1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Copyright 2018 Developers of the Rand project.
// Copyright 2017 Paul Dicker.
// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! PCG random number generators

use core::fmt;
use core::mem::transmute;
use rand_core::{RngCore, SeedableRng, Error, le, impls};

// This is the default multiplier used by PCG for 64-bit state.
const MULTIPLIER: u64 = 6364136223846793005;

/// A PCG random number generator (XSH RR 64/32 (LCG) variant).
/// 
/// Permuted Congruential Generator with 64-bit state, internal Linear
/// Congruential Generator, and 32-bit output via "xorshift high (bits),
/// random rotation" output function.
/// 
/// This is a 64-bit LCG with explicitly chosen stream with the PCG-XSH-RR
/// output function. This combination is the standard `pcg32`.
/// 
/// Despite the name, this implementation uses 16 bytes (128 bit) space
/// comprising 64 bits of state and 64 bits stream selector. These are both set
/// by `SeedableRng`, using a 128-bit seed.
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))]
pub struct Lcg64Xsh32 {
    state: u64,
    increment: u64,
}

/// `Lcg64Xsh32` is also officially known as `pcg32`.
pub type Pcg32 = Lcg64Xsh32;

impl Lcg64Xsh32 {
    /// Construct an instance compatible with PCG seed and stream.
    /// 
    /// Note that PCG specifies default values for both parameters:
    /// 
    /// - `state = 0xcafef00dd15ea5e5`
    /// - `stream = 721347520444481703`
    pub fn new(state: u64, stream: u64) -> Self {
        // The increment must be odd, hence we discard one bit:
        let increment = (stream << 1) | 1;
        Lcg64Xsh32::from_state_incr(state, increment)
    }
    
    #[inline]
    fn from_state_incr(state: u64, increment: u64) -> Self {
        let mut pcg = Lcg64Xsh32 { state, increment };
        // Move away from inital value:
        pcg.state = pcg.state.wrapping_add(pcg.increment);
        pcg.step();
        pcg
    }
    
    #[inline]
    fn step(&mut self) {
        // prepare the LCG for the next round
        self.state = self.state
            .wrapping_mul(MULTIPLIER)
            .wrapping_add(self.increment);
    }
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Lcg64Xsh32 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Lcg64Xsh32 {{}}")
    }
}

/// We use a single 127-bit seed to initialise the state and select a stream.
/// One `seed` bit (lowest bit of `seed[8]`) is ignored.
impl SeedableRng for Lcg64Xsh32 {
    type Seed = [u8; 16];

    fn from_seed(seed: Self::Seed) -> Self {
        let mut seed_u64 = [0u64; 2];
        le::read_u64_into(&seed, &mut seed_u64);

        // The increment must be odd, hence we discard one bit:
        Lcg64Xsh32::from_state_incr(seed_u64[0], seed_u64[1] | 1)
    }
}

impl RngCore for Lcg64Xsh32 {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        let state = self.state;
        self.step();

        // Output function XSH RR: xorshift high (bits), followed by a random rotate
        // Constants are for 64-bit state, 32-bit output
        const ROTATE: u32 = 59; // 64 - 5
        const XSHIFT: u32 = 18; // (5 + 32) / 2
        const SPARE: u32 = 27;  // 64 - 32 - 5

        let rot = (state >> ROTATE) as u32;
        let xsh = (((state >> XSHIFT) ^ state) >> SPARE) as u32;
        xsh.rotate_right(rot)
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        impls::next_u64_via_u32(self)
    }

    #[inline]
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        // specialisation of impls::fill_bytes_via_next; approx 40% faster
        let mut left = dest;
        while left.len() >= 4 {
            let (l, r) = {left}.split_at_mut(4);
            left = r;
            let chunk: [u8; 4] = unsafe {
                transmute(self.next_u32().to_le())
            };
            l.copy_from_slice(&chunk);
        }
        let n = left.len();
        if n > 0 {
            let chunk: [u8; 4] = unsafe {
                transmute(self.next_u32().to_le())
            };
            left.copy_from_slice(&chunk[..n]);
        }
    }

    #[inline]
    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        Ok(self.fill_bytes(dest))
    }
}

#[cfg(test)]
mod tests {
    use ::rand_core::{RngCore, SeedableRng};
    use super::*;

    #[test]
    fn test_lcg64xsh32_construction() {
        // Test that various construction techniques produce a working RNG.
        let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
        let mut rng1 = Lcg64Xsh32::from_seed(seed);
        assert_eq!(rng1.next_u64(), 1204678643940597513);

        let mut rng2 = Lcg64Xsh32::from_rng(&mut rng1).unwrap();
        assert_eq!(rng2.next_u64(), 12384929573776311845);

        let mut rng3 = Lcg64Xsh32::seed_from_u64(0);
        assert_eq!(rng3.next_u64(), 18195738587432868099);

        // This is the same as Lcg64Xsh32, so we only have a single test:
        let mut rng4 = Pcg32::seed_from_u64(0);
        assert_eq!(rng4.next_u64(), 18195738587432868099);
    }

    #[test]
    fn test_lcg64xsh32_true_values() {
        // Numbers copied from official test suite.
        let mut rng = Lcg64Xsh32::new(42, 54);

        let mut results = [0u32; 6];
        for i in results.iter_mut() { *i = rng.next_u32(); }
        let expected: [u32; 6] = [0xa15c02b7, 0x7b47f409, 0xba1d3330,
            0x83d2f293, 0xbfa4784b, 0xcbed606e];
        assert_eq!(results, expected);
    }

    #[cfg(feature="serde1")]
    #[test]
    fn test_lcg64xsh32_serde() {
        use bincode;
        use std::io::{BufWriter, BufReader};

        let mut rng = Lcg64Xsh32::seed_from_u64(0);

        let buf: Vec<u8> = Vec::new();
        let mut buf = BufWriter::new(buf);
        bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");

        let buf = buf.into_inner().unwrap();
        let mut read = BufReader::new(&buf[..]);
        let mut deserialized: Lcg64Xsh32 = bincode::deserialize_from(&mut read).expect("Could not deserialize");

        assert_eq!(rng.state, deserialized.state);

        for _ in 0..16 {
            assert_eq!(rng.next_u64(), deserialized.next_u64());
        }
    }
}