virtio_device/chain.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Descriptor chain walking.
//!
//! The goal of the [`ReadableChain`] and [`WritableChain`] is to present a byte-wise view of the
//! descriptor chain, and facilitate safe reading and writing to the chain.
//!
//! Although walking these chains feels similar to using an iterator, the chains do not directly
//! implement the [`std::iter::Iterator`] trait as iterator composition works against being able to
//! then convert a [`ReadableChain`] into a [`WritableChain`]. An iterator can be built on top of
//! these interfaces, but it has not been done here yet.
//!
//! In addition to walking byte ranges via the [`next`](ReadableChain::next) or [`next_with_limit`]
//! (ReadableChain::next_with_limit) methods, the [`Read`](std::io::Read) and [`Write`]
//! (std::io::Write) traits are implemented for [`ReadableChain`] and [`WritableChain`]
//! respectively.
//!
//! When using the [`std::io::Write`] interface for the [`WritableChain`] the amount written is
//! tracked, alleviating the need to manually perform [`add_written`](WritableChain::add_written).
//! Although not always appropriate depending on the particular virtio device, the
//! [`Read`](std::io::Read)/[`Write`](std::io::Write) interfaces are therefore the preferred way to
//! manipulate the chains.
//!
//! The requirement from the virtio specification that all readable descriptors occur before all
//! writable descriptors is enforced here, with explicit types that indicate what is being walked.
//! Transitioning from the [`ReadableChain`] to the [`WritableChain`] is an explicit operation that
//! allows for optional checking to ensure all readable descriptors have been consumed. This allows
//! devices to easily check if the driver is violating any protocol assumptions on descriptor
//! layouts.
use crate::mem::{DeviceRange, DriverMem, DriverRange};
use crate::queue::{Desc, DescChain, DescChainIter, DescError, DescType, DriverNotify};
use crate::ring::{Desc as RingDesc, DescAccess};
use thiserror::Error;
#[derive(Debug, PartialEq, Clone)]
pub struct Remaining {
pub bytes: usize,
pub descriptors: usize,
}
/// Errors from walking a descriptor chain.
#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum ChainError {
#[error("Error in descriptor chain: {0}")]
Desc(#[from] DescError),
#[error("Found readable descriptor after writable")]
ReadableAfterWritable,
#[error("Failed to translate descriptors driver range {0:?} into a device range")]
TranslateFailed(DriverRange),
#[error("Nested indirect chain is not supported by the virtio spec")]
InvalidNestedIndirectChain,
}
impl From<ChainError> for std::io::Error {
fn from(error: ChainError) -> Self {
std::io::Error::new(std::io::ErrorKind::Other, error)
}
}
#[derive(Debug, Clone)]
struct IndirectDescChain<'a> {
range: DeviceRange<'a>,
next: Option<u16>,
}
impl<'a> IndirectDescChain<'a> {
fn new(range: DeviceRange<'a>) -> Self {
IndirectDescChain { range: range, next: Some(0) }
}
pub fn next(&mut self) -> Option<Result<Desc, DescError>> {
let index = self.next?;
match self.range.split_at(index as usize * std::mem::size_of::<RingDesc>()) {
None => Some(Err(DescError::InvalidIndex(index))),
Some((_, range)) => match range.try_ptr::<RingDesc>() {
None => Some(Err(DescError::InvalidIndex(index))),
Some(ptr) => {
// * SAFETY
// try_ptr guarantees that returned Some(ptr) is valid for read
let desc = unsafe { ptr.read_volatile() };
self.next = desc.next();
Some(desc.try_into())
}
},
}
}
}
// State for a generic walker that can walk either the readable or writable portions of a
// chain. Ideally `E` would be of type DescAccess to indicate the kind of access this is iterating
// over, but due to current limits in const generics we have to use a bool instead. It gets
// converted to DescAccess in expected_access.
struct State<'a, 'b, N: DriverNotify, M, const E: bool> {
chain: Option<DescChain<'a, 'b, N>>,
iter: DescChainIter<'a, 'b, N>,
current: Option<Desc>,
mem: &'a M,
indirect_chain: Option<IndirectDescChain<'a>>,
}
impl<'a, 'b, N: DriverNotify, M: DriverMem, const E: bool> State<'a, 'b, N, M, E> {
// Hack for const generics limitation to convert bool->DescAccess.
fn expected_access() -> DescAccess {
if E {
DescAccess::DeviceWrite
} else {
DescAccess::DeviceRead
}
}
fn next_desc(&mut self) -> Option<Result<Desc, ChainError>> {
fn into_desc(desc: Result<Desc, DescError>) -> Option<Result<Desc, ChainError>> {
match desc {
Ok(desc) => Some(Ok(desc)),
Err(e) => Some(Err(e.into())),
}
}
match self.current.take() {
None => {
// Nothing in the current, time to read a new descriptor
// Let's see if we have an active indirect chain
if let Some(indirect_chain) = &mut self.indirect_chain {
// Keep processing the indirect chain
match indirect_chain.next() {
None => {
// Indirect chain has been fully processed
self.indirect_chain = None;
// Read from the normal chain
into_desc(self.iter.next()?)
}
// Read from the indirect chain
Some(desc_res) => into_desc(desc_res),
}
} else {
// Read from the normal chain
into_desc(self.iter.next()?)
}
}
// Read the remains of the self.current
Some(desc) => Some(Ok(desc)),
}
}
fn next_into_indirect(
&mut self,
range: DriverRange,
limit: usize,
) -> Option<Result<DeviceRange<'a>, ChainError>> {
assert!(self.current.is_none());
if self.indirect_chain.is_some() {
// Supplying the nested indirect chain violates the virtio spec
// Either our processing is wrong or guest driver has a bug
return Some(Err(ChainError::InvalidNestedIndirectChain));
}
match self.mem.translate(range.clone()) {
Some(range) => {
self.indirect_chain = Some(IndirectDescChain::new(range));
self.next_with_limit(limit)
}
None => Some(Err(ChainError::TranslateFailed(range))),
}
}
fn into_device_range(
&mut self,
access: DescAccess,
range: DriverRange,
limit: usize,
) -> Option<Result<DeviceRange<'a>, ChainError>> {
match (Self::expected_access(), access) {
// If descriptor we found matches what we expected then we return as much as we can
// based on the requested limit.
(DescAccess::DeviceWrite, DescAccess::DeviceWrite)
| (DescAccess::DeviceRead, DescAccess::DeviceRead) => {
let range = if let Some((range, rest)) = range.split_at(limit) {
// If we could split the range, and there is non-zero remaining, then stash the
// remaining portion for later and return the range that was split.
if rest.len() > 0 {
self.current = Some(Desc(DescType::Direct(access), rest));
}
range
} else {
// Split failed, meaning we have less than was requested so we just return all
// of it.
range
};
Some(self.mem.translate(range.clone()).ok_or(ChainError::TranslateFailed(range)))
}
// This is a readable descriptor, while we are expecting a writable one.
// This indicates a corrupt descriptor chain, so return an error.
(DescAccess::DeviceWrite, DescAccess::DeviceRead) => {
// Consume the rest of the iterator to ensure any future calls to next_with_limit
// fail.
self.iter.complete();
Some(Err(ChainError::ReadableAfterWritable))
}
(DescAccess::DeviceRead, DescAccess::DeviceWrite) => {
// Put the descriptor back as we might want to walk the writable section later.
self.current = Some(Desc(DescType::Direct(access), range));
None
}
}
}
fn next_with_limit(&mut self, limit: usize) -> Option<Result<DeviceRange<'a>, ChainError>> {
match self.next_desc()? {
Ok(Desc(desc_type, range)) => match desc_type {
DescType::Direct(access) => self.into_device_range(access, range, limit),
DescType::Indirect => self.next_into_indirect(range, limit),
},
Err(e) => Some(Err(e.into())),
}
}
fn remaining(&self) -> Result<Remaining, ChainError> {
let mut state = State::<N, M, E> {
chain: None,
mem: self.mem,
iter: self.iter.clone(),
current: self.current.clone(),
indirect_chain: self.indirect_chain.clone(),
};
let mut bytes = 0;
let mut descriptors = 0;
while let Some(v) = state.next_with_limit(usize::MAX) {
bytes += v?.len();
descriptors += 1;
}
Ok(Remaining { bytes, descriptors })
}
}
// Allow easily transforming a read chain into a write.
impl<'a, 'b, N: DriverNotify, M> From<State<'a, 'b, N, M, false>> for State<'a, 'b, N, M, true> {
fn from(state: State<'a, 'b, N, M, false>) -> State<'a, 'b, N, M, true> {
State {
chain: state.chain,
iter: state.iter,
current: state.current,
mem: state.mem,
indirect_chain: state.indirect_chain,
}
}
}
/// Errors resulting from completing a chain.
///
/// These errors are from the optional interfaces for completing and converting chains.
#[derive(Error, Debug, Clone, PartialEq, Eq)]
pub enum ChainCompleteError {
#[error("Unexpected readable descriptor found")]
ReadableRemaining,
#[error("Unexpected writable descriptor found")]
WritableRemaining,
#[error("Chain walk error {0} when checking for descriptors")]
Chain(#[from] ChainError),
}
/// Access the readable portion of a descriptor chain.
///
/// Provides access to the read-only portion of a descriptor chain. Can be [constructed directly]
/// (ReadableChain::new) from a [`DescChain`] and once finished with can either be dropped or
/// converted to a [`WritableChain`] if there are writable portions as well.
///
/// As the [`ReadableChain`] takes ownership of the [`DescChain`] dropping the [`ReadableChain`]
/// will automatically return the [`DescChain`] to the [`Queue`](crate::queue::Queue).
///
/// For devices and protocols where it is useful, the chain can also be explicitly returned via the
/// [`return_complete`](#return_complete) method to validate full consumption of the chain.
pub struct ReadableChain<'a, 'b, N: DriverNotify, M: DriverMem> {
state: State<'a, 'b, N, M, false>,
}
impl<'a, 'b, N: DriverNotify, M: DriverMem> ReadableChain<'a, 'b, N, M> {
/// Construct a [`ReadableChain`] from a [`DescChain`].
///
/// Requires a reference to a [`DriverMem`] in order to perform translation into
/// [`DeviceRange`].
pub fn new(chain: DescChain<'a, 'b, N>, mem: &'a M) -> Self {
let iter = chain.iter();
ReadableChain {
state: State { chain: Some(chain), mem, iter, current: None, indirect_chain: None },
}
}
/// Immediately return a fully consumed chain.
///
/// This both drops the chain, thus returning the underlying [`DescChain`] to the [`Queue`]
/// (crate::queue::Queue), and also checks if it was fully walked, generating an error if not.
/// Fully walked here means that there are no readable or writable sections that had not been
/// iterated over.
///
/// For virtio queues where the device is expected to fully consume what it is sent, and there
/// is not expected to be anything to write, this provides a way to both check for correct
/// device and driver functionality.
pub fn return_complete(self) -> Result<(), ChainCompleteError> {
WritableChain::from_readable(self)?.return_complete()
}
/// Request the next range of readable bytes, up to a limit.
///
/// As the [`DeviceRange`] returned here represents a contiguous range this may return a smaller
/// range than requested by `limit`, even if there is more readable descriptor(s) remaining. In
/// this way the caller is directly exposed to size of the underlying descriptors in the chain
/// as queued by the driver.
///
/// A return value of `None` indicates there are no more readable descriptors, however there
/// may still be readable descriptors.
///
/// Should this ever return a `Some(Err(_))` it will always yield a `None` in future calls as
/// the chain will be deemed corrupt. If walking and attempting to recover from corrupt chains
/// is desirable, beyond just reporting an error, then you must use the [`DescChain`] directly
/// and not this interface.
pub fn next_with_limit(&mut self, limit: usize) -> Option<Result<DeviceRange<'a>, ChainError>> {
self.state.next_with_limit(limit)
}
/// Request the next range of readable bytes.
///
/// Similar to [`next_with_limit`](#next_with_limit) except limit is implicitly `usize::MAX`.
/// This will therefore walk the descriptors in the structure as they were provided by the
/// driver.
pub fn next(&mut self) -> Option<Result<DeviceRange<'a>, ChainError>> {
self.next_with_limit(usize::MAX)
}
/// Query readable bytes and descriptors remaining.
///
/// Returns the number of readable bytes and descriptors remaining in the chain. This does not
/// imply that calling [`next_with_limit`](#next_with_limit) with the result will return that
/// much, see [`next_with_limit`](#next_with_limit) for more details.
pub fn remaining(&self) -> Result<Remaining, ChainError> {
self.state.remaining()
}
}
impl<'a, 'b, N: DriverNotify, M: DriverMem> std::io::Read for ReadableChain<'a, 'b, N, M> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
match self.next_with_limit(buf.len()) {
None => Ok(0),
Some(Err(e)) => Err(e.into()),
Some(Ok(range)) => {
let len = range.len();
assert!(len <= buf.len());
// This unwrap is safe as we are requesting a u8 pointer that has no alignment
// constraints.
let ptr = range.try_ptr().unwrap();
// In the implementation of std::io::Write for WritableChain we use libc::memmove in
// an attempt to ensure our copy cannot be elided. Here in the read path we do not
// need to make guarantees as this not MMIO memory and reading has no side effects.
// As such if the compiler can determine that the read data is not used, we would
// very much like it to elide the copy.
// We meet the safety requirements of copy_nonoverlapping since:
// * buf is a reference to a slice and assumed to be valid
// * ptr comes from `range`, which is a DeviceRange and is defined to be valid.
unsafe { std::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr(), len) };
Ok(len)
}
}
}
}
/// Access the writable portion of a descriptor chain.
///
/// Provides access to the write-only portion of a descriptor chain. If no readable portion a
/// [`WritableChain`] can be constructed directly from a [`DescChain`], either [generating errors]
/// (WritiableChain::new) if there are readable portions, or [ignoring them]
/// (WritableChain::new_ignore_readable). Otherwise [`Readable`] chain can be [converted]
/// (WritableChain::from_readable) into a [`WritableChain`], with a similar option to
/// [ignore any remaining readable](WritableChain::from_incomplete_readable).
///
/// As the [`Writable`] takes ownership of the [`DescChain`] dropping the [`WritableChain`]
/// will automatically return the [`DescChain`] to the [`Queue`](crate::queue::Queue). To report
/// how much was written the [`WritableChain`] has an internal counter of how much you have claimed
/// to have written via [`add_written`](WritableChain::add_written). Walking the chain via
/// [`next`](WritableChain::next) or [`next_with_limit`](WritableChain::next_with_limit) does not
/// automatically increment the written counter as the [`WritableChain`] cannot assume how much of
/// the returned range was written to.
///
/// Writing to the chain via the [`std::io::Write`] trait will automatically increment the written
/// counter.
///
/// For devices and protocols where it is useful, the chain can also be explicitly returned via the
/// [`return_complete`](#return_complete) method to validate the full chain was written to.
pub struct WritableChain<'a, 'b, N: DriverNotify, M: DriverMem> {
state: State<'a, 'b, N, M, true>,
written: u32,
}
impl<'a, 'b, N: DriverNotify, M: DriverMem> WritableChain<'a, 'b, N, M> {
/// Construct a [`WritableChain`] from a [`DescChain`].
///
/// Requires a reference to a [`DriverMem`] in order to perform translation into
/// [`DeviceRange`]. Generates an error if there are any readable portions.
pub fn new(chain: DescChain<'a, 'b, N>, mem: &'a M) -> Result<Self, ChainCompleteError> {
WritableChain::from_readable(ReadableChain::new(chain, mem))
}
/// Construct a [`WritableChain`] from a [`DescChain`], ignoring some errors.
///
/// Same as [`new`](#new) but ignores any readable descriptors. It may still generate an error
/// as a corrupt chain may be noticed when it is walked to skip any readable descriptors.
pub fn new_ignore_readable(
chain: DescChain<'a, 'b, N>,
mem: &'a M,
) -> Result<Self, ChainError> {
WritableChain::from_incomplete_readable(ReadableChain::new(chain, mem))
}
/// Convert a [`ReadableChain`] to a [`WritableChain`]
///
/// Generates an error if there are still readable portions of the chain left.
pub fn from_readable(
mut readable: ReadableChain<'a, 'b, N, M>,
) -> Result<Self, ChainCompleteError> {
match readable.next() {
None => Ok(()),
Some(Ok(_)) => Err(ChainCompleteError::ReadableRemaining),
Some(Err(e)) => Err(e.into()),
}?;
Ok(WritableChain { state: readable.state.into(), written: 0 })
}
/// Convert a [`ReadableChain`] to a [`WritableChain`]
///
/// Skips any remaining readable descriptors to construct a [`WritableChain`]. May still
/// generate an error if there was a problem walking the chain.
pub fn from_incomplete_readable(
mut readable: ReadableChain<'a, 'b, N, M>,
) -> Result<Self, ChainError> {
// Walk the readable iterator to the end, returning an error if one is found
while let Some(_) = readable.next().transpose()? {}
Ok(WritableChain { state: readable.state.into(), written: 0 })
}
/// Immediately return a fully consumed chain.
///
/// Similar to [`ReadableChain::return_complete`].
pub fn return_complete(mut self) -> Result<(), ChainCompleteError> {
match self.next() {
None => Ok(()),
Some(Ok(_)) => Err(ChainCompleteError::WritableRemaining),
Some(Err(e)) => Err(e.into()),
}
}
/// Request the next range of readable bytes, up to a limit.
///
/// Similar to [`ReadableChain::next_with_limit`]
pub fn next_with_limit(&mut self, limit: usize) -> Option<Result<DeviceRange<'a>, ChainError>> {
self.state.next_with_limit(limit)
}
/// Request the next range of readable bytes.
///
/// Similar to [`ReadableChain::next`]
pub fn next(&mut self) -> Option<Result<DeviceRange<'a>, ChainError>> {
self.next_with_limit(usize::MAX)
}
/// Query writable bytes and descriptors remaining.
///
/// Similar to [`ReadableChain::remaining`]
pub fn remaining(&self) -> Result<Remaining, ChainError> {
self.state.remaining()
}
/// Increments the written bytes counter.
///
/// If descriptor ranges returned from [`next`](#next) and [`next_with_limit`](#next_with_limit)
/// are actually written to then the amount that is written needs to be added by calling this
/// method, as the [`WritableChain`] itself does not know if, or how much, might have been
/// returned to the returned ranges.
///
/// Note if using the [`std::io::Write`] trait implementation to write to the chain this method
/// does not need to be called, as the trait implementation will call it for you. You only need
/// to call this if actually directly calling [`next`](#next) or [`next_with_limit`]
/// (#next_with_limit).
///
/// `add_written` is cumulative and can be called multiple times. No checking of this value is
/// performed and it is up to the caller to choose to honor the virtio specification.
pub fn add_written(&mut self, written: u32) {
self.written += written;
}
}
impl<'a, 'b, N: DriverNotify, M: DriverMem> Drop for WritableChain<'a, 'b, N, M> {
fn drop(&mut self) {
self.state.chain.take().unwrap().return_written(self.written);
}
}
impl<'a, 'b, N: DriverNotify, M: DriverMem> std::io::Write for WritableChain<'a, 'b, N, M> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
match self.next_with_limit(buf.len()) {
None => Ok(0),
Some(Err(e)) => Err(e.into()),
Some(Ok(range)) => {
let len = range.len();
assert!(len <= buf.len());
// This unwrap is safe as we are requesting a u8 pointer that has no alignment
// constraints.
let ptr = range.try_mut_ptr().unwrap();
// We use libc::memmove over ptr::copy_nonoverlapping as ptr::copy_nonoverlapping
// does not provide a strong guarantee that the copy cannot be elided. Ideally we
// would perform a volatile copy, however volatile_copy_nonoverlapping_memory
// intrinsic has no stable interface, and manually writing a loop of
// ptr::write_volatile cannot be optimized equivalently. As such, performing an ffi
// call to something we know cannot elide our operation, we can thus guarantee our
// copy happens.
// The safety requirements need to satisfy for memmove are the same as
// ptr::copy_nonoverlapping and we this is safe since:
// * buf is a reference to a slice and assumed to be valid
// * ptr comes from `range`, which is a DeviceRange, and is defined to be valid
// * len is checked for both of these ranges, and so the pointers are valid for the
// full range of bytes.
unsafe { libc::memmove(ptr, buf.as_ptr() as *const libc::c_void, len) };
self.add_written(len as u32);
Ok(len)
}
}
}
fn flush(&mut self) -> std::io::Result<()> {
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fake_queue::{Chain, IdentityDriverMem, TestQueue};
use std::io::{Read, Write};
fn check_read<'a>(result: Option<Result<DeviceRange<'a>, ChainError>>, expected: &[u8]) {
let range = result.unwrap().unwrap();
assert_eq!(range.len(), expected.len());
assert_eq!(
// Calling slice::from_raw_parts is valid since
// * This memory was allocated from a single TestDeviceRange block to become a
// descriptor.
// * No references are hold elsewhere, mutable or otherwise. Other pointers exist, but
// they will not be dereferenced for the duration we hold this as a slice.
// * fake_queue::ChainBuilder initialized the memory, not that types of 'u8' need any
// initialization.
unsafe { std::slice::from_raw_parts::<u8>(range.try_ptr().unwrap(), range.len()) },
expected
);
}
fn check_returned(result: Option<(u64, u32)>, expected: &[u8]) {
let (data, len) = result.unwrap();
assert_eq!(len as usize, expected.len());
assert_eq!(
// See check_read for safety argument.
unsafe { std::slice::from_raw_parts::<u8>(data as usize as *const u8, len as usize) },
expected
);
}
fn test_write<'a>(result: Option<Result<DeviceRange<'a>, ChainError>>, expected: u32) {
let range = result.unwrap().unwrap();
assert_eq!(range.len(), expected as usize);
}
fn test_write_data<'a>(result: Option<Result<DeviceRange<'a>, ChainError>>, data: &[u8]) {
let range = result.unwrap().unwrap();
assert_eq!(range.len(), data.len());
// See check_read for safety argument.
unsafe { std::slice::from_raw_parts_mut::<u8>(range.try_mut_ptr().unwrap(), range.len()) }
.copy_from_slice(data);
}
fn test_smoke_test_body<'a>(state: &mut TestQueue<'a>, driver_mem: &'a IdentityDriverMem) {
{
let mut readable = ReadableChain::new(state.queue.next_chain().unwrap(), driver_mem);
assert_eq!(readable.remaining(), Ok(Remaining { bytes: 12, descriptors: 3 }));
check_read(readable.next(), &[1, 2, 3, 4]);
assert_eq!(readable.remaining(), Ok(Remaining { bytes: 8, descriptors: 2 }));
check_read(readable.next_with_limit(2), &[5, 6]);
assert_eq!(readable.remaining(), Ok(Remaining { bytes: 6, descriptors: 2 }));
check_read(readable.next_with_limit(200), &[7, 8]);
assert_eq!(readable.remaining(), Ok(Remaining { bytes: 4, descriptors: 1 }));
check_read(readable.next_with_limit(4), &[9, 10, 11, 12]);
assert_eq!(readable.remaining(), Ok(Remaining { bytes: 0, descriptors: 0 }));
assert!(readable.next().is_none());
let mut writable = WritableChain::from_readable(readable).unwrap();
test_write_data(writable.next_with_limit(3), &[1, 2, 3]);
test_write_data(writable.next(), &[4]);
test_write(writable.next(), 4);
assert!(writable.next().is_none());
writable.add_written(4);
}
let returned = state.fake_queue.next_used().unwrap();
assert_eq!(returned.written(), 4);
let mut iter = returned.data_iter();
check_returned(iter.next(), &[1, 2, 3, 4]);
assert!(iter.next().is_none());
}
#[test]
fn test_smoke_test() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
assert!(state
.fake_queue
.publish(Chain::with_data::<u8>(
&[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
&[4, 4],
&driver_mem
))
.is_some());
test_smoke_test_body(&mut state, &driver_mem);
}
#[test]
fn test_smoke_test_indirect_chain() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
assert!(state
.fake_queue
.publish_indirect(
Chain::with_data::<u8>(
&[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
&[4, 4],
&driver_mem
),
&driver_mem
)
.is_some());
test_smoke_test_body(&mut state, &driver_mem)
}
fn test_io_body<'a>(state: &mut TestQueue<'a>, driver_mem: &'a IdentityDriverMem) {
{
let mut readable = ReadableChain::new(state.queue.next_chain().unwrap(), driver_mem);
let mut buffer: [u8; 2] = [0; 2];
assert!(readable.read_exact(&mut buffer).is_ok());
assert_eq!(&buffer, &[1, 2]);
check_read(readable.next_with_limit(1), &[3]);
let mut buffer: [u8; 5] = [0; 5];
assert!(readable.read_exact(&mut buffer).is_ok());
assert_eq!(&buffer, &[4, 5, 6, 7, 8]);
let mut buffer = Vec::new();
assert!(readable.read_to_end(&mut buffer).is_ok());
assert_eq!(buffer, vec![9, 10, 11, 12]);
let mut writable = WritableChain::from_readable(readable).unwrap();
assert!(writable.write_all(&[1, 2, 3, 4, 5]).is_ok());
assert!(writable.write_all(&[6, 7, 8]).is_ok());
assert!(writable.write_all(&[9]).is_err());
assert!(writable.flush().is_ok());
}
let returned = state.fake_queue.next_used().unwrap();
assert_eq!(returned.written(), 8);
let mut iter = returned.data_iter();
check_returned(iter.next(), &[1, 2, 3, 4]);
check_returned(iter.next(), &[5, 6, 7, 8]);
assert!(iter.next().is_none());
}
#[test]
fn test_io() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
assert!(state
.fake_queue
.publish(Chain::with_data::<u8>(
&[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
&[4, 4],
&driver_mem
))
.is_some());
test_io_body(&mut state, &driver_mem)
}
#[test]
fn test_io_indirect_chain() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
assert!(state
.fake_queue
.publish_indirect(
Chain::with_data::<u8>(
&[&[1, 2, 3, 4], &[5, 6, 7, 8], &[9, 10, 11, 12]],
&[4, 4],
&driver_mem
),
&driver_mem
)
.is_some());
test_io_body(&mut state, &driver_mem)
}
#[test]
fn test_readable_completed() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
let mut test_return = |read, write, limit, expected| {
assert!(state
.fake_queue
.publish(Chain::with_lengths(read, write, &driver_mem))
.is_some());
let mut readable = ReadableChain::new(state.queue.next_chain().unwrap(), &driver_mem);
if limit == 0 {
assert!(readable.next().unwrap().is_ok());
} else {
assert!(readable.next_with_limit(limit).unwrap().is_ok());
}
assert_eq!(readable.return_complete(), expected);
assert!(state.fake_queue.next_used().is_some());
};
test_return(&[4], &[], 0, Ok(()));
test_return(&[4], &[], 4, Ok(()));
test_return(&[4, 2], &[], 0, Err(ChainCompleteError::ReadableRemaining));
test_return(&[4], &[], 2, Err(ChainCompleteError::ReadableRemaining));
test_return(&[4], &[4], 2, Err(ChainCompleteError::ReadableRemaining));
test_return(&[4], &[4], 0, Err(ChainCompleteError::WritableRemaining));
test_return(&[4], &[4], 4, Err(ChainCompleteError::WritableRemaining));
}
#[test]
fn test_make_writable() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
assert!(state.fake_queue.publish(Chain::with_lengths(&[], &[4], &driver_mem)).is_some());
assert!(WritableChain::new(state.queue.next_chain().unwrap(), &driver_mem).is_ok());
assert!(state.fake_queue.next_used().is_some());
assert!(state.fake_queue.publish(Chain::with_lengths(&[4], &[4], &driver_mem)).is_some());
assert_eq!(
WritableChain::new(state.queue.next_chain().unwrap(), &driver_mem).err().unwrap(),
ChainCompleteError::ReadableRemaining
);
assert!(state.fake_queue.next_used().is_some());
assert!(state.fake_queue.publish(Chain::with_lengths(&[4], &[4], &driver_mem)).is_some());
assert!(WritableChain::new_ignore_readable(state.queue.next_chain().unwrap(), &driver_mem)
.is_ok());
assert!(state.fake_queue.next_used().is_some());
}
#[test]
fn test_writable_completed() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
let mut test_return = |read, write, limit, expected| {
assert!(state
.fake_queue
.publish(Chain::with_lengths(read, write, &driver_mem))
.is_some());
let mut writable =
WritableChain::new(state.queue.next_chain().unwrap(), &driver_mem).unwrap();
if limit == 0 {
assert!(writable.next().unwrap().is_ok());
} else {
assert!(writable.next_with_limit(limit).unwrap().is_ok());
}
assert_eq!(writable.return_complete(), expected);
assert!(state.fake_queue.next_used().is_some());
};
test_return(&[], &[4], 0, Ok(()));
test_return(&[], &[4], 4, Ok(()));
test_return(&[], &[4, 2], 0, Err(ChainCompleteError::WritableRemaining));
test_return(&[], &[4], 2, Err(ChainCompleteError::WritableRemaining));
}
#[test]
fn test_bad_chain() {
let driver_mem = IdentityDriverMem::new();
let mut state = TestQueue::new(32, &driver_mem);
// Get memory for two descriptors so we can build our custom chain.
let desc1 = driver_mem.new_range(10).unwrap();
let desc2 = driver_mem.new_range(20).unwrap();
assert!(state
.fake_queue
.publish(Chain::with_exact_data(&[
(DescAccess::DeviceWrite, desc1.get().start as u64, desc1.len() as u32),
(DescAccess::DeviceRead, desc2.get().start as u64, desc2.len() as u32)
]))
.is_some());
{
let mut writable =
WritableChain::new_ignore_readable(state.queue.next_chain().unwrap(), &driver_mem)
.unwrap();
assert!(writable.next().unwrap().is_ok());
assert_eq!(writable.next().unwrap().err().unwrap(), ChainError::ReadableAfterWritable);
}
assert!(state.fake_queue.next_used().is_some());
}
}