fuchsia_backoff/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use fuchsia_async::{self as fasync, DurationExt};
use futures::Future;
use std::time::Duration;
/// Execute the async task. If it errs out, attempt to run the task again after a delay if the
/// `backoff` yields a duration. Otherwise, return the first error that occurred to the caller.
///
/// # Examples
///
/// `retry_or_first_error` will succeed if the task returns `Ok` before the `backoff` returns None.
///
/// ```
/// # use std::iter::repeat;
/// # use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
/// let counter = Arc::new(AtomicUsize::new(0));
/// let result = retry_or_first_error(
/// repeat(Duration::from_secs(1)),
/// || async {
/// let count = counter.fetch_add(1, Ordering::SeqCst);
/// if count == 5 {
/// Ok(count)
/// } else {
/// Err(count)
/// }
/// }),
/// ).await;
/// assert_eq!(result, Ok(5));
/// ```
///
/// If the task fails, the `retry_or_first_error` will return the first error.
///
/// ```
/// # use std::iter::repeat;
/// # use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
/// let counter = Arc::new(AtomicUsize::new(0));
/// let result = retry_or_first_error(
/// repeat(Duration::from_secs(1)).take(5),
/// || async {
/// let count = counter.fetch_add(1, Ordering::SeqCst);
/// Err(count)
/// }),
/// ).await;
/// assert_eq!(result, Err(0));
/// ```
pub async fn retry_or_first_error<B, T>(mut backoff: B, task: T) -> Result<T::Ok, T::Error>
where
B: Backoff<T::Error>,
T: Task,
{
match next(&mut backoff, task).await {
Ok(value) => Ok(value),
Err((err, None)) => Err(err),
Err((err, Some(task))) => match retry_or_last_error(backoff, task).await {
Ok(value) => Ok(value),
Err(_) => Err(err),
},
}
}
/// Execute the async task. If it errs out, attempt to run the task again after a delay if the
/// `backoff` yields a duration. Otherwise, return the last error that occurred to the caller.
///
/// # Examples
///
/// `retry_or_last_error` will succeed if the task returns `Ok` before the `backoff` returns None.
///
/// ```
/// # use std::iter::repeat;
/// # use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
/// let counter = Arc::new(AtomicUsize::new(0));
/// let result = retry_or_last_error(
/// repeat(Duration::from_secs(1)),
/// || async {
/// let count = counter.fetch_add(1, Ordering::SeqCst);
/// if count == 5 {
/// Ok(count)
/// } else {
/// Err(count)
/// }
/// }),
/// ).await;
/// assert_eq!(result, Ok(5));
/// ```
///
/// If the task fails, the `retry_or_last_error` will return the last error.
///
/// ```
/// # use std::iter::repeat;
/// # use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
/// let counter = Arc::new(AtomicUsize::new(0));
/// let result = retry_or_last_error(
/// repeat(Duration::from_secs(1)).take(5),
/// || async {
/// let count = counter.fetch_add(1, Ordering::SeqCst);
/// Err(count)
/// }),
/// ).await;
/// assert_eq!(result, Err(5));
/// ```
pub async fn retry_or_last_error<B, T>(mut backoff: B, mut task: T) -> Result<T::Ok, T::Error>
where
B: Backoff<T::Error>,
T: Task,
{
loop {
match next(&mut backoff, task).await {
Ok(value) => {
return Ok(value);
}
Err((err, None)) => {
return Err(err);
}
Err((_, Some(next))) => {
task = next;
}
}
}
}
/// Execute the async task. If it errs out, attempt to run the task again after a delay if the
/// `backoff` yields a duration. Otherwise, collect all the errors and return them to the caller.
///
/// # Examples
///
/// `retry_or_last_error` will succeed if it returns `Ok` before the `backoff` returns None.
///
/// ```
/// # use std::iter::repeat;
/// # use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
/// let counter = Arc::new(AtomicUsize::new(0));
/// let result = retry_or_collect_errors(
/// repeat(Duration::from_secs(1)),
/// || async {
/// let count = counter.fetch_add(1, Ordering::SeqCst);
/// if count == 5 {
/// Ok(count)
/// } else {
/// Err(count)
/// }
/// }),
/// ).await;
/// assert_eq!(result, Ok(5));
/// ```
///
/// If the task fails, it will return all the errors.
///
/// ```
/// # use std::iter::repeat;
/// # use std::sync::{Arc, atomic::{AtomicUsize, Ordering}};
/// let counter = Arc::new(AtomicUsize::new(0));
/// let result = retry_or_last_error(
/// repeat(Duration::from_secs(1)).take(5),
/// || async {
/// let count = counter.fetch_add(1, Ordering::SeqCst);
/// Err(count)
/// }),
/// ).await;
/// assert_eq!(result, Err(vec![0, 1, 2, 3, 4]));
/// ```
pub async fn retry_or_collect_errors<B, T, C>(mut backoff: B, mut task: T) -> Result<T::Ok, C>
where
B: Backoff<T::Error>,
T: Task,
C: Default + Extend<T::Error>,
{
let mut collection = C::default();
loop {
match next(&mut backoff, task).await {
Ok(value) => {
return Ok(value);
}
Err((err, next)) => {
collection.extend(Some(err));
match next {
Some(next) => {
task = next;
}
None => {
return Err(collection);
}
}
}
}
}
}
async fn next<B, T>(backoff: &mut B, mut task: T) -> Result<T::Ok, (T::Error, Option<T>)>
where
B: Backoff<T::Error>,
T: Task,
{
match task.run().await {
Ok(value) => Ok(value),
Err(err) => match backoff.next_backoff(&err) {
Some(delay) => {
let delay = delay.after_now();
fasync::Timer::new(delay).await;
Err((err, Some(task)))
}
None => Err((err, None)),
},
}
}
/// A task produces an asynchronous computation that can be retried if the returned future fails
/// with some error.
pub trait Task {
/// The type of successful values yielded by the task future.
type Ok;
/// The type of failures yielded by the task future.
type Error;
/// The future returned when executing this task.
type Future: Future<Output = Result<Self::Ok, Self::Error>>;
/// Return a future.
fn run(&mut self) -> Self::Future;
}
impl<F, Fut, T, E> Task for F
where
F: FnMut() -> Fut,
Fut: Future<Output = Result<T, E>>,
{
type Ok = T;
type Error = E;
type Future = Fut;
fn run(&mut self) -> Self::Future {
(self)()
}
}
/// A backoff policy for deciding to retry an operation.
pub trait Backoff<E> {
fn next_backoff(&mut self, err: &E) -> Option<Duration>;
}
impl<E, I> Backoff<E> for I
where
I: Iterator<Item = Duration>,
{
fn next_backoff(&mut self, _: &E) -> Option<Duration> {
self.next()
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures::prelude::*;
use std::iter;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
const BACKOFF_DURATION: u64 = 100;
#[derive(Clone)]
struct Counter {
counter: Arc<AtomicUsize>,
ok_at: Option<usize>,
}
impl Counter {
fn ok_at(count: usize) -> Self {
Counter { counter: Arc::new(AtomicUsize::new(0)), ok_at: Some(count) }
}
fn never_ok() -> Self {
Counter { counter: Arc::new(AtomicUsize::new(0)), ok_at: None }
}
}
impl Task for Counter {
type Ok = usize;
type Error = usize;
type Future = future::Ready<Result<usize, usize>>;
fn run(&mut self) -> Self::Future {
let count = self.counter.fetch_add(1, Ordering::SeqCst);
match self.ok_at {
Some(ok_at) if ok_at == count => future::ready(Ok(count)),
_ => future::ready(Err(count)),
}
}
}
#[cfg(target_os = "fuchsia")]
fn run<F>(future: F, pending_count: usize) -> F::Output
where
F: Future,
F::Output: std::fmt::Debug + PartialEq + Eq,
{
use std::pin::pin;
use std::task::Poll;
let mut future = pin!(future);
let mut executor = fasync::TestExecutor::new_with_fake_time();
for _ in 0..pending_count {
assert_eq!(executor.run_until_stalled(&mut future), Poll::Pending);
assert_eq!(executor.wake_expired_timers(), false);
executor.set_fake_time(Duration::from_millis(BACKOFF_DURATION).after_now());
assert_eq!(executor.wake_expired_timers(), true);
}
match executor.run_until_stalled(&mut future) {
Poll::Ready(value) => value,
Poll::Pending => panic!("expected future to be ready"),
}
}
#[cfg(not(target_os = "fuchsia"))]
fn run<F>(future: F, pending_count: usize) -> F::Output
where
F: Future,
F::Output: std::fmt::Debug + PartialEq + Eq,
{
// The host-side executor doesn't support fake time, so just run the future and make sure
// it ran longer than the backoff duration.
let mut executor = fasync::LocalExecutor::new();
let start_time = fasync::MonotonicInstant::now();
let result = executor.run_singlethreaded(future);
let actual_duration = fasync::MonotonicInstant::now() - start_time;
let expected_duration = Duration::from_millis(BACKOFF_DURATION) * pending_count as u32;
assert!(expected_duration <= actual_duration);
result
}
// Return `attempts` durations.
fn backoff(attempts: usize) -> impl Iterator<Item = Duration> {
iter::repeat(Duration::from_millis(BACKOFF_DURATION)).take(attempts)
}
#[test]
fn test_should_succeed() {
for i in 0..5 {
// to test passing, always attempt one more attempt than necessary before Counter
// succeeds.
assert_eq!(run(retry_or_first_error(backoff(i + 1), Counter::ok_at(i)), i), Ok(i));
assert_eq!(run(retry_or_last_error(backoff(i + 1), Counter::ok_at(i)), i), Ok(i));
assert_eq!(
run(retry_or_collect_errors(backoff(i + 1), Counter::ok_at(i)), i),
Ok::<usize, Vec<usize>>(i)
);
// Check FnMut impl works. It always succeeds during the first iteration.
let task = || future::ready(Ok::<_, ()>(i));
assert_eq!(run(retry_or_last_error(backoff(i + 1), task), 0), Ok(i));
}
}
#[test]
fn test_should_error() {
for i in 0..5 {
assert_eq!(run(retry_or_first_error(backoff(i), Counter::never_ok()), i), Err(0));
assert_eq!(run(retry_or_last_error(backoff(i), Counter::never_ok()), i), Err(i));
assert_eq!(
run(retry_or_collect_errors(backoff(i), Counter::never_ok()), i),
Err::<usize, Vec<usize>>((0..=i).collect())
);
// Check FnMut impl works.
let task = || future::ready(Err::<(), _>(i));
assert_eq!(run(retry_or_last_error(backoff(i), task), i), Err(i));
}
}
}