futures_util/stream/futures_unordered/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
//! An unbounded set of futures.
//!
//! This module is only available when the `std` or `alloc` feature of this
//! library is activated, and it is activated by default.
use crate::task::AtomicWaker;
use alloc::sync::{Arc, Weak};
use core::cell::UnsafeCell;
use core::fmt::{self, Debug};
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem;
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst};
use core::sync::atomic::{AtomicBool, AtomicPtr};
use futures_core::future::Future;
use futures_core::stream::{FusedStream, Stream};
use futures_core::task::{Context, Poll};
use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError};
mod abort;
mod iter;
#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352
pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef};
mod task;
use self::task::Task;
mod ready_to_run_queue;
use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue};
/// A set of futures which may complete in any order.
///
/// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this
/// type that preserves a FIFO order.
///
/// This structure is optimized to manage a large number of futures.
/// Futures managed by [`FuturesUnordered`] will only be polled when they
/// generate wake-up notifications. This reduces the required amount of work
/// needed to poll large numbers of futures.
///
/// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an
/// iterator of futures into a [`FuturesUnordered`], or by
/// [`push`](FuturesUnordered::push)ing futures onto an existing
/// [`FuturesUnordered`]. When new futures are added,
/// [`poll_next`](Stream::poll_next) must be called in order to begin receiving
/// wake-ups for new futures.
///
/// Note that you can create a ready-made [`FuturesUnordered`] via the
/// [`collect`](Iterator::collect) method, or you can start with an empty set
/// with the [`FuturesUnordered::new`] constructor.
///
/// This type is only available when the `std` or `alloc` feature of this
/// library is activated, and it is activated by default.
#[must_use = "streams do nothing unless polled"]
pub struct FuturesUnordered<Fut> {
ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>,
head_all: AtomicPtr<Task<Fut>>,
is_terminated: AtomicBool,
}
unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {}
unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {}
impl<Fut> Unpin for FuturesUnordered<Fut> {}
impl Spawn for FuturesUnordered<FutureObj<'_, ()>> {
fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> {
self.push(future_obj);
Ok(())
}
}
impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> {
fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> {
self.push(future_obj);
Ok(())
}
}
// FuturesUnordered is implemented using two linked lists. One which links all
// futures managed by a `FuturesUnordered` and one that tracks futures that have
// been scheduled for polling. The first linked list allows for thread safe
// insertion of nodes at the head as well as forward iteration, but is otherwise
// not thread safe and is only accessed by the thread that owns the
// `FuturesUnordered` value for any other operations. The second linked list is
// an implementation of the intrusive MPSC queue algorithm described by
// 1024cores.net.
//
// When a future is submitted to the set, a task is allocated and inserted in
// both linked lists. The next call to `poll_next` will (eventually) see this
// task and call `poll` on the future.
//
// Before a managed future is polled, the current context's waker is replaced
// with one that is aware of the specific future being run. This ensures that
// wake-up notifications generated by that specific future are visible to
// `FuturesUnordered`. When a wake-up notification is received, the task is
// inserted into the ready to run queue, so that its future can be polled later.
//
// Each task is wrapped in an `Arc` and thereby atomically reference counted.
// Also, each task contains an `AtomicBool` which acts as a flag that indicates
// whether the task is currently inserted in the atomic queue. When a wake-up
// notification is received, the task will only be inserted into the ready to
// run queue if it isn't inserted already.
impl<Fut> Default for FuturesUnordered<Fut> {
fn default() -> Self {
Self::new()
}
}
impl<Fut> FuturesUnordered<Fut> {
/// Constructs a new, empty [`FuturesUnordered`].
///
/// The returned [`FuturesUnordered`] does not contain any futures.
/// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will
/// return [`Poll::Ready(None)`](Poll::Ready).
pub fn new() -> Self {
let stub = Arc::new(Task {
future: UnsafeCell::new(None),
next_all: AtomicPtr::new(ptr::null_mut()),
prev_all: UnsafeCell::new(ptr::null()),
len_all: UnsafeCell::new(0),
next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
queued: AtomicBool::new(true),
ready_to_run_queue: Weak::new(),
woken: AtomicBool::new(false),
});
let stub_ptr = Arc::as_ptr(&stub);
let ready_to_run_queue = Arc::new(ReadyToRunQueue {
waker: AtomicWaker::new(),
head: AtomicPtr::new(stub_ptr as *mut _),
tail: UnsafeCell::new(stub_ptr),
stub,
});
Self {
head_all: AtomicPtr::new(ptr::null_mut()),
ready_to_run_queue,
is_terminated: AtomicBool::new(false),
}
}
/// Returns the number of futures contained in the set.
///
/// This represents the total number of in-flight futures.
pub fn len(&self) -> usize {
let (_, len) = self.atomic_load_head_and_len_all();
len
}
/// Returns `true` if the set contains no futures.
pub fn is_empty(&self) -> bool {
// Relaxed ordering can be used here since we don't need to read from
// the head pointer, only check whether it is null.
self.head_all.load(Relaxed).is_null()
}
/// Push a future into the set.
///
/// This method adds the given future to the set. This method will not
/// call [`poll`](core::future::Future::poll) on the submitted future. The caller must
/// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called
/// in order to receive wake-up notifications for the given future.
pub fn push(&self, future: Fut) {
let task = Arc::new(Task {
future: UnsafeCell::new(Some(future)),
next_all: AtomicPtr::new(self.pending_next_all()),
prev_all: UnsafeCell::new(ptr::null_mut()),
len_all: UnsafeCell::new(0),
next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
queued: AtomicBool::new(true),
ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue),
woken: AtomicBool::new(false),
});
// Reset the `is_terminated` flag if we've previously marked ourselves
// as terminated.
self.is_terminated.store(false, Relaxed);
// Right now our task has a strong reference count of 1. We transfer
// ownership of this reference count to our internal linked list
// and we'll reclaim ownership through the `unlink` method below.
let ptr = self.link(task);
// We'll need to get the future "into the system" to start tracking it,
// e.g. getting its wake-up notifications going to us tracking which
// futures are ready. To do that we unconditionally enqueue it for
// polling here.
self.ready_to_run_queue.enqueue(ptr);
}
/// Returns an iterator that allows inspecting each future in the set.
pub fn iter(&self) -> Iter<'_, Fut>
where
Fut: Unpin,
{
Iter(Pin::new(self).iter_pin_ref())
}
/// Returns an iterator that allows inspecting each future in the set.
pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> {
let (task, len) = self.atomic_load_head_and_len_all();
let pending_next_all = self.pending_next_all();
IterPinRef { task, len, pending_next_all, _marker: PhantomData }
}
/// Returns an iterator that allows modifying each future in the set.
pub fn iter_mut(&mut self) -> IterMut<'_, Fut>
where
Fut: Unpin,
{
IterMut(Pin::new(self).iter_pin_mut())
}
/// Returns an iterator that allows modifying each future in the set.
pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> {
// `head_all` can be accessed directly and we don't need to spin on
// `Task::next_all` since we have exclusive access to the set.
let task = *self.head_all.get_mut();
let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
IterPinMut { task, len, _marker: PhantomData }
}
/// Returns the current head node and number of futures in the list of all
/// futures within a context where access is shared with other threads
/// (mostly for use with the `len` and `iter_pin_ref` methods).
fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) {
let task = self.head_all.load(Acquire);
let len = if task.is_null() {
0
} else {
unsafe {
(*task).spin_next_all(self.pending_next_all(), Acquire);
*(*task).len_all.get()
}
};
(task, len)
}
/// Releases the task. It destroys the future inside and either drops
/// the `Arc<Task>` or transfers ownership to the ready to run queue.
/// The task this method is called on must have been unlinked before.
fn release_task(&mut self, task: Arc<Task<Fut>>) {
// `release_task` must only be called on unlinked tasks
debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
unsafe {
debug_assert!((*task.prev_all.get()).is_null());
}
// The future is done, try to reset the queued flag. This will prevent
// `wake` from doing any work in the future
let prev = task.queued.swap(true, SeqCst);
// Drop the future, even if it hasn't finished yet. This is safe
// because we're dropping the future on the thread that owns
// `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and
// such.
unsafe {
// Set to `None` rather than `take()`ing to prevent moving the
// future.
*task.future.get() = None;
}
// If the queued flag was previously set, then it means that this task
// is still in our internal ready to run queue. We then transfer
// ownership of our reference count to the ready to run queue, and it'll
// come along and free it later, noticing that the future is `None`.
//
// If, however, the queued flag was *not* set then we're safe to
// release our reference count on the task. The queued flag was set
// above so all future `enqueue` operations will not actually
// enqueue the task, so our task will never see the ready to run queue
// again. The task itself will be deallocated once all reference counts
// have been dropped elsewhere by the various wakers that contain it.
if prev {
mem::forget(task);
}
}
/// Insert a new task into the internal linked list.
fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> {
// `next_all` should already be reset to the pending state before this
// function is called.
debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
let ptr = Arc::into_raw(task);
// Atomically swap out the old head node to get the node that should be
// assigned to `next_all`.
let next = self.head_all.swap(ptr as *mut _, AcqRel);
unsafe {
// Store the new list length in the new node.
let new_len = if next.is_null() {
1
} else {
// Make sure `next_all` has been written to signal that it is
// safe to read `len_all`.
(*next).spin_next_all(self.pending_next_all(), Acquire);
*(*next).len_all.get() + 1
};
*(*ptr).len_all.get() = new_len;
// Write the old head as the next node pointer, signaling to other
// threads that `len_all` and `next_all` are ready to read.
(*ptr).next_all.store(next, Release);
// `prev_all` updates don't need to be synchronized, as the field is
// only ever used after exclusive access has been acquired.
if !next.is_null() {
*(*next).prev_all.get() = ptr;
}
}
ptr
}
/// Remove the task from the linked list tracking all tasks currently
/// managed by `FuturesUnordered`.
/// This method is unsafe because it has be guaranteed that `task` is a
/// valid pointer.
unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> {
// Compute the new list length now in case we're removing the head node
// and won't be able to retrieve the correct length later.
let head = *self.head_all.get_mut();
debug_assert!(!head.is_null());
let new_len = *(*head).len_all.get() - 1;
let task = Arc::from_raw(task);
let next = task.next_all.load(Relaxed);
let prev = *task.prev_all.get();
task.next_all.store(self.pending_next_all(), Relaxed);
*task.prev_all.get() = ptr::null_mut();
if !next.is_null() {
*(*next).prev_all.get() = prev;
}
if !prev.is_null() {
(*prev).next_all.store(next, Relaxed);
} else {
*self.head_all.get_mut() = next;
}
// Store the new list length in the head node.
let head = *self.head_all.get_mut();
if !head.is_null() {
*(*head).len_all.get() = new_len;
}
task
}
/// Returns the reserved value for `Task::next_all` to indicate a pending
/// assignment from the thread that inserted the task.
///
/// `FuturesUnordered::link` needs to update `Task` pointers in an order
/// that ensures any iterators created on other threads can correctly
/// traverse the entire `Task` list using the chain of `next_all` pointers.
/// This could be solved with a compare-exchange loop that stores the
/// current `head_all` in `next_all` and swaps out `head_all` with the new
/// `Task` pointer if the head hasn't already changed. Under heavy thread
/// contention, this compare-exchange loop could become costly.
///
/// An alternative is to initialize `next_all` to a reserved pending state
/// first, perform an atomic swap on `head_all`, and finally update
/// `next_all` with the old head node. Iterators will then either see the
/// pending state value or the correct next node pointer, and can reload
/// `next_all` as needed until the correct value is loaded. The number of
/// retries needed (if any) would be small and will always be finite, so
/// this should generally perform better than the compare-exchange loop.
///
/// A valid `Task` pointer in the `head_all` list is guaranteed to never be
/// this value, so it is safe to use as a reserved value until the correct
/// value can be written.
fn pending_next_all(&self) -> *mut Task<Fut> {
// The `ReadyToRunQueue` stub is never inserted into the `head_all`
// list, and its pointer value will remain valid for the lifetime of
// this `FuturesUnordered`, so we can make use of its value here.
Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _
}
}
impl<Fut: Future> Stream for FuturesUnordered<Fut> {
type Item = Fut::Output;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let len = self.len();
// Keep track of how many child futures we have polled,
// in case we want to forcibly yield.
let mut polled = 0;
let mut yielded = 0;
// Ensure `parent` is correctly set.
self.ready_to_run_queue.waker.register(cx.waker());
loop {
// Safety: &mut self guarantees the mutual exclusion `dequeue`
// expects
let task = match unsafe { self.ready_to_run_queue.dequeue() } {
Dequeue::Empty => {
if self.is_empty() {
// We can only consider ourselves terminated once we
// have yielded a `None`
*self.is_terminated.get_mut() = true;
return Poll::Ready(None);
} else {
return Poll::Pending;
}
}
Dequeue::Inconsistent => {
// At this point, it may be worth yielding the thread &
// spinning a few times... but for now, just yield using the
// task system.
cx.waker().wake_by_ref();
return Poll::Pending;
}
Dequeue::Data(task) => task,
};
debug_assert!(task != self.ready_to_run_queue.stub());
// Safety:
// - `task` is a valid pointer.
// - We are the only thread that accesses the `UnsafeCell` that
// contains the future
let future = match unsafe { &mut *(*task).future.get() } {
Some(future) => future,
// If the future has already gone away then we're just
// cleaning out this task. See the comment in
// `release_task` for more information, but we're basically
// just taking ownership of our reference count here.
None => {
// This case only happens when `release_task` was called
// for this task before and couldn't drop the task
// because it was already enqueued in the ready to run
// queue.
// Safety: `task` is a valid pointer
let task = unsafe { Arc::from_raw(task) };
// Double check that the call to `release_task` really
// happened. Calling it required the task to be unlinked.
debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
unsafe {
debug_assert!((*task.prev_all.get()).is_null());
}
continue;
}
};
// Safety: `task` is a valid pointer
let task = unsafe { self.unlink(task) };
// Unset queued flag: This must be done before polling to ensure
// that the future's task gets rescheduled if it sends a wake-up
// notification **during** the call to `poll`.
let prev = task.queued.swap(false, SeqCst);
assert!(prev);
// We're going to need to be very careful if the `poll`
// method below panics. We need to (a) not leak memory and
// (b) ensure that we still don't have any use-after-frees. To
// manage this we do a few things:
//
// * A "bomb" is created which if dropped abnormally will call
// `release_task`. That way we'll be sure the memory management
// of the `task` is managed correctly. In particular
// `release_task` will drop the future. This ensures that it is
// dropped on this thread and not accidentally on a different
// thread (bad).
// * We unlink the task from our internal queue to preemptively
// assume it'll panic, in which case we'll want to discard it
// regardless.
struct Bomb<'a, Fut> {
queue: &'a mut FuturesUnordered<Fut>,
task: Option<Arc<Task<Fut>>>,
}
impl<Fut> Drop for Bomb<'_, Fut> {
fn drop(&mut self) {
if let Some(task) = self.task.take() {
self.queue.release_task(task);
}
}
}
let mut bomb = Bomb { task: Some(task), queue: &mut *self };
// Poll the underlying future with the appropriate waker
// implementation. This is where a large bit of the unsafety
// starts to stem from internally. The waker is basically just
// our `Arc<Task<Fut>>` and can schedule the future for polling by
// enqueuing itself in the ready to run queue.
//
// Critically though `Task<Fut>` won't actually access `Fut`, the
// future, while it's floating around inside of wakers.
// These structs will basically just use `Fut` to size
// the internal allocation, appropriately accessing fields and
// deallocating the task if need be.
let res = {
let task = bomb.task.as_ref().unwrap();
// We are only interested in whether the future is awoken before it
// finishes polling, so reset the flag here.
task.woken.store(false, Relaxed);
let waker = Task::waker_ref(task);
let mut cx = Context::from_waker(&waker);
// Safety: We won't move the future ever again
let future = unsafe { Pin::new_unchecked(future) };
future.poll(&mut cx)
};
polled += 1;
match res {
Poll::Pending => {
let task = bomb.task.take().unwrap();
// If the future was awoken during polling, we assume
// the future wanted to explicitly yield.
yielded += task.woken.load(Relaxed) as usize;
bomb.queue.link(task);
// If a future yields, we respect it and yield here.
// If all futures have been polled, we also yield here to
// avoid starving other tasks waiting on the executor.
// (polling the same future twice per iteration may cause
// the problem: https://github.com/rust-lang/futures-rs/pull/2333)
if yielded >= 2 || polled == len {
cx.waker().wake_by_ref();
return Poll::Pending;
}
continue;
}
Poll::Ready(output) => return Poll::Ready(Some(output)),
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<Fut> Debug for FuturesUnordered<Fut> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "FuturesUnordered {{ ... }}")
}
}
impl<Fut> FuturesUnordered<Fut> {
/// Clears the set, removing all futures.
pub fn clear(&mut self) {
*self = Self::new();
}
}
impl<Fut> Drop for FuturesUnordered<Fut> {
fn drop(&mut self) {
// When a `FuturesUnordered` is dropped we want to drop all futures
// associated with it. At the same time though there may be tons of
// wakers flying around which contain `Task<Fut>` references
// inside them. We'll let those naturally get deallocated.
while !self.head_all.get_mut().is_null() {
let head = *self.head_all.get_mut();
let task = unsafe { self.unlink(head) };
self.release_task(task);
}
// Note that at this point we could still have a bunch of tasks in the
// ready to run queue. None of those tasks, however, have futures
// associated with them so they're safe to destroy on any thread. At
// this point the `FuturesUnordered` struct, the owner of the one strong
// reference to the ready to run queue will drop the strong reference.
// At that point whichever thread releases the strong refcount last (be
// it this thread or some other thread as part of an `upgrade`) will
// clear out the ready to run queue and free all remaining tasks.
//
// While that freeing operation isn't guaranteed to happen here, it's
// guaranteed to happen "promptly" as no more "blocking work" will
// happen while there's a strong refcount held.
}
}
impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> {
type Item = &'a Fut;
type IntoIter = Iter<'a, Fut>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> {
type Item = &'a mut Fut;
type IntoIter = IterMut<'a, Fut>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> {
type Item = Fut;
type IntoIter = IntoIter<Fut>;
fn into_iter(mut self) -> Self::IntoIter {
// `head_all` can be accessed directly and we don't need to spin on
// `Task::next_all` since we have exclusive access to the set.
let task = *self.head_all.get_mut();
let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
IntoIter { len, inner: self }
}
}
impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = Fut>,
{
let acc = Self::new();
iter.into_iter().fold(acc, |acc, item| {
acc.push(item);
acc
})
}
}
impl<Fut: Future> FusedStream for FuturesUnordered<Fut> {
fn is_terminated(&self) -> bool {
self.is_terminated.load(Relaxed)
}
}
impl<Fut> Extend<Fut> for FuturesUnordered<Fut> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = Fut>,
{
for item in iter {
self.push(item);
}
}
}