for GptConfig {
fn default() -> Self {
Self {
lb_size: disk::DEFAULT_SECTOR_SIZE,
initialized: true,
writable: false,
}
}
}
/// A GPT disk backed by an arbitrary device.
#[derive(Debug)]
pub struct GptDisk<'a> {
config: GptConfig,
device: DiskDeviceObject<'a>,
guid: uuid::Uuid,
primary_header: Option<header::Header>,
backup_header: Option<header::Header>,
partitions: BTreeMap<u32, partition::Partition>,
}
impl<'a> GptDisk<'a> {
/// Add another partition to this disk. This tries to find
/// the optimum partition location with the lowest block device.
/// Returns the new partition id if there was sufficient room
/// to add the partition. Size is specified in bytes.
pub fn add_partition(
&mut self,
name: &str,
size: u64,
part_type: partition_types::Type,
flags: u64,
part_alignment: Option<u64>,
) -> io::Result<u32> {
// Ceiling division which avoids overflow
let size_lba = size.checked_sub(1)
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "size must be greater than zero bytes"))?
.checked_div(self.config.lb_size.into())
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid logical block size caused bad division when calculating size in blocks"))?
.checked_add(1)
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "size too large. must be within u64::MAX - 1 bounds"))?;
// Find the lowest lba that is larger than size.
let free_sections = self.find_free_sectors();
for (starting_lba, length) in free_sections {
// Get the distance between the starting LBA of this section and the next aligned LBA
// We don't need to do any checked math here because we guarantee that with `(A % B)`,
// `A` will always be between 0 and `B-1`.
let alignment_offset_lba = match part_alignment {
Some(alignment) => (alignment - (starting_lba % alignment)) % alignment,
None => 0_u64,
};
debug!("starting_lba {}, length {}, alignment_offset_lba {}", starting_lba, length, alignment_offset_lba);
if length >= (alignment_offset_lba + size_lba - 1) {
let starting_lba= starting_lba + alignment_offset_lba;
// Found our free slice.
let partition_id = self.find_next_partition_id();
debug!(
"Adding partition id: {} {:?}. first_lba: {} last_lba: {}",
partition_id,
part_type,
starting_lba,
starting_lba + size_lba - 1_u64
);
let part = partition::Partition {
part_type_guid: part_type,
part_guid: uuid::Uuid::new_v4(),
first_lba: starting_lba,
last_lba: starting_lba + size_lba - 1_u64,
flags,
name: name.to_string(),
};
if let Some(p) = self.partitions.insert(partition_id, part.clone()) {
debug!("Replacing\n{}\nwith\n{}", p, part);
}
return Ok(partition_id);
}
}
Err(io::Error::new(
io::ErrorKind::Other,
"Unable to find enough space on drive",
))
}
/// remove partition from this disk. This tries to find the partition based on either a
/// given partition number (id) or a partition guid. Returns the partition id if the
/// partition is removed
pub fn remove_partition(
&mut self,
id: Option<u32>,
partguid: Option<uuid::Uuid>,
) -> io::Result<u32> {
if let Some(part_id) = id {
if let Some(partition_id) = self.partitions.remove(&part_id) {
debug!("Removing partition number {}", partition_id);
}
return Ok(part_id);
}
if let Some(part_guid) = partguid {
for (key, partition) in &self.partitions.clone() {
if partition.part_guid == part_guid {
if let Some(partition_id) = self.partitions.remove(key) {
debug!("Removing partition number {}", partition_id);
}
return Ok(*key);
}
}
}
Err(io::Error::new(
io::ErrorKind::Other,
"Unable to find partition to remove",
))
}
/// Find free space on the disk.
/// Returns a tuple of (starting_lba, length in lba's).
pub fn find_free_sectors(&self) -> Vec<(u64, u64)> {
if let Some(header) = self.primary_header().or_else(|| self.backup_header()) {
trace!("first_usable: {}", header.first_usable);
let mut disk_positions = vec![header.first_usable];
for part in self.partitions().iter().filter(|p| p.1.is_used()) {
trace!("partition: ({}, {})", part.1.first_lba, part.1.last_lba);
disk_positions.push(part.1.first_lba);
disk_positions.push(part.1.last_lba);
}
disk_positions.push(header.last_usable);
trace!("last_usable: {}", header.last_usable);
disk_positions.sort_unstable();
return disk_positions
// Walk through the LBA's in chunks of 2 (ending, starting).
.chunks(2)
// Add 1 to the ending and then subtract the starting if NOT the first usable sector
.map(|p| {
if p[0] == header.first_usable {
(p[0], p[1].saturating_sub(p[0]))
} else {
(p[0] + 1, p[1].saturating_sub(p[0] + 1))
}
})
.collect();
}
// No primary header. Return nothing.
vec![]
}
/// Find next highest partition id.
pub fn find_next_partition_id(&self) -> u32 {
let max = match self
.partitions()
.iter()
// Skip unused partitions.
.filter(|p| p.1.is_used())
// Find the maximum id.
.max_by_key(|x| x.0)
{
Some(i) => *i.0,
// Partitions start at 1.
None => return 1,
};
for i in 1..max {
if self.partitions().get(&i).is_none() {
return i;
}
}
max + 1
}
/// Retrieve primary header, if any.
pub fn primary_header(&self) -> Option<&header::Header> {
self.primary_header.as_ref()
}
/// Retrieve backup header, if any.
pub fn backup_header(&self) -> Option<&header::Header> {
self.backup_header.as_ref()
}
/// Retrieve partition entries.
pub fn partitions(&self) -> &BTreeMap<u32, partition::Partition> {
&self.partitions
}
/// Retrieve disk UUID.
pub fn guid(&self) -> &uuid::Uuid {
&self.guid
}
/// Retrieve disk logical block size.
pub fn logical_block_size(&self) -> &disk::LogicalBlockSize {
&self.config.lb_size
}
/// Change the disk device that we are reading/writing from/to.
/// Returns the previous disk device.
pub fn update_disk_device(
&mut self,
device: DiskDeviceObject<'a>,
writable: bool
) -> DiskDeviceObject {
self.config.writable = writable;
std::mem::replace(&mut self.device, device)
}
/// Update disk UUID.
///
/// If no UUID is specified, a new random one is generated.
/// No changes are recorded to disk until `write()` is called.
pub fn update_guid(&mut self, uuid: Option<uuid::Uuid>) -> io::Result<&Self> {
let guid = match uuid {
Some(u) => u,
None => {
let u = uuid::Uuid::new_v4();
debug!("Generated random uuid: {}", u);
u
}
};
self.guid = guid;
Ok(self)
}
/// Update current partition table.
///
/// No changes are recorded to disk until `write()` is called.
pub fn update_partitions(
&mut self,
pp: BTreeMap<u32, partition::Partition>,
) -> io::Result<&Self> {
// TODO(lucab): validate partitions.
let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
let h1 = header::Header::compute_new(
true, &pp, self.guid, bak, &self.primary_header, self.config.lb_size, None)?;
let h2 = header::Header::compute_new(
false, &pp, self.guid, bak, &self.backup_header, self.config.lb_size, None)?;
self.primary_header = Some(h1);
self.backup_header = Some(h2);
self.partitions = pp;
self.config.initialized = true;
Ok(self)
}
/// Update current partition table without touching backups
///
/// No changes are recorded to disk until `write()` is called.
pub fn update_partitions_safe(
&mut self,
pp: BTreeMap<u32, partition::Partition>,
) -> io::Result<&Self> {
// TODO(lucab): validate partitions.
let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
let h1 = header::Header::compute_new(
true, &pp, self.guid, bak, &self.primary_header, self.config.lb_size, None)?;
self.primary_header = Some(h1);
self.partitions = pp;
self.config.initialized = true;
Ok(self)
}
/// Update current partition table.
/// Allows for changing the partition count, use with caution.
/// No changes are recorded to disk until `write()` is called.
pub fn update_partitions_embedded(
&mut self,
pp: BTreeMap<u32, partition::Partition>,
num_parts: u32,
) -> io::Result<&Self> {
// TODO(lucab): validate partitions.
let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
let h1 = header::Header::compute_new(
true, &pp, self.guid, bak, &self.primary_header, self.config.lb_size, Some(num_parts))?;
let h2 = header::Header::compute_new(
false, &pp, self.guid, bak, &self.backup_header, self.config.lb_size, Some(num_parts))?;
self.primary_header = Some(h1);
self.backup_header = Some(h2);
self.partitions = pp;
self.config.initialized = true;
Ok(self)
}
/// Persist state to disk, consuming this disk object.
///
/// This is a destructive action, as it overwrite headers and
/// partitions entries on disk. All writes are flushed to disk
/// before returning the underlying DiskDeviceObject.
pub fn write(mut self) -> io::Result<DiskDeviceObject<'a>> {
self.write_inplace()?;
Ok(self.device)
}
/// Persist state to disk, leaving this disk object intact.
///
/// This is a destructive action, as it overwrites headers
/// and partitions entries on disk. All writes are flushed
/// to disk before returning.
pub fn write_inplace(&mut self) -> io::Result<()> {
if !self.config.writable {
return Err(io::Error::new(
io::ErrorKind::Other,
"disk not opened in writable mode",
));
}
if !self.config.initialized {
return Err(io::Error::new(io::ErrorKind::Other, "disk not initialized"));
}
debug!("Computing new headers");
trace!("old primary header: {:?}", self.primary_header);
trace!("old backup header: {:?}", self.backup_header);
let bak = header::find_backup_lba(&mut self.device, self.config.lb_size)?;
trace!("old backup lba: {}", bak);
let primary_header = self.primary_header.clone().unwrap();
let backup_header = self.backup_header.clone();
// Write all of the used partitions at the start of the partition array.
let mut next_partition_index = 0_u64;
for partition in self.partitions().clone().iter().filter(|p| p.1.is_used()) {
// don't allow us to overflow partition array...
if next_partition_index >= u64::from(primary_header.num_parts) {
return Err(io::Error::new(
io::ErrorKind::Other,
format!("attempting to write more than max of {} partitions in primary array",
primary_header.num_parts),
));
}
// Write to primary partition array
partition.1.write_to_device(
&mut self.device,
next_partition_index,
primary_header.part_start,
self.config.lb_size,
primary_header.part_size,
)?;
// IMPORTANT: must also write it to the backup header if it uses a different
// area to store the partition array; otherwise backup header will not point
// to an up to date partition array on disk.
if let Some(backup_header) = backup_header.as_ref() {
if next_partition_index >= u64::from(backup_header.num_parts) {
return Err(io::Error::new(
io::ErrorKind::Other,
format!("attempting to write more than max of {} partitions in backup array",
backup_header.num_parts),
));
}
if primary_header.part_start != backup_header.part_start {
partition.1.write_to_device(
&mut self.device,
next_partition_index,
backup_header.part_start,
self.config.lb_size,
backup_header.part_size,
)?;
}
}
next_partition_index += 1;
}
// Next, write zeros to the rest of the primary/backup partition array
// (ensures any newly deleted partitions are truly removed from disk, etc.)
// NOTE: we should never underflow here because of boundary checking in loop above.
partition::Partition::write_zero_entries_to_device(
&mut self.device,
next_partition_index,
u64::from(primary_header.num_parts).checked_sub(next_partition_index).unwrap(),
primary_header.part_start,
self.config.lb_size,
primary_header.part_size,
)?;
if let Some(backup_header) = backup_header.as_ref() {
partition::Partition::write_zero_entries_to_device(
&mut self.device,
next_partition_index,
u64::from(backup_header.num_parts).checked_sub(next_partition_index).unwrap(),
backup_header.part_start,
self.config.lb_size,
backup_header.part_size,
)?;
}
let new_backup_header = header::Header::compute_new(
false,
&self.partitions,
self.guid,
bak,
&self.primary_header,
self.config.lb_size,
None,
)?;
let new_primary_header = header::Header::compute_new(
true,
&self.partitions,
self.guid,
bak,
&self.backup_header,
self.config.lb_size,
None,
)?;
debug!("Writing backup header");
new_backup_header.write_backup(&mut self.device, self.config.lb_size)?;
debug!("Writing primary header");
new_primary_header.write_primary(&mut self.device, self.config.lb_size)?;
trace!("new primary header: {:?}", new_primary_header);
trace!("new backup header: {:?}", new_backup_header);
self.device.flush()?;
self.primary_header = Some(new_primary_header);
self.backup_header = Some(new_backup_header);
Ok(())
}
}