hound/read.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
// Hound -- A wav encoding and decoding library in Rust
// Copyright (C) 2015 Ruud van Asseldonk
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// A copy of the License has been included in the root of the repository.
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp;
use std::fs;
use std::io;
use std::marker;
use std::mem;
use std::path;
use super::{Error, Result, Sample, SampleFormat, WavSpec, WavSpecEx};
/// Extends the functionality of `io::Read` with additional methods.
///
/// The methods may be used on any type that implements `io::Read`.
pub trait ReadExt: io::Read {
/// Reads as many bytes as `buf` is long.
///
/// This may issue multiple `read` calls internally. An error is returned
/// if `read` read 0 bytes before the buffer is full.
// TODO: There is an RFC proposing a method like this for the standard library.
fn read_into(&mut self, buf: &mut [u8]) -> io::Result<()>;
/// Reads 4 bytes and returns them in an array.
fn read_4_bytes(&mut self) -> io::Result<[u8; 4]>;
/// Skip over `n` bytes.
fn skip_bytes(&mut self, n: usize) -> io::Result<()>;
/// Reads a single byte and interprets it as an 8-bit signed integer.
fn read_i8(&mut self) -> io::Result<i8>;
/// Reads a single byte and interprets it as an 8-bit unsigned integer.
fn read_u8(&mut self) -> io::Result<u8>;
/// Reads two bytes and interprets them as a little-endian 16-bit signed integer.
fn read_le_i16(&mut self) -> io::Result<i16>;
/// Reads two bytes and interprets them as a little-endian 16-bit unsigned integer.
fn read_le_u16(&mut self) -> io::Result<u16>;
/// Reads three bytes and interprets them as a little-endian 24-bit signed integer.
///
/// The sign bit will be extended into the most significant byte.
fn read_le_i24(&mut self) -> io::Result<i32>;
/// Reads four bytes and interprets them as a little-endian 24-bit signed integer.
///
/// The sign bit will be extended into the most significant byte.
fn read_le_i24_4(&mut self) -> io::Result<i32>;
/// Reads three bytes and interprets them as a little-endian 24-bit unsigned integer.
///
/// The most significant byte will be 0.
fn read_le_u24(&mut self) -> io::Result<u32>;
/// Reads four bytes and interprets them as a little-endian 32-bit signed integer.
fn read_le_i32(&mut self) -> io::Result<i32>;
/// Reads four bytes and interprets them as a little-endian 32-bit unsigned integer.
fn read_le_u32(&mut self) -> io::Result<u32>;
/// Reads four bytes and interprets them as a little-endian 32-bit IEEE float.
fn read_le_f32(&mut self) -> io::Result<f32>;
}
impl<R> ReadExt for R
where R: io::Read
{
#[inline(always)]
fn read_into(&mut self, buf: &mut [u8]) -> io::Result<()> {
let mut n = 0;
while n < buf.len() {
let progress = try!(self.read(&mut buf[n..]));
if progress > 0 {
n += progress;
} else {
return Err(io::Error::new(io::ErrorKind::Other, "Failed to read enough bytes."));
}
}
Ok(())
}
#[inline(always)]
fn skip_bytes(&mut self, n: usize) -> io::Result<()> {
// Read from the input in chunks of 1024 bytes at a time, and discard
// the result. 1024 is a tradeoff between doing a lot of calls, and
// using too much stack space. This method is not in a hot path, so it
// can afford to do this.
let mut n_read = 0;
let mut buf = [0u8; 1024];
while n_read < n {
let end = cmp::min(n - n_read, 1024);
let progress = try!(self.read(&mut buf[0..end]));
if progress > 0 {
n_read += progress;
} else {
return Err(io::Error::new(io::ErrorKind::Other, "Failed to read enough bytes."));
}
}
Ok(())
}
#[inline(always)]
fn read_4_bytes(&mut self) -> io::Result<[u8; 4]> {
let mut buf = [0_u8; 4];
try!(self.read_into(&mut buf[..]));
Ok(buf)
}
#[inline(always)]
fn read_i8(&mut self) -> io::Result<i8> {
self.read_u8().map(|x| x as i8)
}
#[inline(always)]
fn read_u8(&mut self) -> io::Result<u8> {
let mut buf = [0u8; 1];
try!(self.read_into(&mut buf));
Ok(buf[0])
}
#[inline(always)]
fn read_le_i16(&mut self) -> io::Result<i16> {
self.read_le_u16().map(|x| x as i16)
}
#[inline(always)]
fn read_le_u16(&mut self) -> io::Result<u16> {
let mut buf = [0u8; 2];
try!(self.read_into(&mut buf));
Ok((buf[1] as u16) << 8 | (buf[0] as u16))
}
#[inline(always)]
fn read_le_i24(&mut self) -> io::Result<i32> {
self.read_le_u24().map(|x|
// Test the sign bit, if it is set, extend the sign bit into the
// most significant byte.
if x & (1 << 23) == 0 {
x as i32
} else {
(x | 0xff_00_00_00) as i32
}
)
}
#[inline(always)]
fn read_le_i24_4(&mut self) -> io::Result<i32> {
self.read_le_u32().map(|x|
// Test the sign bit, if it is set, extend the sign bit into the
// most significant byte. Otherwise, mask out the top byte.
if x & (1 << 23) == 0 {
(x & 0x00_ff_ff_ff) as i32
} else {
(x | 0xff_00_00_00) as i32
}
)
}
#[inline(always)]
fn read_le_u24(&mut self) -> io::Result<u32> {
let mut buf = [0u8; 3];
try!(self.read_into(&mut buf));
Ok((buf[2] as u32) << 16 | (buf[1] as u32) << 8 | (buf[0] as u32))
}
#[inline(always)]
fn read_le_i32(&mut self) -> io::Result<i32> {
self.read_le_u32().map(|x| x as i32)
}
#[inline(always)]
fn read_le_u32(&mut self) -> io::Result<u32> {
let mut buf = [0u8; 4];
try!(self.read_into(&mut buf));
Ok((buf[3] as u32) << 24 | (buf[2] as u32) << 16 |
(buf[1] as u32) << 8 | (buf[0] as u32) << 0)
}
#[inline(always)]
fn read_le_f32(&mut self) -> io::Result<f32> {
let mut buf = [0u8; 4];
try!(self.read_into(&mut buf));
Ok(f32::from_le_bytes(buf))
}
}
/// The different chunks that a WAVE file can contain.
enum ChunkKind {
Fmt,
Fact,
Data,
Unknown,
}
/// Describes the structure of a chunk in the WAVE file.
struct ChunkHeader {
pub kind: ChunkKind,
pub len: u32,
}
/// A reader that reads the WAVE format from the underlying reader.
///
/// A `WavReader` is a streaming reader. It reads data from the underlying
/// reader on demand, and it reads no more than strictly necessary. No internal
/// buffering is performed on the underlying reader, but this can easily be
/// added by wrapping the reader in an `io::BufReader`. The `open` constructor
/// takes care of this for you.
pub struct WavReader<R> {
/// Specification of the file as found in the fmt chunk.
spec: WavSpec,
/// The number of bytes used to store a sample in the stream.
bytes_per_sample: u16,
/// The number of samples in the data chunk.
///
/// The data chunk is limited to a 4 GiB length because its header has a
/// 32-bit length field. A sample takes at least one byte to store, so the
/// number of samples is always less than 2^32.
num_samples: u32,
/// The number of samples read so far.
samples_read: u32,
/// The reader from which the WAVE format is read.
reader: R,
}
/// An iterator that yields samples of type `S` read from a `WavReader`.
///
/// The type `S` must have at least as many bits as the bits per sample of the
/// file, otherwise every iteration will return an error.
pub struct WavSamples<'wr, R, S>
where R: 'wr
{
reader: &'wr mut WavReader<R>,
phantom_sample: marker::PhantomData<S>,
}
/// An iterator that yields samples of type `S` read from a `WavReader`.
///
/// The type `S` must have at least as many bits as the bits per sample of the
/// file, otherwise every iteration will return an error.
pub struct WavIntoSamples<R, S> {
reader: WavReader<R>,
phantom_sample: marker::PhantomData<S>,
}
/// Reads the RIFF WAVE header, returns the supposed file size.
///
/// This function can be used to quickly check if the file could be a wav file
/// by reading 12 bytes of the header. If an `Ok` is returned, the file is
/// likely a wav file. If an `Err` is returned, it is definitely not a wav
/// file.
///
/// The returned file size cannot be larger than 2<sup>32</sup> + 7 bytes.
pub fn read_wave_header<R: io::Read>(reader: &mut R) -> Result<u64> {
// Every WAVE file starts with the four bytes 'RIFF' and a file length.
// TODO: the old approach of having a slice on the stack and reading
// into it is more cumbersome, but also avoids a heap allocation. Is
// the compiler smart enough to avoid the heap allocation anyway? I
// would not expect it to be.
if b"RIFF" != &try!(reader.read_4_bytes())[..] {
return Err(Error::FormatError("no RIFF tag found"));
}
let file_len = try!(reader.read_le_u32());
// Next four bytes indicate the file type, which should be WAVE.
if b"WAVE" != &try!(reader.read_4_bytes())[..] {
return Err(Error::FormatError("no WAVE tag found"));
}
// The stored file length does not include the "RIFF" magic and 4-byte
// length field, so the total size is 8 bytes more than what is stored.
Ok(file_len as u64 + 8)
}
/// Reads chunks until a data chunk is encountered.
///
/// Returns the information from the fmt chunk and the length of the data
/// chunk in bytes. Afterwards, the reader will be positioned at the first
/// content byte of the data chunk.
pub fn read_until_data<R: io::Read>(mut reader: R) -> Result<(WavSpecEx, u32)> {
let mut spec_opt = None;
loop {
let header = try!(WavReader::read_chunk_header(&mut reader));
match header.kind {
ChunkKind::Fmt => {
let spec = try!(WavReader::read_fmt_chunk(&mut reader, header.len));
spec_opt = Some(spec);
}
ChunkKind::Fact => {
// All (compressed) non-PCM formats must have a fact chunk
// (Rev. 3 documentation). The chunk contains at least one
// value, the number of samples in the file.
//
// The number of samples field is redundant for sampled
// data, since the Data chunk indicates the length of the
// data. The number of samples can be determined from the
// length of the data and the container size as determined
// from the Format chunk.
// http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/wave.html
let _samples_per_channel = reader.read_le_u32();
}
ChunkKind::Data => {
// The "fmt" chunk must precede the "data" chunk. Any
// chunks that come after the data chunk will be ignored.
if let Some(spec) = spec_opt {
return Ok((spec, header.len));
} else {
return Err(Error::FormatError("missing fmt chunk"));
}
}
ChunkKind::Unknown => {
// Ignore the chunk; skip all of its bytes.
try!(reader.skip_bytes(header.len as usize));
}
}
// If no data chunk is ever encountered, the function will return
// via one of the try! macros that return an Err on end of file.
}
}
impl<R> WavReader<R>
where R: io::Read
{
/// Attempts to read an 8-byte chunk header.
fn read_chunk_header(reader: &mut R) -> Result<ChunkHeader> {
let mut kind_str = [0; 4];
try!(reader.read_into(&mut kind_str));
let len = try!(reader.read_le_u32());
let kind = match &kind_str[..] {
b"fmt " => ChunkKind::Fmt,
b"fact" => ChunkKind::Fact,
b"data" => ChunkKind::Data,
_ => ChunkKind::Unknown,
};
Ok(ChunkHeader { kind: kind, len: len })
}
/// Reads the fmt chunk of the file, returns the information it provides.
fn read_fmt_chunk(reader: &mut R, chunk_len: u32) -> Result<WavSpecEx> {
// A minimum chunk length of at least 16 is assumed. Note: actually,
// the first 14 bytes contain enough information to fully specify the
// file. I have not encountered a file with a 14-byte fmt section
// though. If you ever encounter such file, please contact me.
if chunk_len < 16 {
return Err(Error::FormatError("invalid fmt chunk size"));
}
// Read the WAVEFORMAT struct, as defined at
// https://msdn.microsoft.com/en-us/library/ms713498.aspx.
// ```
// typedef struct {
// WORD wFormatTag;
// WORD nChannels;
// DWORD nSamplesPerSec;
// DWORD nAvgBytesPerSec;
// WORD nBlockAlign;
// } WAVEFORMAT;
// ```
// The WAVEFORMATEX struct has two more members, as defined at
// https://msdn.microsoft.com/en-us/library/ms713497.aspx
// ```
// typedef struct {
// WORD wFormatTag;
// WORD nChannels;
// DWORD nSamplesPerSec;
// DWORD nAvgBytesPerSec;
// WORD nBlockAlign;
// WORD wBitsPerSample;
// WORD cbSize;
// } WAVEFORMATEX;
// ```
// There is also PCMWAVEFORMAT as defined at
// https://msdn.microsoft.com/en-us/library/dd743663.aspx.
// ```
// typedef struct {
// WAVEFORMAT wf;
// WORD wBitsPerSample;
// } PCMWAVEFORMAT;
// ```
// In either case, the minimal length of the fmt section is 16 bytes,
// meaning that it does include the `wBitsPerSample` field. (The name
// is misleading though, because it is the number of bits used to store
// a sample, not all of the bits need to be valid for all versions of
// the WAVE format.)
let format_tag = try!(reader.read_le_u16());
let n_channels = try!(reader.read_le_u16());
let n_samples_per_sec = try!(reader.read_le_u32());
let n_bytes_per_sec = try!(reader.read_le_u32());
let block_align = try!(reader.read_le_u16());
let bits_per_sample = try!(reader.read_le_u16());
if n_channels == 0 {
return Err(Error::FormatError("file contains zero channels"));
}
let bytes_per_sample = block_align / n_channels;
// We allow bits_per_sample to be less than bytes_per_sample so that
// we can support things such as 24 bit samples in 4 byte containers.
if Some(bits_per_sample) > bytes_per_sample.checked_mul(8) {
return Err(Error::FormatError("sample bits exceeds size of sample"));
}
// This field is redundant, and may be ignored. We do validate it to
// fail early for ill-formed files.
if Some(n_bytes_per_sec) != (block_align as u32).checked_mul(n_samples_per_sec) {
return Err(Error::FormatError("inconsistent fmt chunk"));
}
// The bits per sample for a WAVEFORMAT struct is the number of bits
// used to store a sample. Therefore, it must be a multiple of 8.
if bits_per_sample % 8 != 0 {
return Err(Error::FormatError("bits per sample is not a multiple of 8"));
}
if bits_per_sample == 0 {
return Err(Error::FormatError("bits per sample is 0"));
}
let mut spec = WavSpec {
channels: n_channels,
sample_rate: n_samples_per_sec,
bits_per_sample: bits_per_sample,
sample_format: SampleFormat::Int,
};
// The different format tag definitions can be found in mmreg.h that is
// part of the Windows SDK. The vast majority are esoteric vendor-
// specific formats. We handle only a few. The following values could
// be of interest:
const PCM: u16 = 0x0001;
const ADPCM: u16 = 0x0002;
const IEEE_FLOAT: u16 = 0x0003;
const EXTENSIBLE: u16 = 0xfffe;
// We may update our WavSpec based on more data we read from the header.
match format_tag {
PCM => try!(WavReader::read_wave_format_pcm(reader, chunk_len, &spec)),
ADPCM => return Err(Error::Unsupported),
IEEE_FLOAT => try!(WavReader::read_wave_format_ieee_float(reader, chunk_len, &mut spec)),
EXTENSIBLE => try!(WavReader::read_wave_format_extensible(reader, chunk_len, &mut spec)),
_ => return Err(Error::Unsupported),
};
Ok(WavSpecEx {
spec: spec,
bytes_per_sample: bytes_per_sample,
})
}
fn read_wave_format_pcm(mut reader: R, chunk_len: u32, spec: &WavSpec) -> Result<()> {
// When there is a PCMWAVEFORMAT struct, the chunk is 16 bytes long.
// The WAVEFORMATEX structs includes two extra bytes, `cbSize`.
let is_wave_format_ex = match chunk_len {
16 => false,
18 => true,
// Other sizes are unexpected, but such files do occur in the wild,
// and reading these files is still possible, so we allow this.
40 => true,
_ => return Err(Error::FormatError("unexpected fmt chunk size")),
};
if is_wave_format_ex {
// `cbSize` can be used for non-PCM formats to specify the size of
// additional data. However, for WAVE_FORMAT_PCM, the member should
// be ignored, see https://msdn.microsoft.com/en-us/library/ms713497.aspx.
// Nonzero values do in fact occur in practice.
let _cb_size = try!(reader.read_le_u16());
// For WAVE_FORMAT_PCM in WAVEFORMATEX, only 8 or 16 bits per
// sample are valid according to
// https://msdn.microsoft.com/en-us/library/ms713497.aspx.
// 24 bits per sample is explicitly not valid inside a WAVEFORMATEX
// structure, but such files do occur in the wild nonetheless, and
// there is no good reason why we couldn't read them.
match spec.bits_per_sample {
8 => {}
16 => {}
24 => {}
_ => return Err(Error::FormatError("bits per sample is not 8 or 16")),
}
}
// If the chunk len was longer than expected, ignore the additional bytes.
if chunk_len == 40 {
try!(reader.skip_bytes(22));
}
Ok(())
}
fn read_wave_format_ieee_float(mut reader: R, chunk_len: u32, spec: &mut WavSpec) -> Result<()> {
// When there is a PCMWAVEFORMAT struct, the chunk is 16 bytes long.
// The WAVEFORMATEX structs includes two extra bytes, `cbSize`.
let is_wave_format_ex = chunk_len == 18;
if !is_wave_format_ex && chunk_len != 16 {
return Err(Error::FormatError("unexpected fmt chunk size"));
}
if is_wave_format_ex {
// For WAVE_FORMAT_IEEE_FLOAT which we are reading, there should
// be no extra data, so `cbSize` should be 0.
let cb_size = try!(reader.read_le_u16());
if cb_size != 0 {
return Err(Error::FormatError("unexpected WAVEFORMATEX size"));
}
}
// For WAVE_FORMAT_IEEE_FLOAT, the bits_per_sample field should be
// set to `32` according to
// https://msdn.microsoft.com/en-us/library/windows/hardware/ff538799(v=vs.85).aspx.
//
// Note that some applications support 64 bits per sample. This is
// not yet supported by hound.
if spec.bits_per_sample != 32 {
return Err(Error::FormatError("bits per sample is not 32"));
}
spec.sample_format = SampleFormat::Float;
Ok(())
}
fn read_wave_format_extensible(mut reader: R, chunk_len: u32, spec: &mut WavSpec) -> Result<()> {
// 16 bytes were read already, there must be two more for the `cbSize`
// field, and `cbSize` itself must be at least 22, so the chunk length
// must be at least 40.
if chunk_len < 40 {
return Err(Error::FormatError("unexpected fmt chunk size"));
}
// `cbSize` is the last field of the WAVEFORMATEX struct.
let cb_size = try!(reader.read_le_u16());
// `cbSize` must be at least 22, but in this case we assume that it is
// 22, because we would not know how to handle extra data anyway.
if cb_size != 22 {
return Err(Error::FormatError("unexpected WAVEFORMATEXTENSIBLE size"));
}
// What follows is the rest of the `WAVEFORMATEXTENSIBLE` struct, as
// defined at https://msdn.microsoft.com/en-us/library/ms713496.aspx.
// ```
// typedef struct {
// WAVEFORMATEX Format;
// union {
// WORD wValidBitsPerSample;
// WORD wSamplesPerBlock;
// WORD wReserved;
// } Samples;
// DWORD dwChannelMask;
// GUID SubFormat;
// } WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;
// ```
let valid_bits_per_sample = try!(reader.read_le_u16());
let _channel_mask = try!(reader.read_le_u32()); // Not used for now.
let mut subformat = [0u8; 16];
try!(reader.read_into(&mut subformat));
// Several GUIDS are defined. At the moment, only the following are supported:
//
// * KSDATAFORMAT_SUBTYPE_PCM (PCM audio with integer samples).
// * KSDATAFORMAT_SUBTYPE_IEEE_FLOAT (PCM audio with floating point samples).
let sample_format = match subformat {
super::KSDATAFORMAT_SUBTYPE_PCM => SampleFormat::Int,
super::KSDATAFORMAT_SUBTYPE_IEEE_FLOAT => SampleFormat::Float,
_ => return Err(Error::Unsupported),
};
// Fallback to bits_per_sample if the valid_bits_per_sample is obviously wrong to support non standard headers found in the wild.
if valid_bits_per_sample > 0 {
spec.bits_per_sample = valid_bits_per_sample;
}
spec.sample_format = sample_format;
Ok(())
}
/// Attempts to create a reader that reads the WAVE format.
///
/// The header is read immediately. Reading the data will be done on
/// demand.
pub fn new(mut reader: R) -> Result<WavReader<R>> {
try!(read_wave_header(&mut reader));
let (spec_ex, data_len) = try!(read_until_data(&mut reader));
let num_samples = data_len / spec_ex.bytes_per_sample as u32;
// It could be that num_samples * bytes_per_sample < data_len.
// If data_len is not a multiple of bytes_per_sample, there is some
// trailing data. Either somebody is playing some steganography game,
// but more likely something is very wrong, and we should refuse to
// decode the file, as it is invalid.
if num_samples * spec_ex.bytes_per_sample as u32 != data_len {
let msg = "data chunk length is not a multiple of sample size";
return Err(Error::FormatError(msg));
}
// The number of samples must be a multiple of the number of channels,
// otherwise the last inter-channel sample would not have data for all
// channels.
if num_samples % spec_ex.spec.channels as u32 != 0 {
return Err(Error::FormatError("invalid data chunk length"));
}
let wav_reader = WavReader {
spec: spec_ex.spec,
bytes_per_sample: spec_ex.bytes_per_sample,
num_samples: num_samples,
samples_read: 0,
reader: reader,
};
Ok(wav_reader)
}
/// Returns information about the WAVE file.
pub fn spec(&self) -> WavSpec {
self.spec
}
/// Returns an iterator over all samples.
///
/// The channel data is interleaved. The iterator is streaming. That is,
/// if you call this method once, read a few samples, and call this method
/// again, the second iterator will not start again from the beginning of
/// the file, it will continue where the first iterator stopped.
///
/// The type `S` must have at least `spec().bits_per_sample` bits,
/// otherwise every iteration will return an error. All bit depths up to
/// 32 bits per sample can be decoded into an `i32`, but if you know
/// beforehand that you will be reading a file with 16 bits per sample, you
/// can save memory by decoding into an `i16`.
///
/// The type of `S` (int or float) must match `spec().sample_format`,
/// otherwise every iteration will return an error.
pub fn samples<'wr, S: Sample>(&'wr mut self) -> WavSamples<'wr, R, S> {
WavSamples {
reader: self,
phantom_sample: marker::PhantomData,
}
}
/// Same as `samples`, but takes ownership of the `WavReader`.
///
/// See `samples()` for more info.
pub fn into_samples<S: Sample>(self) -> WavIntoSamples<R, S> {
WavIntoSamples {
reader: self,
phantom_sample: marker::PhantomData,
}
}
/// Returns the duration of the file in samples.
///
/// The duration is independent of the number of channels. It is expressed
/// in units of samples. The duration in seconds can be obtained by
/// dividing this number by the sample rate. The duration is independent of
/// how many samples have been read already.
pub fn duration(&self) -> u32 {
self.num_samples / self.spec.channels as u32
}
/// Returns the number of values that the sample iterator will yield.
///
/// The length of the file is its duration (in samples) times the number of
/// channels. The length is independent of how many samples have been read
/// already. To get the number of samples left, use `len()` on the
/// `samples()` iterator.
pub fn len(&self) -> u32 {
self.num_samples
}
/// Destroys the `WavReader` and returns the underlying reader.
pub fn into_inner(self) -> R {
self.reader
}
/// Seek to the given time within the file.
///
/// The given time is measured in number of samples (independent of the
/// number of channels) since the beginning of the audio data. To seek to
/// a particular time in seconds, multiply the number of seconds with
/// `WavSpec::sample_rate`. The given time should not exceed the duration of
/// the file (returned by `duration()`). The behavior when seeking beyond
/// `duration()` depends on the reader's `Seek` implementation.
///
/// This method requires that the inner reader `R` implements `Seek`.
pub fn seek(&mut self, time: u32) -> io::Result<()>
where R: io::Seek,
{
let bytes_per_sample = self.spec.bits_per_sample / 8;
let sample_position = time * self.spec.channels as u32;
let offset_samples = sample_position as i64 - self.samples_read as i64;
let offset_bytes = offset_samples * bytes_per_sample as i64;
try!(self.reader.seek(io::SeekFrom::Current(offset_bytes)));
self.samples_read = sample_position;
Ok(())
}
}
impl WavReader<io::BufReader<fs::File>> {
/// Attempts to create a reader that reads from the specified file.
///
/// This is a convenience constructor that opens a `File`, wraps it in a
/// `BufReader` and then constructs a `WavReader` from it.
pub fn open<P: AsRef<path::Path>>(filename: P) -> Result<WavReader<io::BufReader<fs::File>>> {
let file = try!(fs::File::open(filename));
let buf_reader = io::BufReader::new(file);
WavReader::new(buf_reader)
}
}
fn iter_next<R, S>(reader: &mut WavReader<R>) -> Option<Result<S>>
where R: io::Read,
S: Sample
{
if reader.samples_read < reader.num_samples {
reader.samples_read += 1;
let sample = Sample::read(&mut reader.reader,
reader.spec.sample_format,
reader.bytes_per_sample,
reader.spec.bits_per_sample);
Some(sample.map_err(Error::from))
} else {
None
}
}
fn iter_size_hint<R>(reader: &WavReader<R>) -> (usize, Option<usize>) {
let samples_left = reader.num_samples - reader.samples_read;
(samples_left as usize, Some(samples_left as usize))
}
impl<'wr, R, S> Iterator for WavSamples<'wr, R, S>
where R: io::Read,
S: Sample
{
type Item = Result<S>;
fn next(&mut self) -> Option<Result<S>> {
iter_next(&mut self.reader)
}
fn size_hint(&self) -> (usize, Option<usize>) {
iter_size_hint(&self.reader)
}
}
impl<'wr, R, S> ExactSizeIterator for WavSamples<'wr, R, S>
where R: io::Read,
S: Sample
{
}
impl<R, S> Iterator for WavIntoSamples<R, S>
where R: io::Read,
S: Sample
{
type Item = Result<S>;
fn next(&mut self) -> Option<Result<S>> {
iter_next(&mut self.reader)
}
fn size_hint(&self) -> (usize, Option<usize>) {
iter_size_hint(&self.reader)
}
}
impl<R, S> ExactSizeIterator for WavIntoSamples<R, S>
where R: io::Read,
S: Sample
{
}
#[test]
fn duration_and_len_agree() {
let files = &["testsamples/pcmwaveformat-16bit-44100Hz-mono.wav",
"testsamples/waveformatex-16bit-44100Hz-stereo.wav",
"testsamples/waveformatextensible-32bit-48kHz-stereo.wav"];
for fname in files {
let reader = WavReader::open(fname).unwrap();
assert_eq!(reader.spec().channels as u32 * reader.duration(),
reader.len());
}
}
/// Tests reading a wave file with the PCMWAVEFORMAT struct.
#[test]
fn read_wav_pcm_wave_format_pcm() {
let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-16bit-44100Hz-mono.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().sample_rate, 44100);
assert_eq!(wav_reader.spec().bits_per_sample, 16);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i16> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[2, -3, 5, -7]);
}
#[test]
fn read_wav_skips_unknown_chunks() {
// The test samples are the same as without the -extra suffix, but ffmpeg
// has kindly added some useless chunks in between the fmt and data chunk.
let files = ["testsamples/pcmwaveformat-16bit-44100Hz-mono-extra.wav",
"testsamples/waveformatex-16bit-44100Hz-mono-extra.wav"];
for file in &files {
let mut wav_reader = WavReader::open(file).unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().sample_rate, 44100);
assert_eq!(wav_reader.spec().bits_per_sample, 16);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let sample = wav_reader.samples::<i16>().next().unwrap().unwrap();
assert_eq!(sample, 2);
}
}
#[test]
fn read_wav_0_valid_bits_fallback() {
let mut wav_reader = WavReader::open("testsamples/nonstandard-02.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 2);
assert_eq!(wav_reader.spec().sample_rate, 48000);
assert_eq!(wav_reader.spec().bits_per_sample, 32);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[19, -229373, 33587161, -2147483497]);
}
#[test]
fn len_and_size_hint_are_correct() {
let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-16bit-44100Hz-mono.wav")
.unwrap();
assert_eq!(wav_reader.len(), 4);
{
let mut samples = wav_reader.samples::<i16>();
assert_eq!(samples.size_hint(), (4, Some(4)));
samples.next();
assert_eq!(samples.size_hint(), (3, Some(3)));
}
// Reading should not affect the initial length.
assert_eq!(wav_reader.len(), 4);
// Creating a new iterator resumes where the previous iterator stopped.
{
let mut samples = wav_reader.samples::<i16>();
assert_eq!(samples.size_hint(), (3, Some(3)));
samples.next();
assert_eq!(samples.size_hint(), (2, Some(2)));
}
}
#[test]
fn size_hint_is_exact() {
let files = &["testsamples/pcmwaveformat-16bit-44100Hz-mono.wav",
"testsamples/waveformatex-16bit-44100Hz-stereo.wav",
"testsamples/waveformatextensible-32bit-48kHz-stereo.wav"];
for fname in files {
let mut reader = WavReader::open(fname).unwrap();
let len = reader.len();
let mut iter = reader.samples::<i32>();
for i in 0..len {
let remaining = (len - i) as usize;
assert_eq!(iter.size_hint(), (remaining, Some(remaining)));
assert!(iter.next().is_some());
}
assert!(iter.next().is_none());
}
}
#[test]
fn samples_equals_into_samples() {
let wav_reader_val = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav").unwrap();
let mut wav_reader_ref = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav").unwrap();
let samples_val: Vec<i16> = wav_reader_val.into_samples()
.map(|r| r.unwrap())
.collect();
let samples_ref: Vec<i16> = wav_reader_ref.samples()
.map(|r| r.unwrap())
.collect();
assert_eq!(samples_val, samples_ref);
}
/// Tests reading a wave file with the WAVEFORMATEX struct.
#[test]
fn read_wav_wave_format_ex_pcm() {
let mut wav_reader = WavReader::open("testsamples/waveformatex-16bit-44100Hz-mono.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().sample_rate, 44100);
assert_eq!(wav_reader.spec().bits_per_sample, 16);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i16> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[2, -3, 5, -7]);
}
#[test]
fn read_wav_wave_format_ex_ieee_float() {
let mut wav_reader = WavReader::open("testsamples/waveformatex-ieeefloat-44100Hz-mono.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().sample_rate, 44100);
assert_eq!(wav_reader.spec().bits_per_sample, 32);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Float);
let samples: Vec<f32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[2.0, 3.0, -16411.0, 1019.0]);
}
#[test]
fn read_wav_stereo() {
let mut wav_reader = WavReader::open("testsamples/waveformatex-16bit-44100Hz-stereo.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 2);
assert_eq!(wav_reader.spec().sample_rate, 44100);
assert_eq!(wav_reader.spec().bits_per_sample, 16);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i16> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact eight samples.
assert_eq!(&samples[..], &[2, -3, 5, -7, 11, -13, 17, -19]);
}
#[test]
fn read_wav_pcm_wave_format_8bit() {
let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().bits_per_sample, 8);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i16> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[19, -53, 89, -127]);
}
/// Test reading 24 bit samples in a 4 byte container using the pcmwaveformat header. This is
/// technically a non-compliant wave file, but it is the sort of file generated by
/// 'arecord -f S24_LE -r 48000 -c 2 input.wav' so it should be supported.
#[test]
fn read_wav_pcm_wave_format_24bit_4byte() {
let mut wav_reader = WavReader::open("testsamples/pcmwaveformat-24bit-4byte-48kHz-stereo.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 2);
assert_eq!(wav_reader.spec().sample_rate, 48_000);
assert_eq!(wav_reader.spec().bits_per_sample, 24);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[-96, 23_052, 8_388_607, -8_360_672]);
}
/// Regression test for a real-world wav file encountered in Quake.
#[test]
fn read_wav_wave_format_ex_8bit() {
let mut wav_reader = WavReader::open("testsamples/waveformatex-8bit-11025Hz-mono.wav").unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().bits_per_sample, 8);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The audio data has been zeroed out, but for 8-bit files, a zero means a
// sample value of 128.
assert_eq!(&samples[..], &[-128, -128, -128, -128]);
}
/// This test sample tests both reading the WAVEFORMATEXTENSIBLE header, and 24-bit samples.
#[test]
fn read_wav_wave_format_extensible_pcm_24bit() {
let mut wav_reader = WavReader::open("testsamples/waveformatextensible-24bit-192kHz-mono.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().sample_rate, 192_000);
assert_eq!(wav_reader.spec().bits_per_sample, 24);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[-17, 4_194_319, -6_291_437, 8_355_817]);
}
/// This test sample tests both reading the WAVEFORMATEXTENSIBLE header, and 24-bit samples with a
/// 4 byte container size.
#[test]
fn read_wav_wave_format_extensible_pcm_24bit_4byte() {
let mut wav_reader = WavReader::open("testsamples/waveformatextensible-24bit-4byte-48kHz-stereo.wav")
.unwrap();
assert_eq!(wav_reader.spec().channels, 2);
assert_eq!(wav_reader.spec().sample_rate, 48_000);
assert_eq!(wav_reader.spec().bits_per_sample, 24);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[-96, 23_052, 8_388_607, -8_360_672]);
}
#[test]
fn read_wav_32bit() {
let mut wav_reader = WavReader::open("testsamples/waveformatextensible-32bit-48kHz-stereo.wav")
.unwrap();
assert_eq!(wav_reader.spec().bits_per_sample, 32);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[19, -229_373, 33_587_161, -2_147_483_497]);
}
#[test]
fn read_wav_wave_format_extensible_ieee_float() {
let mut wav_reader =
WavReader::open("testsamples/waveformatextensible-ieeefloat-44100Hz-mono.wav").unwrap();
assert_eq!(wav_reader.spec().channels, 1);
assert_eq!(wav_reader.spec().sample_rate, 44100);
assert_eq!(wav_reader.spec().bits_per_sample, 32);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Float);
let samples: Vec<f32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
// The test file has been prepared with these exact four samples.
assert_eq!(&samples[..], &[2.0, 3.0, -16411.0, 1019.0]);
}
#[test]
fn read_wav_nonstandard_01() {
// The test sample here is adapted from a file encountered in the wild (data
// chunk replaced with two zero samples, some metadata dropped, and the file
// length in the header fixed). It is not a valid file according to the
// standard, but many players can deal with it nonetheless. (The file even
// contains some metadata; open it in a hex editor if you would like to know
// which program created it.) The file contains a regular PCM format tag,
// but the size of the fmt chunk is one that would be expected of a
// WAVEFORMATEXTENSIBLE chunk. The bits per sample is 24, which is invalid
// for WAVEFORMATEX, but we can read it nonetheless.
let mut wav_reader = WavReader::open("testsamples/nonstandard-01.wav").unwrap();
assert_eq!(wav_reader.spec().bits_per_sample, 24);
assert_eq!(wav_reader.spec().sample_format, SampleFormat::Int);
let samples: Vec<i32> = wav_reader.samples()
.map(|r| r.unwrap())
.collect();
assert_eq!(&samples[..], &[0, 0]);
}
#[test]
fn wide_read_should_signal_error() {
let mut reader24 = WavReader::open("testsamples/waveformatextensible-24bit-192kHz-mono.wav")
.unwrap();
// Even though we know the first value is 17, and it should fit in an `i8`,
// a general 24-bit sample will not fit in an `i8`, so this should fail.
// 16-bit is still not wide enough, but 32-bit should do the trick.
assert!(reader24.samples::<i8>().next().unwrap().is_err());
assert!(reader24.samples::<i16>().next().unwrap().is_err());
assert!(reader24.samples::<i32>().next().unwrap().is_ok());
let mut reader32 = WavReader::open("testsamples/waveformatextensible-32bit-48kHz-stereo.wav")
.unwrap();
// In general, 32-bit samples will not fit in anything but an `i32`.
assert!(reader32.samples::<i8>().next().unwrap().is_err());
assert!(reader32.samples::<i16>().next().unwrap().is_err());
assert!(reader32.samples::<i32>().next().unwrap().is_ok());
}
#[test]
fn sample_format_mismatch_should_signal_error() {
let mut reader_f32 = WavReader::open("testsamples/waveformatex-ieeefloat-44100Hz-mono.wav")
.unwrap();
assert!(reader_f32.samples::<i8>().next().unwrap().is_err());
assert!(reader_f32.samples::<i16>().next().unwrap().is_err());
assert!(reader_f32.samples::<i32>().next().unwrap().is_err());
assert!(reader_f32.samples::<f32>().next().unwrap().is_ok());
let mut reader_i8 = WavReader::open("testsamples/pcmwaveformat-8bit-44100Hz-mono.wav").unwrap();
assert!(reader_i8.samples::<i8>().next().unwrap().is_ok());
assert!(reader_i8.samples::<i16>().next().unwrap().is_ok());
assert!(reader_i8.samples::<i32>().next().unwrap().is_ok());
assert!(reader_i8.samples::<f32>().next().unwrap().is_err());
}
#[test]
fn fuzz_crashes_should_be_fixed() {
use std::fs;
use std::ffi::OsStr;
// This is a regression test: all crashes and other issues found through
// fuzzing should not cause a crash.
let dir = fs::read_dir("testsamples/fuzz").ok()
.expect("failed to enumerate fuzz test corpus");
for path in dir {
let path = path.ok().expect("failed to obtain path info").path();
let is_file = fs::metadata(&path).unwrap().file_type().is_file();
if is_file && path.extension() == Some(OsStr::new("wav")) {
println!(" testing {} ...", path.to_str()
.expect("unsupported filename"));
let mut reader = match WavReader::open(path) {
Ok(r) => r,
Err(..) => continue,
};
match reader.spec().sample_format {
SampleFormat::Int => {
for sample in reader.samples::<i32>() {
match sample {
Ok(..) => { }
Err(..) => break,
}
}
}
SampleFormat::Float => {
for sample in reader.samples::<f32>() {
match sample {
Ok(..) => { }
Err(..) => break,
}
}
}
}
}
}
}
#[test]
fn seek_is_consistent() {
let files = &["testsamples/pcmwaveformat-16bit-44100Hz-mono.wav",
"testsamples/waveformatex-16bit-44100Hz-stereo.wav",
"testsamples/waveformatextensible-32bit-48kHz-stereo.wav"];
for fname in files {
let mut reader = WavReader::open(fname).unwrap();
// Seeking back to the start should "reset" the reader.
let count = reader.samples::<i32>().count();
reader.seek(0).unwrap();
assert_eq!(reader.samples_read, 0);
assert_eq!(count, reader.samples::<i32>().count());
// Seek to the last sample.
let last_time = reader.duration() - 1;
let channels = reader.spec.channels;
reader.seek(last_time).unwrap();
{
let mut samples = reader.samples::<i32>();
for _ in 0..channels {
assert!(samples.next().is_some());
}
assert!(samples.next().is_none());
}
// Seeking beyond the audio data produces no samples.
let num_samples = reader.len();
reader.seek(num_samples).unwrap();
assert!(reader.samples::<i32>().next().is_none());
reader.seek(::std::u32::MAX / channels as u32).unwrap();
assert!(reader.samples::<i32>().next().is_none());
}
}