rand_pcg/pcg64.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
// Copyright 2018 Developers of the Rand project.
// Copyright 2017 Paul Dicker.
// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! PCG random number generators
use core::fmt;
use core::mem::transmute;
use rand_core::{RngCore, SeedableRng, Error, le, impls};
// This is the default multiplier used by PCG for 64-bit state.
const MULTIPLIER: u64 = 6364136223846793005;
/// A PCG random number generator (XSH RR 64/32 (LCG) variant).
///
/// Permuted Congruential Generator with 64-bit state, internal Linear
/// Congruential Generator, and 32-bit output via "xorshift high (bits),
/// random rotation" output function.
///
/// This is a 64-bit LCG with explicitly chosen stream with the PCG-XSH-RR
/// output function. This combination is the standard `pcg32`.
///
/// Despite the name, this implementation uses 16 bytes (128 bit) space
/// comprising 64 bits of state and 64 bits stream selector. These are both set
/// by `SeedableRng`, using a 128-bit seed.
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))]
pub struct Lcg64Xsh32 {
state: u64,
increment: u64,
}
/// `Lcg64Xsh32` is also officially known as `pcg32`.
pub type Pcg32 = Lcg64Xsh32;
impl Lcg64Xsh32 {
/// Construct an instance compatible with PCG seed and stream.
///
/// Note that PCG specifies default values for both parameters:
///
/// - `state = 0xcafef00dd15ea5e5`
/// - `stream = 721347520444481703`
pub fn new(state: u64, stream: u64) -> Self {
// The increment must be odd, hence we discard one bit:
let increment = (stream << 1) | 1;
Lcg64Xsh32::from_state_incr(state, increment)
}
#[inline]
fn from_state_incr(state: u64, increment: u64) -> Self {
let mut pcg = Lcg64Xsh32 { state, increment };
// Move away from inital value:
pcg.state = pcg.state.wrapping_add(pcg.increment);
pcg.step();
pcg
}
#[inline]
fn step(&mut self) {
// prepare the LCG for the next round
self.state = self.state
.wrapping_mul(MULTIPLIER)
.wrapping_add(self.increment);
}
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Lcg64Xsh32 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Lcg64Xsh32 {{}}")
}
}
/// We use a single 127-bit seed to initialise the state and select a stream.
/// One `seed` bit (lowest bit of `seed[8]`) is ignored.
impl SeedableRng for Lcg64Xsh32 {
type Seed = [u8; 16];
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u64 = [0u64; 2];
le::read_u64_into(&seed, &mut seed_u64);
// The increment must be odd, hence we discard one bit:
Lcg64Xsh32::from_state_incr(seed_u64[0], seed_u64[1] | 1)
}
}
impl RngCore for Lcg64Xsh32 {
#[inline]
fn next_u32(&mut self) -> u32 {
let state = self.state;
self.step();
// Output function XSH RR: xorshift high (bits), followed by a random rotate
// Constants are for 64-bit state, 32-bit output
const ROTATE: u32 = 59; // 64 - 5
const XSHIFT: u32 = 18; // (5 + 32) / 2
const SPARE: u32 = 27; // 64 - 32 - 5
let rot = (state >> ROTATE) as u32;
let xsh = (((state >> XSHIFT) ^ state) >> SPARE) as u32;
xsh.rotate_right(rot)
}
#[inline]
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_u32(self)
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
// specialisation of impls::fill_bytes_via_next; approx 40% faster
let mut left = dest;
while left.len() >= 4 {
let (l, r) = {left}.split_at_mut(4);
left = r;
let chunk: [u8; 4] = unsafe {
transmute(self.next_u32().to_le())
};
l.copy_from_slice(&chunk);
}
let n = left.len();
if n > 0 {
let chunk: [u8; 4] = unsafe {
transmute(self.next_u32().to_le())
};
left.copy_from_slice(&chunk[..n]);
}
}
#[inline]
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
Ok(self.fill_bytes(dest))
}
}
#[cfg(test)]
mod tests {
use ::rand_core::{RngCore, SeedableRng};
use super::*;
#[test]
fn test_lcg64xsh32_construction() {
// Test that various construction techniques produce a working RNG.
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng1 = Lcg64Xsh32::from_seed(seed);
assert_eq!(rng1.next_u64(), 1204678643940597513);
let mut rng2 = Lcg64Xsh32::from_rng(&mut rng1).unwrap();
assert_eq!(rng2.next_u64(), 12384929573776311845);
let mut rng3 = Lcg64Xsh32::seed_from_u64(0);
assert_eq!(rng3.next_u64(), 18195738587432868099);
// This is the same as Lcg64Xsh32, so we only have a single test:
let mut rng4 = Pcg32::seed_from_u64(0);
assert_eq!(rng4.next_u64(), 18195738587432868099);
}
#[test]
fn test_lcg64xsh32_true_values() {
// Numbers copied from official test suite.
let mut rng = Lcg64Xsh32::new(42, 54);
let mut results = [0u32; 6];
for i in results.iter_mut() { *i = rng.next_u32(); }
let expected: [u32; 6] = [0xa15c02b7, 0x7b47f409, 0xba1d3330,
0x83d2f293, 0xbfa4784b, 0xcbed606e];
assert_eq!(results, expected);
}
#[cfg(feature="serde1")]
#[test]
fn test_lcg64xsh32_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let mut rng = Lcg64Xsh32::seed_from_u64(0);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Lcg64Xsh32 = bincode::deserialize_from(&mut read).expect("Could not deserialize");
assert_eq!(rng.state, deserialized.state);
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}
}