futures_util/stream/futures_unordered/
mod.rs

1//! An unbounded set of futures.
2//!
3//! This module is only available when the `std` or `alloc` feature of this
4//! library is activated, and it is activated by default.
5
6use crate::task::AtomicWaker;
7use alloc::sync::{Arc, Weak};
8use core::cell::UnsafeCell;
9use core::fmt::{self, Debug};
10use core::iter::FromIterator;
11use core::marker::PhantomData;
12use core::mem;
13use core::pin::Pin;
14use core::ptr;
15use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst};
16use core::sync::atomic::{AtomicBool, AtomicPtr};
17use futures_core::future::Future;
18use futures_core::stream::{FusedStream, Stream};
19use futures_core::task::{Context, Poll};
20use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError};
21
22mod abort;
23
24mod iter;
25#[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352
26pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef};
27
28mod task;
29use self::task::Task;
30
31mod ready_to_run_queue;
32use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue};
33
34/// A set of futures which may complete in any order.
35///
36/// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this
37/// type that preserves a FIFO order.
38///
39/// This structure is optimized to manage a large number of futures.
40/// Futures managed by [`FuturesUnordered`] will only be polled when they
41/// generate wake-up notifications. This reduces the required amount of work
42/// needed to poll large numbers of futures.
43///
44/// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an
45/// iterator of futures into a [`FuturesUnordered`], or by
46/// [`push`](FuturesUnordered::push)ing futures onto an existing
47/// [`FuturesUnordered`]. When new futures are added,
48/// [`poll_next`](Stream::poll_next) must be called in order to begin receiving
49/// wake-ups for new futures.
50///
51/// Note that you can create a ready-made [`FuturesUnordered`] via the
52/// [`collect`](Iterator::collect) method, or you can start with an empty set
53/// with the [`FuturesUnordered::new`] constructor.
54///
55/// This type is only available when the `std` or `alloc` feature of this
56/// library is activated, and it is activated by default.
57#[must_use = "streams do nothing unless polled"]
58pub struct FuturesUnordered<Fut> {
59    ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>,
60    head_all: AtomicPtr<Task<Fut>>,
61    is_terminated: AtomicBool,
62}
63
64unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {}
65unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {}
66impl<Fut> Unpin for FuturesUnordered<Fut> {}
67
68impl Spawn for FuturesUnordered<FutureObj<'_, ()>> {
69    fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> {
70        self.push(future_obj);
71        Ok(())
72    }
73}
74
75impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> {
76    fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> {
77        self.push(future_obj);
78        Ok(())
79    }
80}
81
82// FuturesUnordered is implemented using two linked lists. One which links all
83// futures managed by a `FuturesUnordered` and one that tracks futures that have
84// been scheduled for polling. The first linked list allows for thread safe
85// insertion of nodes at the head as well as forward iteration, but is otherwise
86// not thread safe and is only accessed by the thread that owns the
87// `FuturesUnordered` value for any other operations. The second linked list is
88// an implementation of the intrusive MPSC queue algorithm described by
89// 1024cores.net.
90//
91// When a future is submitted to the set, a task is allocated and inserted in
92// both linked lists. The next call to `poll_next` will (eventually) see this
93// task and call `poll` on the future.
94//
95// Before a managed future is polled, the current context's waker is replaced
96// with one that is aware of the specific future being run. This ensures that
97// wake-up notifications generated by that specific future are visible to
98// `FuturesUnordered`. When a wake-up notification is received, the task is
99// inserted into the ready to run queue, so that its future can be polled later.
100//
101// Each task is wrapped in an `Arc` and thereby atomically reference counted.
102// Also, each task contains an `AtomicBool` which acts as a flag that indicates
103// whether the task is currently inserted in the atomic queue. When a wake-up
104// notification is received, the task will only be inserted into the ready to
105// run queue if it isn't inserted already.
106
107impl<Fut> Default for FuturesUnordered<Fut> {
108    fn default() -> Self {
109        Self::new()
110    }
111}
112
113impl<Fut> FuturesUnordered<Fut> {
114    /// Constructs a new, empty [`FuturesUnordered`].
115    ///
116    /// The returned [`FuturesUnordered`] does not contain any futures.
117    /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will
118    /// return [`Poll::Ready(None)`](Poll::Ready).
119    pub fn new() -> Self {
120        let stub = Arc::new(Task {
121            future: UnsafeCell::new(None),
122            next_all: AtomicPtr::new(ptr::null_mut()),
123            prev_all: UnsafeCell::new(ptr::null()),
124            len_all: UnsafeCell::new(0),
125            next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
126            queued: AtomicBool::new(true),
127            ready_to_run_queue: Weak::new(),
128            woken: AtomicBool::new(false),
129        });
130        let stub_ptr = Arc::as_ptr(&stub);
131        let ready_to_run_queue = Arc::new(ReadyToRunQueue {
132            waker: AtomicWaker::new(),
133            head: AtomicPtr::new(stub_ptr as *mut _),
134            tail: UnsafeCell::new(stub_ptr),
135            stub,
136        });
137
138        Self {
139            head_all: AtomicPtr::new(ptr::null_mut()),
140            ready_to_run_queue,
141            is_terminated: AtomicBool::new(false),
142        }
143    }
144
145    /// Returns the number of futures contained in the set.
146    ///
147    /// This represents the total number of in-flight futures.
148    pub fn len(&self) -> usize {
149        let (_, len) = self.atomic_load_head_and_len_all();
150        len
151    }
152
153    /// Returns `true` if the set contains no futures.
154    pub fn is_empty(&self) -> bool {
155        // Relaxed ordering can be used here since we don't need to read from
156        // the head pointer, only check whether it is null.
157        self.head_all.load(Relaxed).is_null()
158    }
159
160    /// Push a future into the set.
161    ///
162    /// This method adds the given future to the set. This method will not
163    /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must
164    /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called
165    /// in order to receive wake-up notifications for the given future.
166    pub fn push(&self, future: Fut) {
167        let task = Arc::new(Task {
168            future: UnsafeCell::new(Some(future)),
169            next_all: AtomicPtr::new(self.pending_next_all()),
170            prev_all: UnsafeCell::new(ptr::null_mut()),
171            len_all: UnsafeCell::new(0),
172            next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
173            queued: AtomicBool::new(true),
174            ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue),
175            woken: AtomicBool::new(false),
176        });
177
178        // Reset the `is_terminated` flag if we've previously marked ourselves
179        // as terminated.
180        self.is_terminated.store(false, Relaxed);
181
182        // Right now our task has a strong reference count of 1. We transfer
183        // ownership of this reference count to our internal linked list
184        // and we'll reclaim ownership through the `unlink` method below.
185        let ptr = self.link(task);
186
187        // We'll need to get the future "into the system" to start tracking it,
188        // e.g. getting its wake-up notifications going to us tracking which
189        // futures are ready. To do that we unconditionally enqueue it for
190        // polling here.
191        self.ready_to_run_queue.enqueue(ptr);
192    }
193
194    /// Returns an iterator that allows inspecting each future in the set.
195    pub fn iter(&self) -> Iter<'_, Fut>
196    where
197        Fut: Unpin,
198    {
199        Iter(Pin::new(self).iter_pin_ref())
200    }
201
202    /// Returns an iterator that allows inspecting each future in the set.
203    pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> {
204        let (task, len) = self.atomic_load_head_and_len_all();
205        let pending_next_all = self.pending_next_all();
206
207        IterPinRef { task, len, pending_next_all, _marker: PhantomData }
208    }
209
210    /// Returns an iterator that allows modifying each future in the set.
211    pub fn iter_mut(&mut self) -> IterMut<'_, Fut>
212    where
213        Fut: Unpin,
214    {
215        IterMut(Pin::new(self).iter_pin_mut())
216    }
217
218    /// Returns an iterator that allows modifying each future in the set.
219    pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> {
220        // `head_all` can be accessed directly and we don't need to spin on
221        // `Task::next_all` since we have exclusive access to the set.
222        let task = *self.head_all.get_mut();
223        let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
224
225        IterPinMut { task, len, _marker: PhantomData }
226    }
227
228    /// Returns the current head node and number of futures in the list of all
229    /// futures within a context where access is shared with other threads
230    /// (mostly for use with the `len` and `iter_pin_ref` methods).
231    fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) {
232        let task = self.head_all.load(Acquire);
233        let len = if task.is_null() {
234            0
235        } else {
236            unsafe {
237                (*task).spin_next_all(self.pending_next_all(), Acquire);
238                *(*task).len_all.get()
239            }
240        };
241
242        (task, len)
243    }
244
245    /// Releases the task. It destroys the future inside and either drops
246    /// the `Arc<Task>` or transfers ownership to the ready to run queue.
247    /// The task this method is called on must have been unlinked before.
248    fn release_task(&mut self, task: Arc<Task<Fut>>) {
249        // `release_task` must only be called on unlinked tasks
250        debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
251        unsafe {
252            debug_assert!((*task.prev_all.get()).is_null());
253        }
254
255        // The future is done, try to reset the queued flag. This will prevent
256        // `wake` from doing any work in the future
257        let prev = task.queued.swap(true, SeqCst);
258
259        // Drop the future, even if it hasn't finished yet. This is safe
260        // because we're dropping the future on the thread that owns
261        // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and
262        // such.
263        unsafe {
264            // Set to `None` rather than `take()`ing to prevent moving the
265            // future.
266            *task.future.get() = None;
267        }
268
269        // If the queued flag was previously set, then it means that this task
270        // is still in our internal ready to run queue. We then transfer
271        // ownership of our reference count to the ready to run queue, and it'll
272        // come along and free it later, noticing that the future is `None`.
273        //
274        // If, however, the queued flag was *not* set then we're safe to
275        // release our reference count on the task. The queued flag was set
276        // above so all future `enqueue` operations will not actually
277        // enqueue the task, so our task will never see the ready to run queue
278        // again. The task itself will be deallocated once all reference counts
279        // have been dropped elsewhere by the various wakers that contain it.
280        if prev {
281            mem::forget(task);
282        }
283    }
284
285    /// Insert a new task into the internal linked list.
286    fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> {
287        // `next_all` should already be reset to the pending state before this
288        // function is called.
289        debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
290        let ptr = Arc::into_raw(task);
291
292        // Atomically swap out the old head node to get the node that should be
293        // assigned to `next_all`.
294        let next = self.head_all.swap(ptr as *mut _, AcqRel);
295
296        unsafe {
297            // Store the new list length in the new node.
298            let new_len = if next.is_null() {
299                1
300            } else {
301                // Make sure `next_all` has been written to signal that it is
302                // safe to read `len_all`.
303                (*next).spin_next_all(self.pending_next_all(), Acquire);
304                *(*next).len_all.get() + 1
305            };
306            *(*ptr).len_all.get() = new_len;
307
308            // Write the old head as the next node pointer, signaling to other
309            // threads that `len_all` and `next_all` are ready to read.
310            (*ptr).next_all.store(next, Release);
311
312            // `prev_all` updates don't need to be synchronized, as the field is
313            // only ever used after exclusive access has been acquired.
314            if !next.is_null() {
315                *(*next).prev_all.get() = ptr;
316            }
317        }
318
319        ptr
320    }
321
322    /// Remove the task from the linked list tracking all tasks currently
323    /// managed by `FuturesUnordered`.
324    /// This method is unsafe because it has be guaranteed that `task` is a
325    /// valid pointer.
326    unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> {
327        // Compute the new list length now in case we're removing the head node
328        // and won't be able to retrieve the correct length later.
329        let head = *self.head_all.get_mut();
330        debug_assert!(!head.is_null());
331        let new_len = *(*head).len_all.get() - 1;
332
333        let task = Arc::from_raw(task);
334        let next = task.next_all.load(Relaxed);
335        let prev = *task.prev_all.get();
336        task.next_all.store(self.pending_next_all(), Relaxed);
337        *task.prev_all.get() = ptr::null_mut();
338
339        if !next.is_null() {
340            *(*next).prev_all.get() = prev;
341        }
342
343        if !prev.is_null() {
344            (*prev).next_all.store(next, Relaxed);
345        } else {
346            *self.head_all.get_mut() = next;
347        }
348
349        // Store the new list length in the head node.
350        let head = *self.head_all.get_mut();
351        if !head.is_null() {
352            *(*head).len_all.get() = new_len;
353        }
354
355        task
356    }
357
358    /// Returns the reserved value for `Task::next_all` to indicate a pending
359    /// assignment from the thread that inserted the task.
360    ///
361    /// `FuturesUnordered::link` needs to update `Task` pointers in an order
362    /// that ensures any iterators created on other threads can correctly
363    /// traverse the entire `Task` list using the chain of `next_all` pointers.
364    /// This could be solved with a compare-exchange loop that stores the
365    /// current `head_all` in `next_all` and swaps out `head_all` with the new
366    /// `Task` pointer if the head hasn't already changed. Under heavy thread
367    /// contention, this compare-exchange loop could become costly.
368    ///
369    /// An alternative is to initialize `next_all` to a reserved pending state
370    /// first, perform an atomic swap on `head_all`, and finally update
371    /// `next_all` with the old head node. Iterators will then either see the
372    /// pending state value or the correct next node pointer, and can reload
373    /// `next_all` as needed until the correct value is loaded. The number of
374    /// retries needed (if any) would be small and will always be finite, so
375    /// this should generally perform better than the compare-exchange loop.
376    ///
377    /// A valid `Task` pointer in the `head_all` list is guaranteed to never be
378    /// this value, so it is safe to use as a reserved value until the correct
379    /// value can be written.
380    fn pending_next_all(&self) -> *mut Task<Fut> {
381        // The `ReadyToRunQueue` stub is never inserted into the `head_all`
382        // list, and its pointer value will remain valid for the lifetime of
383        // this `FuturesUnordered`, so we can make use of its value here.
384        Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _
385    }
386}
387
388impl<Fut: Future> Stream for FuturesUnordered<Fut> {
389    type Item = Fut::Output;
390
391    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
392        let len = self.len();
393
394        // Keep track of how many child futures we have polled,
395        // in case we want to forcibly yield.
396        let mut polled = 0;
397        let mut yielded = 0;
398
399        // Ensure `parent` is correctly set.
400        self.ready_to_run_queue.waker.register(cx.waker());
401
402        loop {
403            // Safety: &mut self guarantees the mutual exclusion `dequeue`
404            // expects
405            let task = match unsafe { self.ready_to_run_queue.dequeue() } {
406                Dequeue::Empty => {
407                    if self.is_empty() {
408                        // We can only consider ourselves terminated once we
409                        // have yielded a `None`
410                        *self.is_terminated.get_mut() = true;
411                        return Poll::Ready(None);
412                    } else {
413                        return Poll::Pending;
414                    }
415                }
416                Dequeue::Inconsistent => {
417                    // At this point, it may be worth yielding the thread &
418                    // spinning a few times... but for now, just yield using the
419                    // task system.
420                    cx.waker().wake_by_ref();
421                    return Poll::Pending;
422                }
423                Dequeue::Data(task) => task,
424            };
425
426            debug_assert!(task != self.ready_to_run_queue.stub());
427
428            // Safety:
429            // - `task` is a valid pointer.
430            // - We are the only thread that accesses the `UnsafeCell` that
431            //   contains the future
432            let future = match unsafe { &mut *(*task).future.get() } {
433                Some(future) => future,
434
435                // If the future has already gone away then we're just
436                // cleaning out this task. See the comment in
437                // `release_task` for more information, but we're basically
438                // just taking ownership of our reference count here.
439                None => {
440                    // This case only happens when `release_task` was called
441                    // for this task before and couldn't drop the task
442                    // because it was already enqueued in the ready to run
443                    // queue.
444
445                    // Safety: `task` is a valid pointer
446                    let task = unsafe { Arc::from_raw(task) };
447
448                    // Double check that the call to `release_task` really
449                    // happened. Calling it required the task to be unlinked.
450                    debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
451                    unsafe {
452                        debug_assert!((*task.prev_all.get()).is_null());
453                    }
454                    continue;
455                }
456            };
457
458            // Safety: `task` is a valid pointer
459            let task = unsafe { self.unlink(task) };
460
461            // Unset queued flag: This must be done before polling to ensure
462            // that the future's task gets rescheduled if it sends a wake-up
463            // notification **during** the call to `poll`.
464            let prev = task.queued.swap(false, SeqCst);
465            assert!(prev);
466
467            // We're going to need to be very careful if the `poll`
468            // method below panics. We need to (a) not leak memory and
469            // (b) ensure that we still don't have any use-after-frees. To
470            // manage this we do a few things:
471            //
472            // * A "bomb" is created which if dropped abnormally will call
473            //   `release_task`. That way we'll be sure the memory management
474            //   of the `task` is managed correctly. In particular
475            //   `release_task` will drop the future. This ensures that it is
476            //   dropped on this thread and not accidentally on a different
477            //   thread (bad).
478            // * We unlink the task from our internal queue to preemptively
479            //   assume it'll panic, in which case we'll want to discard it
480            //   regardless.
481            struct Bomb<'a, Fut> {
482                queue: &'a mut FuturesUnordered<Fut>,
483                task: Option<Arc<Task<Fut>>>,
484            }
485
486            impl<Fut> Drop for Bomb<'_, Fut> {
487                fn drop(&mut self) {
488                    if let Some(task) = self.task.take() {
489                        self.queue.release_task(task);
490                    }
491                }
492            }
493
494            let mut bomb = Bomb { task: Some(task), queue: &mut *self };
495
496            // Poll the underlying future with the appropriate waker
497            // implementation. This is where a large bit of the unsafety
498            // starts to stem from internally. The waker is basically just
499            // our `Arc<Task<Fut>>` and can schedule the future for polling by
500            // enqueuing itself in the ready to run queue.
501            //
502            // Critically though `Task<Fut>` won't actually access `Fut`, the
503            // future, while it's floating around inside of wakers.
504            // These structs will basically just use `Fut` to size
505            // the internal allocation, appropriately accessing fields and
506            // deallocating the task if need be.
507            let res = {
508                let task = bomb.task.as_ref().unwrap();
509                // We are only interested in whether the future is awoken before it
510                // finishes polling, so reset the flag here.
511                task.woken.store(false, Relaxed);
512                let waker = Task::waker_ref(task);
513                let mut cx = Context::from_waker(&waker);
514
515                // Safety: We won't move the future ever again
516                let future = unsafe { Pin::new_unchecked(future) };
517
518                future.poll(&mut cx)
519            };
520            polled += 1;
521
522            match res {
523                Poll::Pending => {
524                    let task = bomb.task.take().unwrap();
525                    // If the future was awoken during polling, we assume
526                    // the future wanted to explicitly yield.
527                    yielded += task.woken.load(Relaxed) as usize;
528                    bomb.queue.link(task);
529
530                    // If a future yields, we respect it and yield here.
531                    // If all futures have been polled, we also yield here to
532                    // avoid starving other tasks waiting on the executor.
533                    // (polling the same future twice per iteration may cause
534                    // the problem: https://github.com/rust-lang/futures-rs/pull/2333)
535                    if yielded >= 2 || polled == len {
536                        cx.waker().wake_by_ref();
537                        return Poll::Pending;
538                    }
539                    continue;
540                }
541                Poll::Ready(output) => return Poll::Ready(Some(output)),
542            }
543        }
544    }
545
546    fn size_hint(&self) -> (usize, Option<usize>) {
547        let len = self.len();
548        (len, Some(len))
549    }
550}
551
552impl<Fut> Debug for FuturesUnordered<Fut> {
553    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
554        write!(f, "FuturesUnordered {{ ... }}")
555    }
556}
557
558impl<Fut> FuturesUnordered<Fut> {
559    /// Clears the set, removing all futures.
560    pub fn clear(&mut self) {
561        *self = Self::new();
562    }
563}
564
565impl<Fut> Drop for FuturesUnordered<Fut> {
566    fn drop(&mut self) {
567        // When a `FuturesUnordered` is dropped we want to drop all futures
568        // associated with it. At the same time though there may be tons of
569        // wakers flying around which contain `Task<Fut>` references
570        // inside them. We'll let those naturally get deallocated.
571        while !self.head_all.get_mut().is_null() {
572            let head = *self.head_all.get_mut();
573            let task = unsafe { self.unlink(head) };
574            self.release_task(task);
575        }
576
577        // Note that at this point we could still have a bunch of tasks in the
578        // ready to run queue. None of those tasks, however, have futures
579        // associated with them so they're safe to destroy on any thread. At
580        // this point the `FuturesUnordered` struct, the owner of the one strong
581        // reference to the ready to run queue will drop the strong reference.
582        // At that point whichever thread releases the strong refcount last (be
583        // it this thread or some other thread as part of an `upgrade`) will
584        // clear out the ready to run queue and free all remaining tasks.
585        //
586        // While that freeing operation isn't guaranteed to happen here, it's
587        // guaranteed to happen "promptly" as no more "blocking work" will
588        // happen while there's a strong refcount held.
589    }
590}
591
592impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> {
593    type Item = &'a Fut;
594    type IntoIter = Iter<'a, Fut>;
595
596    fn into_iter(self) -> Self::IntoIter {
597        self.iter()
598    }
599}
600
601impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> {
602    type Item = &'a mut Fut;
603    type IntoIter = IterMut<'a, Fut>;
604
605    fn into_iter(self) -> Self::IntoIter {
606        self.iter_mut()
607    }
608}
609
610impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> {
611    type Item = Fut;
612    type IntoIter = IntoIter<Fut>;
613
614    fn into_iter(mut self) -> Self::IntoIter {
615        // `head_all` can be accessed directly and we don't need to spin on
616        // `Task::next_all` since we have exclusive access to the set.
617        let task = *self.head_all.get_mut();
618        let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
619
620        IntoIter { len, inner: self }
621    }
622}
623
624impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> {
625    fn from_iter<I>(iter: I) -> Self
626    where
627        I: IntoIterator<Item = Fut>,
628    {
629        let acc = Self::new();
630        iter.into_iter().fold(acc, |acc, item| {
631            acc.push(item);
632            acc
633        })
634    }
635}
636
637impl<Fut: Future> FusedStream for FuturesUnordered<Fut> {
638    fn is_terminated(&self) -> bool {
639        self.is_terminated.load(Relaxed)
640    }
641}
642
643impl<Fut> Extend<Fut> for FuturesUnordered<Fut> {
644    fn extend<I>(&mut self, iter: I)
645    where
646        I: IntoIterator<Item = Fut>,
647    {
648        for item in iter {
649            self.push(item);
650        }
651    }
652}