1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Descriptor chain walking.
//!
//! The goal of the [`ReadableChain`] and [`WritableChain`] is to present a byte-wise view of the
//! descriptor chain, and facilitate safe reading and writing to the chain.
//!
//! Although walking these chains feels similar to using an iterator, the chains do not directly
//! implement the [`std::iter::Iterator`] trait as iterator composition works against being able to
//! then convert a [`ReadableChain`] into a [`WritableChain`]. An iterator can be built on top of
//! these interfaces, but it has not been done here yet.
//!
//! In addition to walking byte ranges via the [`next`](ReadableChain::next) or [`next_with_limit`]
//! (ReadableChain::next_with_limit) methods, the [`Read`](std::io::Read) and [`Write`]
//! (std::io::Write) traits are implemented for [`ReadableChain`] and [`WritableChain`]
//! respectively.
//!
//! When using the [`std::io::Write`] interface for the [`WritableChain`] the amount written is
//! tracked, alleviating the need to manually perform [`add_written`](WritableChain::add_written).
//! Although not always appropriate depending on the particular virtio device, the
//! [`Read`](std::io::Read)/[`Write`](std::io::Write) interfaces are therefore the preferred way to
//! manipulate the chains.
//!
//! The requirement from the virtio specification that all readable descriptors occur before all
//! writable descriptors is enforced here, with explicit types that indicate what is being walked.
//! Transitioning from the [`ReadableChain`] to the [`WritableChain`] is an explicit operation that
//! allows for optional checking to ensure all readable descriptors have been consumed. This allows
//! devices to easily check if the driver is violating any protocol assumptions on descriptor
//! layouts.

use {
    crate::{
        mem::{DeviceRange, DriverMem, DriverRange},
        queue::{Desc, DescChain, DescChainIter, DescError, DescType, DriverNotify},
        ring::Desc as RingDesc,
        ring::DescAccess,
    },
    thiserror::Error,
};

#[derive(Debug, PartialEq, Clone)]
pub struct Remaining {
    pub bytes: usize,
    pub descriptors: usize,
}

/// Errors from walking a descriptor chain.
#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum ChainError {
    #[error("Error in descriptor chain: {0}")]
    Desc(#[from] DescError),
    #[error("Found readable descriptor after writable")]
    ReadableAfterWritable,
    #[error("Failed to translate descriptors driver range {0:?} into a device range")]
    TranslateFailed(DriverRange),
    #[error("Nested indirect chain is not supported by the virtio spec")]
    InvalidNestedIndirectChain,
}

impl From<ChainError> for std::io::Error {
    fn from(error: ChainError) -> Self {
        std::io::Error::new(std::io::ErrorKind::Other, error)
    }
}

#[derive(Debug, Clone)]
struct IndirectDescChain<'a> {
    range: DeviceRange<'a>,
    next: Option<u16>,
}

impl<'a> IndirectDescChain<'a> {
    fn new(range: DeviceRange<'a>) -> Self {
        IndirectDescChain { range: range, next: Some(0) }
    }

    pub fn next(&mut self) -> Option<Result<Desc, DescError>> {
        let index = self.next?;
        match self.range.split_at(index as usize * std::mem::size_of::<RingDesc>()) {
            None => Some(Err(DescError::InvalidIndex(index))),
            Some((_, range)) => match range.try_ptr::<RingDesc>() {
                None => Some(Err(DescError::InvalidIndex(index))),
                Some(ptr) => {
                    // * SAFETY
                    // try_ptr guarantees that returned Some(ptr) is valid for read
                    let desc = unsafe { ptr.read_volatile() };
                    self.next = desc.next();
                    Some(desc.try_into())
                }
            },
        }
    }
}

// State for a generic walker that can walk either the readable or writable portions of a
// chain. Ideally `E` would be of type DescAccess to indicate the kind of access this is iterating
// over, but due to current limits in const generics we have to use a bool instead. It gets
// converted to DescAccess in expected_access.
struct State<'a, 'b, N: DriverNotify, M, const E: bool> {
    chain: Option<DescChain<'a, 'b, N>>,
    iter: DescChainIter<'a, 'b, N>,
    current: Option<Desc>,
    mem: &'a M,
    indirect_chain: Option<IndirectDescChain<'a>>,
}

impl<'a, 'b, N: DriverNotify, M: DriverMem, const E: bool> State<'a, 'b, N, M, E> {
    // Hack for const generics limitation to convert bool->DescAccess.
    fn expected_access() -> DescAccess {
        if E {
            DescAccess::DeviceWrite
        } else {
            DescAccess::DeviceRead
        }
    }

    fn next_desc(&mut self) -> Option<Result<Desc, ChainError>> {
        fn into_desc(desc: Result<Desc, DescError>) -> Option<Result<Desc, ChainError>> {
            match desc {
                Ok(desc) => Some(Ok(desc)),
                Err(e) => Some(Err(e.into())),
            }
        }

        match self.current.take() {
            None => {
                // Nothing in the current, time to read a new descriptor
                // Let's see if we have an active indirect chain
                if let Some(indirect_chain) = &mut self.indirect_chain {
                    // Keep processing the indirect chain
                    match indirect_chain.next() {
                        None => {
                            // Indirect chain has been fully processed
                            self.indirect_chain = None;
                            // Read from the normal chain
                            into_desc(self.iter.next()?)
                        }
                        // Read from the indirect chain
                        Some(desc_res) => into_desc(desc_res),
                    }
                } else {
                    // Read from the normal chain
                    into_desc(self.iter.next()?)
                }
            }
            // Read the remains of the self.current
            Some(desc) => Some(Ok(desc)),
        }
    }

    fn next_into_indirect(
        &mut self,
        range: DriverRange,
        limit: usize,
    ) -> Option<Result<DeviceRange<'a>, ChainError>> {
        assert!(self.current.is_none());
        if self.indirect_chain.is_some() {
            // Supplying the nested indirect chain violates the virtio spec
            // Either our processing is wrong or guest driver has a bug
            return Some(Err(ChainError::InvalidNestedIndirectChain));
        }

        match self.mem.translate(range.clone()) {
            Some(range) => {
                self.indirect_chain = Some(IndirectDescChain::new(range));
                self.next_with_limit(limit)
            }
            None => Some(Err(ChainError::TranslateFailed(range))),
        }
    }

    fn into_device_range(
        &mut self,
        access: DescAccess,
        range: DriverRange,
        limit: usize,
    ) -> Option<Result<DeviceRange<'a>, ChainError>> {
        match (Self::expected_access(), access) {
            // If descriptor we found matches what we expected then we return as much as we can
            // based on the requested limit.
            (DescAccess::DeviceWrite, DescAccess::DeviceWrite)
            | (DescAccess::DeviceRead, DescAccess::DeviceRead) => {
                let range = if let Some((range, rest)) = range.split_at(limit) {
                    // If we could split the range, and there is non-zero remaining, then stash the
                    // remaining portion for later and return the range that was split.
                    if rest.len() > 0 {
                        self.current = Some(Desc(DescType::Direct(access), rest));
                    }
                    range
                } else {
                    // Split failed, meaning we have less than was requested so we just return all
                    // of it.
                    range
                };
                Some(self.mem.translate(range.clone()).ok_or(ChainError::TranslateFailed(range)))
            }
            // This is a readable descriptor, while we are expecting a writable one.
            // This indicates a corrupt descriptor chain, so return an error.
            (DescAccess::DeviceWrite, DescAccess::DeviceRead) => {
                // Consume the rest of the iterator to ensure any future calls to next_with_limit
                // fail.
                self.iter.complete();
                Some(Err(ChainError::ReadableAfterWritable))
            }
            (DescAccess::DeviceRead, DescAccess::DeviceWrite) => {
                // Put the descriptor back as we might want to walk the writable section later.
                self.current = Some(Desc(DescType::Direct(access), range));
                None
            }
        }
    }

    fn next_with_limit(&mut self, limit: usize) -> Option<Result<DeviceRange<'a>, ChainError>> {
        match self.next_desc()? {
            Ok(Desc(desc_type, range)) => match desc_type {
                DescType::Direct(access) => self.into_device_range(access, range, limit),
                DescType::Indirect => self.next_into_indirect(range, limit),
            },
            Err(e) => Some(Err(e.into())),
        }
    }

    fn remaining(&self) -> Result<Remaining, ChainError> {
        let mut state = State::<N, M, E> {
            chain: None,
            mem: self.mem,
            iter: self.iter.clone(),
            current: self.current.clone(),
            indirect_chain: self.indirect_chain.clone(),
        };
        let mut bytes = 0;
        let mut descriptors = 0;
        while let Some(v) = state.next_with_limit(usize::MAX) {
            bytes += v?.len();
            descriptors += 1;
        }
        Ok(Remaining { bytes, descriptors })
    }
}

// Allow easily transforming a read chain into a write.
impl<'a, 'b, N: DriverNotify, M> From<State<'a, 'b, N, M, false>> for State<'a, 'b, N, M, true> {
    fn from(state: State<'a, 'b, N, M, false>) -> State<'a, 'b, N, M, true> {
        State {
            chain: state.chain,
            iter: state.iter,
            current: state.current,
            mem: state.mem,
            indirect_chain: state.indirect_chain,
        }
    }
}

/// Errors resulting from completing a chain.
///
/// These errors are from the optional interfaces for completing and converting chains.
#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum ChainCompleteError {
    #[error("Unexpected readable descriptor found")]
    ReadableRemaining,
    #[error("Unexpected writable descriptor found")]
    WritableRemaining,
    #[error("Chain walk error {0} when checking for descriptors")]
    Chain(#[from] ChainError),
}

/// Access the readable portion of a descriptor chain.
///
/// Provides access to the read-only portion of a descriptor chain. Can be [constructed directly]
/// (ReadableChain::new) from a [`DescChain`] and once finished with can either be dropped or
/// converted to a [`WritableChain`] if there are writable portions as well.
///
/// As the [`ReadableChain`] takes ownership of the [`DescChain`] dropping the [`ReadableChain`]
/// will automatically return the [`DescChain`] to the [`Queue`](crate::queue::Queue).
///
/// For devices and protocols where it is useful, the chain can also be explicitly returned via the
/// [`return_complete`](#return_complete) method to validate full consumption of the chain.
pub struct ReadableChain<'a, 'b, N: DriverNotify, M: DriverMem> {
    state: State<'a, 'b, N, M, false>,
}

impl<'a, 'b, N: DriverNotify, M: DriverMem> ReadableChain<'a, 'b, N, M> {
    /// Construct a [`ReadableChain`] from a [`DescChain`].
    ///
    /// Requires a reference to a [`DriverMem`] in order to perform translation into
    /// [`DeviceRange`].
    pub fn new(chain: DescChain<'a, 'b, N>, mem: &'a M) -> Self {
        let iter = chain.iter();
        ReadableChain {
            state: State { chain: Some(chain), mem, iter, current: None, indirect_chain: None },
        }
    }

    /// Immediately return a fully consumed chain.
    ///
    /// This both drops the chain, thus returning the underlying [`DescChain`] to the [`Queue`]
    /// (crate::queue::Queue), and also checks if it was fully walked, generating an error if not.
    /// Fully walked here means that there are no readable or writable sections that had not been
    /// iterated over.
    ///
    /// For virtio queues where the device is expected to fully consume what it is sent, and there
    /// is not expected to be anything to write, this provides a way to both check for correct
    /// device and driver functionality.
    pub fn return_complete(self) -> Result<(), ChainCompleteError> {
        WritableChain::from_readable(self)?.return_complete()
    }

    /// Request the next range of readable bytes, up to a limit.
    ///
    /// As the [`DeviceRange`] returned here represents a contiguous range this may return a smaller
    /// range than requested by `limit`, even if there is more readable descriptor(s) remaining. In
    /// this way the caller is directly exposed to size of the underlying descriptors in the chain
    /// as queued by the driver.
    ///
    /// A return value of `None` indicates there are no more readable descriptors, however there
    /// may still be readable descriptors.
    ///
    /// Should this ever return a `Some(Err(_))` it will always yield a `None` in future calls as
    /// the chain will be deemed corrupt. If walking and attempting to recover from corrupt chains
    /// is desirable, beyond just reporting an error, then you must use the [`DescChain`] directly
    /// and not this interface.
    pub fn next_with_limit(&mut self, limit: usize) -> Option<Result<DeviceRange<'a>, ChainError>> {
        self.state.next_with_limit(limit)
    }

    /// Request the next range of readable bytes.
    ///
    /// Similar to [`next_with_limit`](#next_with_limit) except limit is implicitly `usize::MAX`.
    /// This will therefore walk the descriptors in the structure as they were provided by the
    /// driver.
    pub fn next(&mut self) -> Option<Result<DeviceRange<'a>, ChainError>> {
        self.next_with_limit(usize::MAX)
    }

    /// Query readable bytes and descriptors remaining.
    ///
    /// Returns the number of readable bytes and descriptors remaining in the chain. This does not
    /// imply that calling [`next_with_limit`](#next_with_limit) with the result will return that
    /// much, see [`next_with_limit`](#next_with_limit) for more details.
    pub fn remaining(&self) -> Result<Remaining, ChainError> {
        self.state.remaining()
    }
}

impl<'a, 'b, N: DriverNotify, M: DriverMem> std::io::Read for ReadableChain<'a, 'b, N, M> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        match self.next_with_limit(buf.len()) {
            None => Ok(0),
            Some(Err(e)) => Err(e.into()),
            Some(Ok(range)) => {
                let len = range.len();
                assert!(len <= buf.len());
                // This unwrap is safe as we are requesting a u8 pointer that has no alignment
                // constraints.
                let ptr = range.try_ptr().unwrap();
                // In the implementation of std::io::Write for WritableChain we use libc::memmove in
                // an attempt to ensure our copy cannot be elided. Here in the read path we do not
                // need to make guarantees as this not MMIO memory and reading has no side effects.
                // As such if the compiler can determine that the read data is not used, we would
                // very much like it to elide the copy.
                // We meet the safety requirements of copy_nonoverlapping since:
                // * buf is a reference to a slice and assumed to be valid
                // * ptr comes from `range`, which is a DeviceRange and is defined to be valid.
                unsafe { std::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr(), len) };
                Ok(len)
            }
        }
    }
}

/// Access the writable portion of a descriptor chain.
///
/// Provides access to the write-only portion of a descriptor chain. If no readable portion a
/// [`WritableChain`] can be constructed directly from a [`DescChain`], either [generating errors]
/// (WritiableChain::new) if there are readable portions, or [ignoring them]
/// (WritableChain::new_ignore_readable). Otherwise [`Readable`] chain can be [converted]
/// (WritableChain::from_readable) into a [`WritableChain`], with a similar option to
/// [ignore any remaining readable](WritableChain::from_incomplete_readable).
///
/// As the [`Writable`] takes ownership of the [`DescChain`] dropping the [`WritableChain`]
/// will automatically return the [`DescChain`] to the [`Queue`](crate::queue::Queue). To report
/// how much was written the [`WritableChain`] has an internal counter of how much you have claimed
/// to have written via [`add_written`](WritableChain::add_written). Walking the chain via
/// [`next`](WritableChain::next) or [`next_with_limit`](WritableChain::next_with_limit) does not
/// automatically increment the written counter as the [`WritableChain`] cannot assume how much of
/// the returned range was written to.
///
/// Writing to the chain via the [`std::io::Write`] trait will automatically increment the written
/// counter.
///
/// For devices and protocols where it is useful, the chain can also be explicitly returned via the
/// [`return_complete`](#return_complete) method to validate the full chain was written to.
pub struct WritableChain<'a, 'b, N: DriverNotify, M: DriverMem> {
    state: State<'a, 'b, N, M, true>,
    written: u32,
}

impl<'a, 'b, N: DriverNotify, M: DriverMem> WritableChain<'a, 'b, N, M> {
    /// Construct a [`WritableChain`] from a [`DescChain`].
    ///
    /// Requires a reference to a [`DriverMem`] in order to perform translation into
    /// [`DeviceRange`]. Generates an error if there are any readable portions.
    pub fn new(chain: DescChain<'a, 'b, N>, mem: &'a M) -> Result<Self, ChainCompleteError> {
        WritableChain::from_readable(ReadableChain::new(chain, mem))
    }

    /// Construct a [`WritableChain`] from a [`DescChain`], ignoring some errors.
    ///
    /// Same as [`new`](#new) but ignores any readable descriptors. It may still generate an error
    /// as a corrupt chain may be noticed when it is walked to skip any readable descriptors.
    pub fn new_ignore_readable(
        chain: DescChain<'a, 'b, N>,
        mem: &'a M,
    ) -> Result<Self, ChainError> {
        WritableChain::from_incomplete_readable(ReadableChain::new(chain, mem))
    }

    /// Convert a [`ReadableChain`] to a [`WritableChain`]
    ///
    /// Generates an error if there are still readable portions of the chain left.
    pub fn from_readable(
        mut readable: ReadableChain<'a, 'b, N, M>,
    ) -> Result<Self, ChainCompleteError> {
        match readable.next() {
            None => Ok(()),
            Some(Ok(_)) => Err(ChainCompleteError::ReadableRemaining),
            Some(Err(e)) => Err(e.into()),
        }?;
        Ok(WritableChain { state: readable.state.into(), written: 0 })
    }

    /// Convert a [`ReadableChain`] to a [`WritableChain`]
    ///
    /// Skips any remaining readable descriptors to construct a [`WritableChain`]. May still
    /// generate an error if there was a problem walking the chain.
    pub fn from_incomplete_readable(
        mut readable: ReadableChain<'a, 'b, N, M>,
    ) -> Result<Self, ChainError> {
        // Walk the readable iterator to the end, returning an error if one is found
        while let Some(_) = readable.next().transpose()? {}
        Ok(WritableChain { state: readable.state.into(), written: 0 })
    }

    /// Immediately return a fully consumed chain.
    ///
    /// Similar to [`ReadableChain::return_complete`].
    pub fn return_complete(mut self) -> Result<(), ChainCompleteError> {
        match self.next() {
            None => Ok(()),
            Some(Ok(_)) => Err(ChainCompleteError::WritableRemaining),
            Some(Err(e)) => Err(e.into()),
        }
    }

    /// Request the next range of readable bytes, up to a limit.
    ///
    /// Similar to [`ReadableChain::next_with_limit`]
    pub fn next_with_limit(&mut self, limit: usize) -> Option<Result<DeviceRange<'a>, ChainError>> {
        self.state.next_with_limit(limit)
    }

    /// Request the next range of readable bytes.
    ///
    /// Similar to [`ReadableChain::next`]
    pub fn next(&mut self) -> Option<Result<DeviceRange<'a>, ChainError>> {
        self.next_with_limit(usize::MAX)
    }

    /// Query writable bytes and descriptors remaining.
    ///
    /// Similar to [`ReadableChain::remaining`]
    pub fn remaining(&self) -> Result<Remaining, ChainError> {
        self.state.remaining()
    }

    /// Increments the written bytes counter.
    ///
    /// If descriptor ranges returned from [`next`](#next) and [`next_with_limit`](#next_with_limit)
    /// are actually written to then the amount that is written needs to be added by calling this
    /// method, as the [`WritableChain`] itself does not know if, or how much, might have been
    /// returned to the returned ranges.
    ///
    /// Note if using the [`std::io::Write`] trait implementation to write to the chain this method
    /// does not need to be called, as the trait implementation will call it for you. You only need
    /// to call this if actually directly calling [`next`](#next) or [`next_with_limit`]
    /// (#next_with_limit).
    ///
    /// `add_written` is cumulative and can be called multiple times. No checking of this value is
    /// performed and it is up to the caller to choose to honor the virtio specification.
    pub fn add_written(&mut self, written: u32) {
        self.written += written;
    }
}

impl<'a, 'b, N: DriverNotify, M: DriverMem> Drop for WritableChain<'a, 'b, N, M> {
    fn drop(&mut self) {
        self.state.chain.take().unwrap().return_written(self.written);
    }
}

impl<'a, 'b, N: DriverNotify, M: DriverMem> std::io::Write for WritableChain<'a, 'b, N, M> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        match self.next_with_limit(buf.len()) {
            None => Ok(0),
            Some(Err(e)) => Err(e.into()),
            Some(Ok(range)) => {
                let len = range.len();
                assert!(len <= buf.len());
                // This unwrap is safe as we are requesting a u8 pointer that has no alignment
                // constraints.
                let ptr = range.try_mut_ptr().unwrap();
                // We use libc::memmove over ptr::copy_nonoverlapping as ptr::copy_nonoverlapping
                // does not provide a strong guarantee that the copy cannot be elided. Ideally we
                // would perform a volatile copy, however volatile_copy_nonoverlapping_memory
                // intrinsic has no stable interface, and manually writing a loop of
                // ptr::write_volatile cannot be optimized equivalently. As such, performing an ffi
                // call to something we know cannot elide our operation, we can thus guarantee our
                // copy happens.
                // The safety requirements need to satisfy for memmove are the same as
                // ptr::copy_nonoverlapping and we this is safe since:
                // * buf is a reference to a slice and assumed to be valid
                // * ptr comes from `range`, which is a DeviceRange, and is defined to be valid
                // * len is checked for both of these ranges, and so the pointers are valid for the
                //   full range of bytes.
                unsafe { libc::memmove(ptr, buf.as_ptr() as *const libc::c_void, len) };
                self.add_written(len as u32);
                Ok(len)
            }
        }
    }
    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use {
        super::*,
        crate::{
            fake_queue::{Chain, IdentityDriverMem, TestQueue},
            ring::DescAccess,
        },
        std::io::{Read, Write},
    };

    fn check_read<'a>(result: Option<Result<DeviceRange<'a>, ChainError>>, expected: &[u8]) {
        let range = result.unwrap().unwrap();
        assert_eq!(range.len(), expected.len());
        assert_eq!(
            // Calling slice::from_raw_parts is valid since
            // * This memory was allocated from a single TestDeviceRange block to become a
            //   descriptor.
            // * No references are hold elsewhere, mutable or otherwise. Other pointers exist, but
            //   they will not be dereferenced for the duration we hold this as a slice.
            // * fake_queue::ChainBuilder initialized the memory, not that types of 'u8' need any
            //   initialization.
            unsafe { std::slice::from_raw_parts::<u8>(range.try_ptr().unwrap(), range.len()) },
            expected
        );
    }

    fn check_returned(result: Option<(u64, u32)>, expected: &[u8]) {
        let (data, len) = result.unwrap();
        assert_eq!(len as usize, expected.len());
        assert_eq!(
            // See check_read for safety argument.
            unsafe { std::slice::from_raw_parts::<u8>(data as usize as *const u8, len as usize) },
            expected
        );
    }

    fn test_write<'a>(result: Option<Result<DeviceRange<'a>, ChainError>>, expected: u32) {
        let range = result.unwrap().unwrap();
        assert_eq!(range.len(), expected as usize);
    }

    fn test_write_data<'a>(result: Option<Result<DeviceRange<'a>, ChainError>>, data: &[u8]) {
        let range = result.unwrap().unwrap();
        assert_eq!(range.len(), data.len());
        // See check_read for safety argument.
        unsafe { std::slice::from_raw_parts_mut::<u8>(range.try_mut_ptr().unwrap(), range.len()) }
            .copy_from_slice(data);
    }

    fn test_smoke_test_body<'a>(state: &mut TestQueue<'a>, driver_mem: &'a IdentityDriverMem) {
        {
            let mut readable = ReadableChain::new(state.queue.next_chain().unwrap(), driver_mem);
            assert_eq!(readable.remaining(), Ok(Remaining { bytes: 12, descriptors: 3 }));
            check_read(readable.next(), &[1, 2, 3, 4]);
            assert_eq!(readable.remaining(), Ok(Remaining { bytes: 8, descriptors: 2 }));
            check_read(readable.next_with_limit(2), &[5, 6]);
            assert_eq!(readable.remaining(), Ok(Remaining { bytes: 6, descriptors: 2 }));
            check_read(readable.next_with_limit(200), &[7, 8]);
            assert_eq!(readable.remaining(), Ok(Remaining { bytes: 4, descriptors: 1 }));
            check_read(readable.next_with_limit(4), &[9, 10, 11, 12]);
            assert_eq!(readable.remaining(), Ok(Remaining { bytes: 0, descriptors: 0 }));
            assert!(readable.next().is_none());

            let mut writable = WritableChain::from_readable(readable).unwrap();
            test_write_data(writable.next_with_limit(3), &[1, 2, 3]);
            test_write_data(writable.next(), &[4]);
            test_write(writable.next(), 4);
            assert!(writable.next().is_none());

            writable.add_written(4);
        }

        let returned = state.fake_queue.next_used().unwrap();
        assert_eq!(returned.written(), 4);
        let mut iter = returned.data_iter();
        check_returned(iter.next(), &[1, 2, 3, 4]);
        assert!(iter.next().is_none());
    }

    #[test]
    fn test_smoke_test() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);
        assert!(state
            .fake_queue
            .publish(Chain::with_data::<u8>(
                &[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
                &[4, 4],
                &driver_mem
            ))
            .is_some());
        test_smoke_test_body(&mut state, &driver_mem);
    }

    #[test]
    fn test_smoke_test_indirect_chain() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);
        assert!(state
            .fake_queue
            .publish_indirect(
                Chain::with_data::<u8>(
                    &[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
                    &[4, 4],
                    &driver_mem
                ),
                &driver_mem
            )
            .is_some());

        test_smoke_test_body(&mut state, &driver_mem)
    }

    fn test_io_body<'a>(state: &mut TestQueue<'a>, driver_mem: &'a IdentityDriverMem) {
        {
            let mut readable = ReadableChain::new(state.queue.next_chain().unwrap(), driver_mem);
            let mut buffer: [u8; 2] = [0; 2];
            assert!(readable.read_exact(&mut buffer).is_ok());
            assert_eq!(&buffer, &[1, 2]);
            check_read(readable.next_with_limit(1), &[3]);
            let mut buffer: [u8; 5] = [0; 5];
            assert!(readable.read_exact(&mut buffer).is_ok());
            assert_eq!(&buffer, &[4, 5, 6, 7, 8]);
            let mut buffer = Vec::new();
            assert!(readable.read_to_end(&mut buffer).is_ok());
            assert_eq!(buffer, vec![9, 10, 11, 12]);

            let mut writable = WritableChain::from_readable(readable).unwrap();
            assert!(writable.write_all(&[1, 2, 3, 4, 5]).is_ok());
            assert!(writable.write_all(&[6, 7, 8]).is_ok());
            assert!(writable.write_all(&[9]).is_err());
            assert!(writable.flush().is_ok());
        }
        let returned = state.fake_queue.next_used().unwrap();
        assert_eq!(returned.written(), 8);
        let mut iter = returned.data_iter();
        check_returned(iter.next(), &[1, 2, 3, 4]);
        check_returned(iter.next(), &[5, 6, 7, 8]);
        assert!(iter.next().is_none());
    }

    #[test]
    fn test_io() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);
        assert!(state
            .fake_queue
            .publish(Chain::with_data::<u8>(
                &[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
                &[4, 4],
                &driver_mem
            ))
            .is_some());
        test_io_body(&mut state, &driver_mem)
    }

    #[test]
    fn test_io_indirect_chain() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);
        assert!(state
            .fake_queue
            .publish_indirect(
                Chain::with_data::<u8>(
                    &[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
                    &[4, 4],
                    &driver_mem
                ),
                &driver_mem
            )
            .is_some());
        test_io_body(&mut state, &driver_mem)
    }

    #[test]
    fn test_readable_completed() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);

        let mut test_return = |read, write, limit, expected| {
            assert!(state
                .fake_queue
                .publish(Chain::with_lengths(read, write, &driver_mem))
                .is_some());
            let mut readable = ReadableChain::new(state.queue.next_chain().unwrap(), &driver_mem);
            if limit == 0 {
                assert!(readable.next().unwrap().is_ok());
            } else {
                assert!(readable.next_with_limit(limit).unwrap().is_ok());
            }
            assert_eq!(readable.return_complete(), expected);
            assert!(state.fake_queue.next_used().is_some());
        };

        test_return(&[4], &[], 0, Ok(()));
        test_return(&[4], &[], 4, Ok(()));
        test_return(&[4, 2], &[], 0, Err(ChainCompleteError::ReadableRemaining));
        test_return(&[4], &[], 2, Err(ChainCompleteError::ReadableRemaining));
        test_return(&[4], &[4], 2, Err(ChainCompleteError::ReadableRemaining));
        test_return(&[4], &[4], 0, Err(ChainCompleteError::WritableRemaining));
        test_return(&[4], &[4], 4, Err(ChainCompleteError::WritableRemaining));
    }

    #[test]
    fn test_make_writable() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);

        assert!(state.fake_queue.publish(Chain::with_lengths(&[], &[4], &driver_mem)).is_some());
        assert!(WritableChain::new(state.queue.next_chain().unwrap(), &driver_mem).is_ok());
        assert!(state.fake_queue.next_used().is_some());

        assert!(state.fake_queue.publish(Chain::with_lengths(&[4], &[4], &driver_mem)).is_some());
        assert_eq!(
            WritableChain::new(state.queue.next_chain().unwrap(), &driver_mem).err().unwrap(),
            ChainCompleteError::ReadableRemaining
        );
        assert!(state.fake_queue.next_used().is_some());

        assert!(state.fake_queue.publish(Chain::with_lengths(&[4], &[4], &driver_mem)).is_some());
        assert!(WritableChain::new_ignore_readable(state.queue.next_chain().unwrap(), &driver_mem)
            .is_ok());
        assert!(state.fake_queue.next_used().is_some());
    }

    #[test]
    fn test_writable_completed() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);

        let mut test_return = |read, write, limit, expected| {
            assert!(state
                .fake_queue
                .publish(Chain::with_lengths(read, write, &driver_mem))
                .is_some());
            let mut writable =
                WritableChain::new(state.queue.next_chain().unwrap(), &driver_mem).unwrap();
            if limit == 0 {
                assert!(writable.next().unwrap().is_ok());
            } else {
                assert!(writable.next_with_limit(limit).unwrap().is_ok());
            }
            assert_eq!(writable.return_complete(), expected);
            assert!(state.fake_queue.next_used().is_some());
        };

        test_return(&[], &[4], 0, Ok(()));
        test_return(&[], &[4], 4, Ok(()));
        test_return(&[], &[4, 2], 0, Err(ChainCompleteError::WritableRemaining));
        test_return(&[], &[4], 2, Err(ChainCompleteError::WritableRemaining));
    }

    #[test]
    fn test_bad_chain() {
        let driver_mem = IdentityDriverMem::new();
        let mut state = TestQueue::new(32, &driver_mem);

        // Get memory for two descriptors so we can build our custom chain.
        let desc1 = driver_mem.new_range(10).unwrap();
        let desc2 = driver_mem.new_range(20).unwrap();

        assert!(state
            .fake_queue
            .publish(Chain::with_exact_data(&[
                (DescAccess::DeviceWrite, desc1.get().start as u64, desc1.len() as u32),
                (DescAccess::DeviceRead, desc2.get().start as u64, desc2.len() as u32)
            ]))
            .is_some());

        {
            let mut writable =
                WritableChain::new_ignore_readable(state.queue.next_chain().unwrap(), &driver_mem)
                    .unwrap();
            assert!(writable.next().unwrap().is_ok());
            assert_eq!(writable.next().unwrap().err().unwrap(), ChainError::ReadableAfterWritable);
        }
        assert!(state.fake_queue.next_used().is_some());
    }
}